Principles of Knowledge Representation and Reasoning

Description Logics - Decidability and Complexity

Bernhard Nebel, Malte Helmert and Stefan Wölfl

Albert-Ludwigs-Universität Freiburg
July 22, 2008

Decidability \&
Undecidability
Polynomial
Cases
Complexity of
ALC
Subsumption
Expressive
Power vs.
Complexity
The
Complexity of
Subsumption
in TBoxes
Outlook
Literature

Decidability

L_{2} is the fragment of first-order predicate logic using only two
different variable names (note: variable names can be reused!).
the same including equality.
Nebel, Helmert, WölfI

Decidability \& Undecidability

Polynomial
Cases
Complexity of
Corollary
Subsumption and satisfiability of concept descriptions is decidable in description logics using only the following concept and role forming operators: r

Potential problems: Role composition and cardinality restrictions for role fillers. Cardinality restrictions, however, are not a real problem

ACC
Subsumption
Expressive
Power vs.
Complexity
The
Complexity of
Subsumption
in TBoxes
Outlook

Decidability

L_{2} is the fragment of first-order predicate logic using only two different variable names (note: variable names can be reused!). $L_{2}^{\overline{=}}$ the same including equality.

Corollary

Subsumption and satisfiability of concept descriptions is decidable in description logics using only the following concept and role forming operators

```
Polynomial
Cases
```

Complexity of
ACC
Subsumption
Expressive
Power vs.
Complexity
The
Complexity of
Subsumption
in TBoxes

Outlook
Potential problems: Role composition and cardinality restrictions for role fillers. Cardinality restrictions, however, are

Decidability

L_{2} is the fragment of first-order predicate logic using only two different variable names (note: variable names can be reused!). $L_{2}^{=}$the same including equality.

Theorem

. $L_{2}^{=}$is decidable.

Subsumption and satisfiability of concept descriptions is decidable in description logics using only the following concept

Potential problems: Role composition and cardinality restrictions for role fillers. Cardinality restrictions, however, are

Decidability

L_{2} is the fragment of first-order predicate logic using only two different variable names (note: variable names can be reused!). $L_{2}^{\overline{=}}$ the same including equality.

Theorem

$L_{2}^{=}$is decidable.

Corollary

Complexity of

Subsumption and satisfiability of concept descriptions is decidable in description logics using only the following concept and role forming operators: $C \sqcap D, C \sqcup D, \neg C, \forall r . C, \exists r . C$, $r \sqsubseteq s, r \sqcap s, r \sqcup s, \neg r, r^{-1}$.

Potential problems: Role composition and cardinality restrictions for role fillers. Cardinality restrictions, however, are not a real problem

Decidability

L_{2} is the fragment of first-order predicate logic using only two different variable names (note: variable names can be reused!). $L_{2}^{\overline{=}}$ the same including equality.

Theorem

$L_{2}^{=}$is decidable.

Corollary

Complexity of

Subsumption and satisfiability of concept descriptions is decidable in description logics using only the following concept and role forming operators: $C \sqcap D, C \sqcup D, \neg C, \forall r . C, \exists r . C$, $r \sqsubseteq s, r \sqcap s, r \sqcup s, \neg r, r^{-1}$.

Potential problems: Role composition and cardinality restrictions for role fillers. Cardinality restrictions, however, are not a real problem.

Undecidability

- $r \circ s, r \sqcap s, \neg r, 1$ [Schild 88]
- not relevant; Tarski had shown that already! - for relation algebras
- $r \circ s, r \doteq s, C \Pi D, \forall r: C$ [Schmidt-Schauß 89]
- This is in fact a fragment of the early description logic KL-ONE, where people had hoped to come up with a complete subsumption algorithm

Decidability \& Undecidability

Polynomial
Cases
Complexity of
ACC
Subsumption
Expressive
Power vs.
Complexity
The
Complexity of
Subsumption
in TBoxes
Outlook
Literature

Undecidability

- $r \circ s, r \sqcap s, \neg r, 1$ [Schild 88]
- not relevant; Tarski had shown that already! - for relation algebras

Decidability \& Undecidability

Polynomial
Cases
Complexity of
ACC
Subsumption
Expressive
Power vs.
Complexity
The
Complexity of
Subsumption
in TBoxes
Outlook
Literature

Undecidability

- $r \circ s, r \sqcap s, \neg r, 1$ [Schild 88]
- not relevant; Tarski had shown that already! - for relation algebras
- $r \circ s, r \doteq s, C \sqcap D, \forall r . C$ [Schmidt-Schauß 89]
- This is in fact a fragment of the early description logic KL-ONE, where people had hoped to come up with a complete subsumption algorithm

Decidability \& Undecidability

Polynomial
Cases
Complexity of
ACC
Subsumption
Expressive
Power vs.
Complexity
The
Complexity of
Subsumption
in TBoxes
Outlook
Literature

Undecidability

- $r \circ s, r \sqcap s, \neg r, 1$ [Schild 88]
- not relevant; Tarski had shown that already! - for relation algebras
- $r \circ s, r \doteq s, C \sqcap D, \forall r . C$ [Schmidt-Schauß 89]
- This is in fact a fragment of the early description logic KL-ONE, where people had hoped to come up with a complete subsumption algorithm

Decidability \&
Undecidability
Polynomial
Cases
Complexity of
ACC
Subsumption
Expressive
Power vs.
Complexity
The
Complexity of
Subsumption
in TBoxes
Outlook
Literature

Decidable, Polynomial-Time Cases

- $\mathcal{F} \mathcal{L}^{-}$has obviously a polynomial subsumption problem (in the empty TBox) - the SUB algorithm needs only quadratic time.

> Donini et al [IJCAI 91] have shown that in the following languages subsumption can be decided using only polynomial time (and they are maximal wrt. this property)

Nebel,
Helmert
Wölfı

Decidable, Polynomial-Time Cases

- $\mathcal{F} \mathcal{L}^{-}$has obviously a polynomial subsumption problem (in the empty TBox) - the SUB algorithm needs only quadratic time.
- Donini et al [IJCAI 91] have shown that in the following languages subsumption can be decided using only polynomial time (and they are maximal wrt. this property)

Decidability \&
Undecidability
Polynomial
Cases
Complexity of
ACC
Subsumption
Expressive
Power vs.
Complexity
The
Complexity of
Subsumption
in TBoxes
Outlook
Literature

Decidable, Polynomial-Time Cases

- $\mathcal{F} \mathcal{L}^{-}$has obviously a polynomial subsumption problem (in the empty TBox) - the SUB algorithm needs only quadratic time.
- Donini et al [IJCAI 91] have shown that in the following languages subsumption can be decided using only polynomial time (and they are maximal wrt. this property):

$$
\begin{aligned}
& C \rightarrow A|\neg A| C \sqcap C^{\prime}|\forall r . C|(\geq n r)|(\leq n r), r \rightarrow t| r^{-1} \\
& \text { and } \\
& C \rightarrow A\left|C \sqcap C^{\prime}\right| \forall r . C|\exists r, r \rightarrow t| r^{-1}\left|r \sqcap r^{\prime}\right| r \circ r^{\prime} \\
& \text { Open: } \\
& C \rightarrow A\left|C \sqcap C^{\prime}\right| \forall r . C|(\geq n r)|(\leq n r), r \rightarrow t \mid r \circ r^{\prime} .
\end{aligned}
$$

Decidable, Polynomial-Time Cases

- $\mathcal{F} \mathcal{L}^{-}$has obviously a polynomial subsumption problem (in the empty TBox) - the SUB algorithm needs only quadratic time.
- Donini et al [IJCAI 91] have shown that in the following languages subsumption can be decided using only polynomial time (and they are maximal wrt. this property):

$$
\begin{aligned}
& C \rightarrow A|\neg A| C \sqcap C^{\prime}|\forall r . C|(\geq n r)|(\leq n r), r \rightarrow t| r^{-1} \\
& \text { and } \\
& C \rightarrow A\left|C \sqcap C^{\prime}\right| \forall r . C|\exists r, r \rightarrow t| r^{-1}\left|r \sqcap r^{\prime}\right| r \circ r^{\prime} \\
& \text { Open: } \\
& C \rightarrow A\left|C \sqcap C^{\prime}\right| \forall r . C|(\geq n r)|(\leq n r), r \rightarrow t \mid r \circ r^{\prime} .
\end{aligned}
$$

Decidable, Polynomial-Time Cases

- $\mathcal{F} \mathcal{L}^{-}$has obviously a polynomial subsumption problem (in the empty TBox) - the SUB algorithm needs only quadratic time.
- Donini et al [IJCAI 91] have shown that in the following languages subsumption can be decided using only polynomial time (and they are maximal wrt. this property):

$$
\begin{aligned}
& C \rightarrow A|\neg A| C \sqcap C^{\prime}|\forall r . C|(\geq n r)|(\leq n r), r \rightarrow t| r^{-1} \\
& \text { and } \\
& C \rightarrow A\left|C \sqcap C^{\prime}\right| \forall r . C|\exists r, \quad r \rightarrow t| r^{-1}\left|r \sqcap r^{\prime}\right| r \circ r^{\prime}
\end{aligned}
$$

Open:

$$
C \rightarrow A\left|C \sqcap C^{\prime}\right| \forall r . C|(\geq n r)|(\leq n r), r \rightarrow t \mid r \circ r^{\prime}
$$

How Hard is $\mathcal{A L C}$ Subsumption?

Proposition

$\mathcal{A L C}$ subsumption and unsatisfiability are co-NP-hard.
Nebel,
Helmert, Wölfl

Proof.
Unsatisfiability and subsumption are reducible to each other. We give a reduction from UNSAT. A propositional formula φ over the atoms a_{i} is mapped to $\pi(\varphi)$:

Decidability \& Undecidability

Polynomial
Cases
Complexity of
ALC
Subsumption
Expressive
Power vs.
Complexity
The
Complexity of
Subsumption
in TBoxes
Outlook
Literature

How Hard is $\mathcal{A L C}$ Subsumption?

Proposition

$\mathcal{A L C}$ subsumption and unsatisfiability are co-NP-hard.

Proof.

Unsatisfiability and subsumption are reducible to each other.
reduction from UNSAT. A propositional formula φ over the atoms a_{i} is

Decidability \&

Polynomial
Cases
Complexity of
ACC
Subsumption
Expressive
Power vs.
Complexity
The
Complexity of
Subsumption
in TBoxes
Outlook
Literature

How Hard is $\mathcal{A L C}$ Subsumption?

Proposition

$\mathcal{A L C}$ subsumption and unsatisfiability are co-NP-hard.

Proof.

Unsatisfiability and subsumption are reducible to each other. We give a reduction from UNSAT.

Complexity of
ALC
Subsumption
Expressive
Power vs.
Complexity
The
Complexity of
Subsumption
in TBoxes
Outlook
Literature

How Hard is $\mathcal{A L C}$ Subsumption?

Proposition

$\mathcal{A L C}$ subsumption and unsatisfiability are co-NP-hard.

Proof.

Unsatisfiability and subsumption are reducible to each other. We give a reduction from UNSAT. A propositional formula φ over the atoms a_{i} is

Obviously, φ is satisfiable iff $\pi(\varphi)$ is satisfiable (use structural induction)
If is has a model construct a model for $\pi\left(\omega_{0}\right)$ with iust one element t
standing for the truth of the atoms and the formula. Conversely, if $\pi(\varphi)$

How Hard is $\mathcal{A L C}$ Subsumption?

Proposition

$\mathcal{A L C}$ subsumption and unsatisfiability are co-NP-hard.
Proof.
Unsatisfiability and subsumption are reducible to each other. We give a reduction from UNSAT. A propositional formula φ over the atoms a_{i} is mapped to $\pi(\varphi)$:

$$
\begin{array}{rll}
a_{i} & \mapsto & a_{i} \\
\psi \wedge \psi^{\prime} & \mapsto & \pi(\psi) \sqcap \pi\left(\psi^{\prime}\right) \\
\psi^{\prime} \vee \psi & \mapsto & \pi(\psi) \sqcup \pi\left(\psi^{\prime}\right) \\
\neg \psi & \mapsto & \neg \pi(\psi)
\end{array}
$$

Obviously, φ is satisfiable iff $\pi(\varphi)$ is satisfiable (use structural induction).
If φ has a model, construct a model for $\pi(\varphi)$ with just one element t
standing for the truth of the atoms and the formula. Conversely, if $\pi(\varphi)$ satisfiable, pick one element $d \in \pi(\varphi)^{I}$ and set the truth value of atom a according to the fact that $d \in \pi\left(a_{i}\right)^{\perp}$

Decidability \&
Undecidability
Polynomial
Cases
Complexity of ACC
Subsumption
Expressive
Power vs.
Complexity
The
Complexity of
Subsumption
in TBoxes
Outlook
Literature

How Hard is $\mathcal{A L C}$ Subsumption?

Proposition

$\mathcal{A L C}$ subsumption and unsatisfiability are co-NP-hard.
Proof.
Unsatisfiability and subsumption are reducible to each other. We give a reduction from UNSAT. A propositional formula φ over the atoms a_{i} is mapped to $\pi(\varphi)$:

$$
\begin{array}{rll}
a_{i} & \mapsto & a_{i} \\
\psi \wedge \psi^{\prime} & \mapsto & \pi(\psi) \sqcap \pi\left(\psi^{\prime}\right) \\
\psi^{\prime} \vee \psi & \mapsto & \pi(\psi) \sqcup \pi\left(\psi^{\prime}\right) \\
\neg \psi & \mapsto & \neg \pi(\psi)
\end{array}
$$

Obviously, φ is satisfiable iff $\pi(\varphi)$ is satisfiable (use structural induction).
If φ has a model, construct a model for $\pi(\varphi)$ with just one element t
standing for the truth of the atoms and the formula. Conversely, if $\pi(\varphi)$ satisfiable, pick one element $d \in \pi(\varphi)^{I}$ and set the truth value of atom a according to the fact that $d \in \pi\left(a_{i}\right)^{\perp}$

Decidability \&
Undecidability
Polynomial
Cases
Complexity of ACC
Subsumption
Expressive
Power vs.
Complexity
The
Complexity of
Subsumption
in TBoxes
Outlook
Literature

How Hard is $\mathcal{A L C}$ Subsumption?

Proposition

$\mathcal{A L C}$ subsumption and unsatisfiability are co-NP-hard.
Proof.
Unsatisfiability and subsumption are reducible to each other. We give a reduction from UNSAT. A propositional formula φ over the atoms a_{i} is mapped to $\pi(\varphi)$:

$$
\begin{array}{rll}
a_{i} & \mapsto & a_{i} \\
\psi \wedge \psi^{\prime} & \mapsto & \pi(\psi) \sqcap \pi\left(\psi^{\prime}\right) \\
\psi^{\prime} \vee \psi & \mapsto & \pi(\psi) \sqcup \pi\left(\psi^{\prime}\right) \\
\neg \psi & \mapsto & \neg \pi(\psi)
\end{array}
$$

Obviously, φ is satisfiable iff $\pi(\varphi)$ is satisfiable (use structural induction).
If φ has a model, construct a model for $\pi(\varphi)$ with just one element t
standing for the truth of the atoms and the formula. Conversely, if $\pi(\varphi)$ satisfiable, pick one element $d \in \pi(\varphi)^{I}$ and set the truth value of atom a according to the fact that $d \in \pi\left(a_{i}\right)^{\perp}$

Decidability \&
Undecidability
Polynomial
Cases
Complexity of ACC
Subsumption
Expressive
Power vs.
Complexity
The
Complexity of
Subsumption
in TBoxes
Outlook
Literature

How Hard is $\mathcal{A L C}$ Subsumption?

Proposition

$\mathcal{A L C}$ subsumption and unsatisfiability are co-NP-hard.
Proof.
Unsatisfiability and subsumption are reducible to each other. We give a reduction from UNSAT. A propositional formula φ over the atoms a_{i} is mapped to $\pi(\varphi)$:

$$
\begin{array}{rll}
a_{i} & \mapsto & a_{i} \\
\psi \wedge \psi^{\prime} & \mapsto & \pi(\psi) \sqcap \pi\left(\psi^{\prime}\right) \\
\psi^{\prime} \vee \psi & \mapsto & \pi(\psi) \sqcup \pi\left(\psi^{\prime}\right) \\
\neg \psi & \mapsto & \neg \pi(\psi)
\end{array}
$$

Obviously, φ is satisfiable iff $\pi(\varphi)$ is satisfiable (use structural induction).
If φ has a model, construct a model for $\pi(\varphi)$ with just one element t
standing for the truth of the atoms and the formula. Conversely, if $\pi(\varphi)$ satisfiable, pick one element $d \in \pi(\varphi)^{I}$ and set the truth value of atom a according to the fact that $d \in \pi\left(a_{i}\right)^{\perp}$

Decidability \&
Undecidability
Polynomial
Cases
Complexity of ACC
Subsumption
Expressive
Power vs.
Complexity
The
Complexity of
Subsumption
in TBoxes
Outlook
Literature

How Hard is $\mathcal{A L C}$ Subsumption?

Proposition

$\mathcal{A L C}$ subsumption and unsatisfiability are co-NP-hard.
Proof.
Unsatisfiability and subsumption are reducible to each other. We give a reduction from UNSAT. A propositional formula φ over the atoms a_{i} is mapped to $\pi(\varphi)$:

$$
\begin{array}{rll}
a_{i} & \mapsto & a_{i} \\
\psi \wedge \psi^{\prime} & \mapsto & \pi(\psi) \sqcap \pi\left(\psi^{\prime}\right) \\
\psi^{\prime} \vee \psi & \mapsto & \pi(\psi) \sqcup \pi\left(\psi^{\prime}\right) \\
\neg \psi & \mapsto & \neg \pi(\psi)
\end{array}
$$

Obviously, φ is satisfiable iff $\pi(\varphi)$ is satisfiable (use structural induction).
If φ has a model, construct a model for $\pi(\varphi)$ with just one element t
standing for the truth of the atoms and the formula. Conversely, if $\pi(\varphi)$

Outlook
Literature
Decidability \&
Undecidability
Polynomial
Cases
Complexity of
ALC
Subsumption
Expressive
Power vs.
Complexity
The
Complexity of
Subsumption
in TBoxes

How Hard is $\mathcal{A L C}$ Subsumption?

Proposition

$\mathcal{A L C}$ subsumption and unsatisfiability are co-NP-hard.
Nebel,
Helmert
Wölfl

Proof.

Unsatisfiability and subsumption are reducible to each other. We give a reduction from UNSAT. A propositional formula φ over the atoms a_{i} is mapped to $\pi(\varphi)$:

$$
\begin{array}{rll}
a_{i} & \mapsto & a_{i} \\
\psi \wedge \psi^{\prime} & \mapsto & \pi(\psi) \sqcap \pi\left(\psi^{\prime}\right) \\
\psi^{\prime} \vee \psi & \mapsto \pi(\psi) \sqcup \pi\left(\psi^{\prime}\right) \\
\neg \psi & \mapsto & \neg \pi(\psi)
\end{array}
$$

Obviously, φ is satisfiable iff $\pi(\varphi)$ is satisfiable (use structural induction). If φ has a model, construct a model for $\pi(\varphi)$ with just one element t standing for the truth of the atoms and the formula.

How Hard is $\mathcal{A L C}$ Subsumption?

Proposition

$\mathcal{A L C}$ subsumption and unsatisfiability are co-NP-hard.
Nebel,
Helmert
Wölfl

Proof.

Unsatisfiability and subsumption are reducible to each other. We give a reduction from UNSAT. A propositional formula φ over the atoms a_{i} is mapped to $\pi(\varphi)$:

$$
\begin{array}{rll}
a_{i} & \mapsto & a_{i} \\
\psi \wedge \psi^{\prime} & \mapsto & \pi(\psi) \sqcap \pi\left(\psi^{\prime}\right) \\
\psi^{\prime} \vee \psi & \mapsto \pi(\psi) \sqcup \pi\left(\psi^{\prime}\right) \\
\neg \psi & \mapsto & \neg \pi(\psi)
\end{array}
$$

Obviously, φ is satisfiable iff $\pi(\varphi)$ is satisfiable (use structural induction). If φ has a model, construct a model for $\pi(\varphi)$ with just one element t standing for the truth of the atoms and the formula. Conversely, if $\pi(\varphi)$

Decidability \&
Undecidability
Polynomial
Cases
Complexity of
ACC
Subsumption
Expressive
Power vs.
Complexity
The
Complexity of
Subsumption
in TBoxes
Outlook
Literature satisfiable, pick one element $d \in \pi(\varphi)^{\mathcal{I}}$ and set the truth value of atom a_{i} according to the fact that $d \in \pi\left(a_{i}\right)^{\mathcal{I}}$.

How Hard Does It Get?

Nebel
Helmert
Wölfl

- Is $\mathcal{A L C}$ unsatisfiability and subsumption also complete for co-NP?
- Unlikely - since models of a single concept description can already become exponentially large!
- We will show PSPACE-completeness, whereby hardness is proved using a complexity result for (un)satisifiability in the modal logic K
- Satisifiability and unsatisfiability in K is PSPACE-complete

Decidability \&

Polynomial
Cases
Complexity of
ALC
Subsumption
Expressive
Power vs.
Complexity
The
Complexity of
Subsumption
in TBoxes
Outlook
Literature

How Hard Does It Get?

- Is $\mathcal{A L C}$ unsatisfiability and subsumption also complete for co-NP?
- Unlikely - since models of a single concept description can already become exponentially large!
- We will show PSPACE-completeness, whereby hardness is proved using a complexity result for (un)satisifiability in the modal logic K
- Satisifiability and unsatisfiability in K is PSPACE-complete

Decidability \& Undecidability

Polynomial
Cases
Complexity of
ALC
Subsumption
Expressive
Power vs.
Complexity
The
Complexity of
Subsumption
in TBoxes
Outlook
Literature

How Hard Does It Get?

- Is $\mathcal{A L C}$ unsatisfiability and subsumption also complete for co-NP?
- Unlikely - since models of a single concept description can already become exponentially large!
- We will show PSPACE-completeness, whereby hardness is proved using a complexity result for (un)satisifiability in the modal logic K
- Satisifiability and unsatisfiability in K is PSPACE-complete

Decidability \&
Undecidability
Polynomial
Cases
Complexity of
ALC
Subsumption
Expressive
Power vs.
Complexity
The
Complexity of
Subsumption
in TBoxes
Outlook
Literature

Reduction from K-Satisfiability

Lemma (Lower bound for $\mathcal{A L C}$)

$\mathcal{A L C}$ subsumption, unsatisfiability and satisfiability are all PSPACE-hard.

Nebel Helmert Wölfl

Decidability \& Undecidability

Polynomial
Cases
Complexity of
ALC
Subsumption
Expressive
Power vs.
Complexity

The
Complexity of
Subsumption
in TBoxes
Outlook
concept $\pi\left(a_{i}\right)$ iff a_{i} is true in w. For the converse direction use the interpretation the other way around

Reduction from K-Satisfiability

Lemma (Lower bound for $\mathcal{A L C}$)

$\mathcal{A L C}$ subsumption, unsatisfiability and satisfiability are all PSPACE-hard.

Proof.

Extend the reduction given in the last proof by the following two rules assuming that b is a fixed role name

```
Again, obviously, \varphi}\mathrm{ is satisfiable iff }\pi(\varphi)\mathrm{ is satisfiable (again using
structural induction). If }\varphi\mathrm{ has a Kripke model, interpret each world }u\mathrm{ as
an object in the universe of discourse that is an instances of the primitive
concept }\pi(\mp@subsup{a}{i}{})\mathrm{ iff }\mp@subsup{a}{i}{}\mathrm{ is true in w. For the converse direction use the
interpretation the other way around.
```


Reduction from K-Satisfiability

Lemma (Lower bound for $\mathcal{A L C}$)

$\mathcal{A L C}$ subsumption, unsatisfiability and satisfiability are all PSPACE-hard.

Proof.

Polynomial
Cases
Extend the reduction given in the last proof by the following two rules assuming that b is a fixed role name:

$$
\begin{array}{rll}
\square \psi & \mapsto & \forall b . \pi(\psi) \\
\diamond \psi & \mapsto & \exists b . \pi(\psi)
\end{array}
$$

Again, obviously, φ is satisfiable iff $\pi(\varphi)$ is satisfiable (again using structural induction). If φ has a Kripke model, interpret each world w as an object in the universe of discourse that is an instances of the primitive concept $\pi\left(a_{i}\right)$ iff a_{i} is true in w. For the converse direction use the interpretation the other way around.

Reduction from K-Satisfiability

Lemma (Lower bound for $\mathcal{A L C}$)

$\mathcal{A L C}$ subsumption, unsatisfiability and satisfiability are all PSPACE-hard.

Proof.

Polynomial
Cases
Extend the reduction given in the last proof by the following two rules assuming that b is a fixed role name:

$$
\begin{array}{rll}
\square \psi & \mapsto & \forall b . \pi(\psi) \\
\diamond \psi & \mapsto & \exists b . \pi(\psi)
\end{array}
$$

Again, obviously, φ is satisfiable iff $\pi(\varphi)$ is satisfiable (again using structural induction). If φ has a Kripke model, interpret each world w as an object in the universe of discourse that is an instances of the primitive concept $\pi\left(a_{i}\right)$ iff a_{i} is true in w. For the converse direction use the interpretation the other way around.

Reduction from K-Satisfiability

Lemma (Lower bound for $\mathcal{A L C}$)

$\mathcal{A L C}$ subsumption, unsatisfiability and satisfiability are all PSPACE-hard.

Nebel,
Helmert,
Wölfl

Decidability \& Undecidability

Polynomial Cases
Extend the reduction given in the last proof by the following two rules assuming that b is a fixed role name:

$$
\begin{array}{rll}
\square \psi & \mapsto & \forall b . \pi(\psi) \\
\diamond \psi & \mapsto & \exists b . \pi(\psi)
\end{array}
$$

Again, obviously, φ is satisfiable iff $\pi(\varphi)$ is satisfiable (again using structural induction). If φ has a Kripke model, interpret each world w as an object in the universe of discourse that is an instances of the primitive concept $\pi\left(a_{i}\right)$ iff a_{i} is true in w. For the converse direction use the interpretation the other way around.

Reduction from K-Satisfiability

Lemma (Lower bound for $\mathcal{A L C}$)

$\mathcal{A L C}$ subsumption, unsatisfiability and satisfiability are all PSPACE-hard.

Proof.

Polynomial
Cases
Extend the reduction given in the last proof by the following two rules assuming that b is a fixed role name:

$$
\begin{array}{rll}
\square \psi & \mapsto & \forall b . \pi(\psi) \\
\diamond \psi & \mapsto & \exists b . \pi(\psi)
\end{array}
$$

Again, obviously, φ is satisfiable iff $\pi(\varphi)$ is satisfiable (again using structural induction). If φ has a Kripke model, interpret each world w as an object in the universe of discourse that is an instances of the primitive

Complexity of
ALC
Subsumption
Expressive
Power vs.
Complexity
The
Complexity of
Subsumption
in TBoxes
Outlook
concept $\pi\left(a_{i}\right)$ iff a_{i} is true in w. For the converse direction use the
interpretation the other way around
Literature

Reduction from K-Satisfiability

Lemma (Lower bound for $\mathcal{A L C}$)

$\mathcal{A L C}$ subsumption, unsatisfiability and satisfiability are all PSPACE-hard.

Reduction from K-Satisfiability

Lemma (Lower bound for $\mathcal{A L C}$)

$\mathcal{A L C}$ subsumption, unsatisfiability and satisfiability are all PSPACE-hard.

Proof.

Extend the reduction given in the last proof by the following two rules assuming that b is a fixed role name:

$$
\begin{array}{rll}
\square \psi & \mapsto & \forall b . \pi(\psi) \\
\diamond \psi & \mapsto & \exists b . \pi(\psi)
\end{array}
$$

Again, obviously, φ is satisfiable iff $\pi(\varphi)$ is satisfiable (again using structural induction). If φ has a Kripke model, interpret each world w as an object in the universe of discourse that is an instances of the primitive concept $\pi\left(a_{i}\right)$ iff a_{i} is true in w. For the converse direction use the interpretation the other way around.

Computational Complexity of $\mathcal{A L C}$ Subsumption

Lemma (Upper Bound for $\mathcal{A L C}$)

ALC subsumption, unsatisfiability and satisfiability are all in PSPACE.
Proof.
This follows from the tableau algorithm for $\mathcal{A C C}$. Although there may be
exponentially many closed constraint systems, we can visit them step by
step generating only one at a time. When closing a system, we have to
consider only one role at a time - resulting in an only polynomial space
requirement, i.e., satisfiability can be decided in PSPACE.

Theorem (Complexity of $\mathcal{A L C}$)

$\mathcal{A L C}$ subsumption, unsatisfiability and satisfiability are all

Nebel Helmert, Wölfl

Decidability \& Undecidability

Polynomial
Cases
Complexity of
ALC
Subsumption
Expressive
Power vs.
Complexity
The
Complexity of
Subsumption
in TBoxes
Outlook
Literature

Computational Complexity of $\mathcal{A L C}$ Subsumption

Lemma (Upper Bound for $\mathcal{A L C}$)

$\mathcal{A L C}$ subsumption, unsatisfiability and satisfiability are all in PSPACE.

Proof.

Polynomial
Cases
This follows from the tableau algorithm for $\mathcal{A K C}$. Although there may be
exponentially many closed constraint systems, we can visit them step by
step generating only one at a time. When closing a system, we have to
consider only one role at a time - resulting in an only polynomial space requirement, i.e., satisfiability can be decided in PSPACE.

Theorem (Complexity of ARC)
$\mathcal{A L C}$ subsumption, unsatisfiability and satisfiability are all
PSPACE-complete.
Complexity of
ACC
Subsumption
Expressive
Power vs.
Complexity
The
Complexity of
Subsumption
in TBoxes
Outlook
Literature

Computational Complexity of $\mathcal{A L C}$ Subsumption

Lemma (Upper Bound for $\mathcal{A C C}$)

$\mathcal{A L C}$ subsumption, unsatisfiability and satisfiability are all in PSPACE.

Proof.

This follows from the tableau algorithm for $\mathcal{A L C}$. Although there may be exponentially many closed constraint systems, we can visit them step by step generating only one at a time.
consider only one role at a time - resulting in an only polynomial space
requirement, i.e., satisfiability can be decided in PSPACE.

Theorem (Complexity of ARC)
ARC subsumption, unsatisfiability and satisfiability are all
PSPACE-complete.

Polynomial
Cases

Computational Complexity of $\mathcal{A L C}$ Subsumption

Lemma (Upper Bound for $\mathcal{A C C}$)

$\mathcal{A L C}$ subsumption, unsatisfiability and satisfiability are all in PSPACE.

Proof.

This follows from the tableau algorithm for $\mathcal{A L C}$. Although there may be exponentially many closed constraint systems, we can visit them step by step generating only one at a time. When closing a system, we have to consider only one role at a time - resulting in an only polynomial space requirement

ALC subsumption, unsatisfiability and satisfiability are all PSPACE-complete.

Polynomial
Cases

Computational Complexity of $\mathcal{A L C}$ Subsumption

Lemma (Upper Bound for $\mathcal{A C C}$)

$\mathcal{A L C}$ subsumption, unsatisfiability and satisfiability are all in PSPACE.

Proof.

This follows from the tableau algorithm for $\mathcal{A C C}$. Although there may be exponentially many closed constraint systems, we can visit them step by step generating only one at a time. When closing a system, we have to consider only one role at a time - resulting in an only polynomial space requirement, i.e., satisfiability can be decided in PSPACE.

ALC subsumption, unsatisfiability and satisfiability are all PSPACE-complete.

Polynomial
Cases

Computational Complexity of $\mathcal{A L C}$ Subsumption

Lemma (Upper Bound for $\mathcal{A L C}$)

$\mathcal{A C C}$ subsumption, unsatisfiability and satisfiability are all in PSPACE.

Proof.

This follows from the tableau algorithm for $\mathcal{A L C}$. Although there may be exponentially many closed constraint systems, we can visit them step by step generating only one at a time. When closing a system, we have to consider only one role at a time - resulting in an only polynomial space requirement, i.e., satisfiability can be decided in PSPACE.

Expressive
Power vs.
Complexity
The
Complexity of
Subsumption
in TBoxes
Outlook
Literature ALC

- In the reduction we used only one role symbol. Are there modal logics that would require more than one such role symbol?
The multi-modal logic $K_{(n)}$ has n different Box operators \square_{i} (for n different agents) $\mathcal{A L C}$ is a notational variant of $K_{(n)}$ [Schild, IJCAI-91] Are there perhaps other modal logics that correspond to other descriptions logics?
propositional dynamic logic (PDL), e.g., transitive closure, composition, role inverse,
DL can be thought as fragments of first-order predicate
logic. However, they are much more similar to modal
logics
Algorithms and complexity results can be borrowed Works also the other way around ALC
- In the reduction we used only one role symbol. Are there modal logics that would require more than one such role symbol?

Nebel,
Helmert, WölfI

Decidability \& Undecidability

Polynomial Cases

Complexity of ALC
Subsumption
Expressive
Power vs.
Complexity
The
Complexity of
Subsumption
in TBoxes
Outlook
Literature

Algorithms and complexity results can be borrowed Works also the other way around ALC

- In the reduction we used only one role symbol. Are there modal logics that would require more than one such role symbol?
\rightsquigarrow The multi-modal logic $K_{(n)}$ has n different Box operators \square_{i} (for n different agents)
$\rightsquigarrow \mathcal{A K C}$ is a notational variant of $K_{(n)}$ [Schild, IJCAI-91]
- Are there perhaps other modal logics that correspond to other descriptions logics?
propositional dynamic logic (PDL), e.g., transitive closure, composition, role inverse,
DL can be thought as fragments of first-order predicate logic. However, they are much more similar to modal
logics
Algorithms and complexity results can be borrowed Works also the other way around ALC
- In the reduction we used only one role symbol. Are there modal logics that would require more than one such role symbol?
\rightsquigarrow The multi-modal logic $K_{(n)}$ has n different Box operators \square_{i} (for n different agents)
$\rightsquigarrow \mathcal{A K C}$ is a notational variant of $K_{(n)}$ [Schild, IJCAI-91]
- Are there perhaps other modal logics that correspond to other descriptions logics?

- In the reduction we used only one role symbol. Are there modal logics that would require more than one such role symbol?
\rightsquigarrow The multi-modal logic $K_{(n)}$ has n different Box operators \square_{i} (for n different agents)
$\rightsquigarrow \mathcal{A K C}$ is a notational variant of $K_{(n)}$ [Schild, IJCAI-91]
- Are there perhaps other modal logics that correspond to other descriptions logics?
\rightsquigarrow propositional dynamic logic (PDL), e.g., transitive closure, composition, role inverse, ...
DL can be thought as fragments of first-order predicate
logic. However, they are much more similar to modal
logics
Decidability \&
Undecidability
Polynomial
Cases
Complexity of

Algorithms and complexity results can be borrowed Works also the other way around

- In the reduction we used only one role symbol. Are there modal logics that would require more than one such role symbol?
\rightsquigarrow The multi-modal logic $K_{(n)}$ has n different Box operators \square_{i} (for n different agents)
$\rightsquigarrow \mathcal{A K C}$ is a notational variant of $K_{(n)}$ [Schild, IJCAI-91]
- Are there perhaps other modal logics that correspond to other descriptions logics?
\rightsquigarrow propositional dynamic logic (PDL), e.g., transitive closure, composition, role inverse, ...
\rightsquigarrow DL can be thought as fragments of first-order predicate logic. However, they are much more similar to modal logics
Algorithms and complexity results can be borrowed. Works also the other way around
- In the reduction we used only one role symbol. Are there modal logics that would require more than one such role symbol?
\rightsquigarrow The multi-modal logic $K_{(n)}$ has n different Box operators \square_{i} (for n different agents)
$\rightsquigarrow \mathcal{A K C}$ is a notational variant of $K_{(n)}$ [Schild, IJCAI-91]
- Are there perhaps other modal logics that correspond to other descriptions logics?
\rightsquigarrow propositional dynamic logic (PDL), e.g., transitive closure, composition, role inverse, ...
\rightsquigarrow DL can be thought as fragments of first-order predicate logic. However, they are much more similar to modal logics
\rightsquigarrow Algorithms and complexity results can be borrowed. Works also the other way around

Expressive Power vs. Complexity

- Of course, one wants to have a description logic with high expressive power. However, high expressive power implies usually that the computational complexity of the reasoning problems might also be high, e.g., $\mathcal{F} \mathcal{L}^{-}$vs. $\mathcal{A L C}$

Decidability \&

- Does it make sense to use a language such as $\mathcal{A C C}$ or even extensions (corresponding to PDL) with higher complexity?
- There are three approaches to this problem:
(1) Use only small description logics with complete inference algorithms

Polynomial
Cases
Complexity of
ACC
Subsumption
Expressive
Power vs.
Complexity
(2) Use expressive description logics, but employ incomplete inference algorithms
(3) Use expressive description logics with complete inference algorithms

- For a long time, only options 1 and 2 were studied.

Expressive Power vs. Complexity

- Of course, one wants to have a description logic with high expressive power. However, high expressive power implies usually that the computational complexity of the reasoning problems might also be high, e.g., $\mathcal{F} \mathcal{L}^{-}$vs. $\mathcal{A L C}$
- Does it make sense to use a language such as $\mathcal{A L C}$ or even extensions (corresponding to PDL) with higher complexity?
There are three approaches to this problem:
(1) Use only small description logics with complete inference
algorithms
(2) Use expressive description logics, but employ incomplete
inference algorithms
(3) Use expressive description logics with complete inference
algorithms
For a long time, only options 1 and 2 were studied.
Meanwhile, most researcher concentrate on option 3!

Expressive Power vs. Complexity

- Of course, one wants to have a description logic with high expressive power. However, high expressive power implies usually that the computational complexity of the reasoning problems might also be high, e.g., $\mathcal{F} \mathcal{L}^{-}$vs. $\mathcal{A L C}$
- Does it make sense to use a language such as $\mathcal{A C C}$ or even extensions (corresponding to PDL) with higher complexity?
- There are three approaches to this problem:
(1) Use only small description logics with complete inference algorithms
(2) Use expressive description logics, but employ incomplete inference algorithms

algorithms
Decidability \&
Undecidability
Polynomial
Cases
Complexity of
ACC
Subsumption
Expressive
Power vs.
Complexity
The
Complexity of
Subsumption
in TBoxes
Outlook
- For a long time, only options 1 and 2 were studied. Meanwhile, most researcher concentrate on

Expressive Power vs. Complexity

- Of course, one wants to have a description logic with high expressive power. However, high expressive power implies usually that the computational complexity of the reasoning problems might also be high, e.g., $\mathcal{F} \mathcal{L}^{-}$vs. $\mathcal{A L C}$
- Does it make sense to use a language such as $\mathcal{A C C}$ or even extensions (corresponding to PDL) with higher complexity?
- There are three approaches to this problem:
(1) Use only small description logics with complete inference algorithms
(2) Use expressive description logics, but employ incomplete inference algorithms
(3) Use expressive description logics with complete inference algorithms
- For a long time, only options 1 and 2 were studied. Meanwhile, most researcher concentrate on

Expressive Power vs. Complexity

- Of course, one wants to have a description logic with high expressive power. However, high expressive power implies usually that the computational complexity of the reasoning problems might also be high, e.g., $\mathcal{F} \mathcal{L}^{-}$vs. $\mathcal{A L C}$
- Does it make sense to use a language such as $\mathcal{A C C}$ or even extensions (corresponding to PDL) with higher complexity?
- There are three approaches to this problem:
(1) Use only small description logics with complete inference algorithms
(2) Use expressive description logics, but employ incomplete inference algorithms
(3) Use expressive description logics with complete inference algorithms
- For a long time, only options 1 and 2 were studied. Meanwhile, most researcher concentrate on

Expressive Power vs. Complexity

- Of course, one wants to have a description logic with high expressive power. However, high expressive power implies usually that the computational complexity of the reasoning problems might also be high, e.g., $\mathcal{F} \mathcal{L}^{-}$vs. $\mathcal{A L C}$
- Does it make sense to use a language such as $\mathcal{A C C}$ or even extensions (corresponding to PDL) with higher complexity?
- There are three approaches to this problem:
(1) Use only small description logics with complete inference algorithms
(2) Use expressive description logics, but employ incomplete inference algorithms
(3) Use expressive description logics with complete inference algorithms

Decidability \&
Undecidability
Polynomial Cases

Complexity of

- For a long time, only options 1 and 2 were studied. Meanwhile, most researcher concentrate on option 3!

Is Subsumption in the Empty TBox Enough?

- We have shown that we can reduce concept subsumption in a given TBox to concept subsumption in the empty TBox.

Nebel,
Helmert,
Wölfl

Decidability \&

Polynomial
Cases
Complexity of
ACC
Subsumption
Expressive
Power vs.
Complexity
The
Complexity of
Subsumption
in TBoxes
Outlook

- Unfolding C_{n} leads to a concept description with a size $\Omega\left(2^{n}\right)$

Literature

- Is it possible to avoid this blowup?

Is Subsumption in the Empty TBox Enough?

- We have shown that we can reduce concept subsumption in a given TBox to concept subsumption in the empty TBox.
- However, it is not obvious that this can be done in polynomial time
- In particular, in the following example unfolding leads to an exponential blowup:

- Unfolding C_{n} leads to a concept description with a size

Is Subsumption in the Empty TBox Enough?

- We have shown that we can reduce concept subsumption in a given TBox to concept subsumption in the empty TBox.
- However, it is not obvious that this can be done in polynomial time
- In particular, in the following example unfolding leads to an exponential blowup

Cases
Complexity of
ACC
Subsumption
Expressive
Power vs.
Complexity
The
Complexity of
Subsumption
in TBoxes
Outlook
Literature

Is Subsumption in the Empty TBox Enough?

- We have shown that we can reduce concept subsumption
in a given TBox to concept subsumption in the empty TBox.
However, it is not obvious that this can be done in polynomial time
- In particular, in the following example unfolding leads to

Nebel,
Helmert
Wölfı

Decidability \& an exponential blowup:

$$
\begin{aligned}
C_{1} & \doteq \forall r \cdot C_{0} \sqcap \forall s \cdot C_{0} \\
C_{2} & \doteq \forall r \cdot C_{1} \sqcap \forall s \cdot C_{1} \\
& \vdots \\
C_{n} & \doteq \forall r \cdot C_{n-1} \sqcap \forall s \cdot C_{n-1}
\end{aligned}
$$

Complexity of
ACC
Subsumption
Expressive
Power vs.
Complexity
The
Complexity of
Subsumption
in TBoxes

- Unfolding C_{n} leads to a concept description with a size $\Omega\left(2^{n}\right)$
- Is it possible to avoid this blowup?

Is Subsumption in the Empty TBox Enough?

- We have shown that we can reduce concept subsumption
in a given TBox to concept subsumption in the empty TBox.
However, it is not obvious that this can be done in polynomial time
- In particular, in the following example unfolding leads to

Nebel,
Helmert
Wölfı

Decidability \& an exponential blowup:

$$
\begin{aligned}
C_{1} & \doteq \forall r \cdot C_{0} \sqcap \forall s \cdot C_{0} \\
C_{2} & \doteq \forall r \cdot C_{1} \sqcap \forall s \cdot C_{1} \\
& \vdots \\
C_{n} & \doteq \forall r \cdot C_{n-1} \sqcap \forall s \cdot C_{n-1}
\end{aligned}
$$

Complexity of
ACC
Subsumption
Expressive
Power vs.
Complexity
The
Complexity of
Subsumption
in TBoxes

- Unfolding C_{n} leads to a concept description with a size $\Omega\left(2^{n}\right)$
- Is it possible to avoid this blowup?

Is Subsumption in the Empty TBox Enough?

- We have shown that we can reduce concept subsumption
in a given TBox to concept subsumption in the empty TBox.
However, it is not obvious that this can be done in polynomial time
- In particular, in the following example unfolding leads to

Nebel,
Helmert
Wölfı

Decidability \& an exponential blowup:

$$
\begin{aligned}
C_{1} & \doteq \forall r \cdot C_{0} \sqcap \forall s \cdot C_{0} \\
C_{2} & \doteq \forall r \cdot C_{1} \sqcap \forall s \cdot C_{1} \\
& \vdots \\
C_{n} & \doteq \forall r \cdot C_{n-1} \sqcap \forall s \cdot C_{n-1}
\end{aligned}
$$

Complexity of
ACC
Subsumption
Expressive
Power vs.
Complexity
The
Complexity of
Subsumption
in TBoxes

- Unfolding C_{n} leads to a concept description with a size $\Omega\left(2^{n}\right)$
- Is it possible to avoid this blowup?

Is Subsumption in the Empty TBox Enough?

- We have shown that we can reduce concept subsumption
in a given TBox to concept subsumption in the empty TBox.
However, it is not obvious that this can be done in polynomial time
- In particular, in the following example unfolding leads to

Nebel,
Helmert
Wölfı

Decidability \&

$$
\begin{aligned}
C_{1} & \doteq \forall r \cdot C_{0} \sqcap \forall s \cdot C_{0} \\
C_{2} & \doteq \forall r \cdot C_{1} \sqcap \forall s \cdot C_{1} \\
& \vdots \\
C_{n} & \doteq \forall r \cdot C_{n-1} \sqcap \forall s \cdot C_{n-1}
\end{aligned}
$$

Expressive

Power vs.
Complexity
The
Complexity of
Subsumption
in TBoxes

- Unfolding C_{n} leads to a concept description with a size $\Omega\left(2^{n}\right)$
- Is it possible to avoid this blowup?

Is Subsumption in the Empty TBox Enough?

- We have shown that we can reduce concept subsumption in a given TBox to concept subsumption in the empty TBox.
However, it is not obvious that this can be done in polynomial time
- In particular, in the following example unfolding leads to

Nebel,
Helmert
Wölfı

Decidability \&

$$
C_{n} \doteq \forall r . C_{n-1} \sqcap \forall s . C_{n-1}
$$

- Unfolding C_{n} leads to a concept description with a size $\Omega\left(2^{n}\right)$
- Is it possible to avoid this blowup?

Is Subsumption in the Empty TBox Enough?

- We have shown that we can reduce concept subsumption in a given TBox to concept subsumption in the empty TBox.
However, it is not obvious that this can be done in polynomial time
- In particular, in the following example unfolding leads to

Nebel,
Helmert
Wölfı

Decidability \&
Undecidability
Polynomial
Cases
Complexity of
ACC
Subsumption
Expressive
Power vs.
Complexity
The
Complexity of
Subsumption
in TBoxes

- Unfolding C_{n} leads to a concept description with a size $\Omega\left(2^{n}\right)$
- Is it possible to avoid this blowup?

TBox Subsumption for Small Languages

- Question: Can we decide in polynomial time TBox subsumption for a description logic such as $\mathcal{F L ^ { - }}$, for which concept subsumption in the empty TBox can be decided in polynomial time?
- Let us consider $\mathcal{F} \mathcal{L}_{0}$: $C \sqcap D, \forall r . C$ with terminological axioms.
- Subsumption without a TBox can be done easily, using a structural subsumption algorithm
- Unfolding + strucural subsumption gives us an exponential algorithm

TBox Subsumption for Small Languages

- Question: Can we decide in polynomial time TBox subsumption for a description logic such as $\mathcal{F} \mathcal{L}^{-}$, for which concept subsumption in the empty TBox can be decided in polynomial time?
- Let us consider $\mathcal{F} \mathcal{L}_{0}: C \sqcap D, \forall r . C$ with terminological axioms.
- Subsumption without a TBox can be done easily, using a structural subsumption algorithm
- Unfolding + strucural subsumption gives us an exponential algorithm.

Decidability \&
Undecidability
Polynomial
Cases
Complexity of
ACC
Subsumption
Expressive
Power vs.
Complexity
The
Complexity of
Subsumption
in TBoxes
Outlook
Literature

TBox Subsumption for Small Languages

- Question: Can we decide in polynomial time TBox subsumption for a description logic such as $\mathcal{F} \mathcal{L}^{-}$, for which concept subsumption in the empty TBox can be decided in polynomial time?
- Let us consider $\mathcal{F} \mathcal{L}_{0}: C \sqcap D, \forall r . C$ with terminological axioms.
- Subsumption without a TBox can be done easily, using a structural subsumption algorithm.
- Unfolding + strucural subsumption gives us an exponential algorithm.

Complexity of TBox Subsumption

Theorem (Complexity of TBox subsumption)
TBox subsumption for $\mathcal{F} \mathcal{L}_{0}$ is $N P$-hard.

Nebel, Helmert, Wölfl

Decidability \& Undecidability

Polynomial
Cases
Complexity of
ACC
Subsumption
Expressive
Power vs.
Complexity
The
Complexity of
Subsumption
in TBoxes
Outlook
Literature
r-transition from q to $q^{\prime} \mapsto q \doteq \ldots \sqcap \forall r: q^{\prime} \sqcap$.

Complexity of TBox Subsumption

Theorem (Complexity of TBox subsumption)
TBox subsumption for $\mathcal{F} \mathcal{L}_{0}$ is NP-hard.

Nebel,
Helmert,
Wölfl

Polynomial
Cases
Complexity of
ACC
Subsumption
Expressive
Power vs.
Complexity
The
Complexity of
Subsumption
in TBoxes
Outlook
Literature

Complexity of TBox Subsumption

Theorem (Complexity of TBox subsumption)

TBox subsumption for $\mathcal{F} \mathcal{L}_{0}$ is NP-hard.
π as follows:

Expressive

Power vs.
Complexity
The
Complexity of
Subsumption
in TBoxes
Outlook
Literature

Complexity of TBox Subsumption

Theorem (Complexity of TBox subsumption)

TBox subsumption for $\mathcal{F} \mathcal{L}_{0}$ is NP-hard.
r-transition from q to $q^{\prime} \mapsto q \doteq \ldots \sqcap \forall r: q^{\prime} \sqcap \ldots$

Complexity of TBox Subsumption

Theorem (Complexity of TBox subsumption)

TBox subsumption for $\mathcal{F} \mathcal{L}_{0}$ is NP-hard.
r-transition from q to $q^{\prime} \mapsto q \doteq \ldots \sqcap \forall r: q^{\prime} \sqcap \ldots$

Complexity of TBox Subsumption

Theorem (Complexity of TBox subsumption)

TBox subsumption for $\mathcal{F} \mathcal{L}_{0}$ is NP-hard.
r-transition from q to $q^{\prime} \mapsto q \doteq \ldots \sqcap \forall r: q^{\prime} \sqcap \ldots$

Complexity of TBox Subsumption

Theorem (Complexity of TBox subsumption)

TBox subsumption for $\mathcal{F} \mathcal{L}_{0}$ is NP-hard.
r-transition from q to $q^{\prime} \mapsto q \doteq \ldots \sqcap \forall r: q^{\prime} \sqcap \ldots$

Complexity of TBox Subsumption

Theorem (Complexity of TBox subsumption)

TBox subsumption for $\mathcal{F} \mathcal{L}_{0}$ is NP-hard.
r-transition from q to $q^{\prime} \mapsto q \doteq \ldots \sqcap \forall r: q^{\prime} \sqcap \ldots$

"Proof" by Example

What Does This Complexity Result Mean?

- Note that for expressive languages such as $A L C$, we do not notice any difference!
- The TBox subsumption complexity result for less expressive languages does not play a large role in practice
- Pathological situations do not happen very often
- In fact, if the definition depth is logarithmic in the size of the TBox, the whole problem vanishes.
- However, in order to protect oneself against such problems, one often uses lazy unfolding
- Similarly, also for the ARC concent descrintions, one

What Does This Complexity Result Mean?

- Note that for expressive languages such as $A L C$, we do not notice any difference!
- The TBox subsumption complexity result for less expressive languages does not play a large role in practice
- Pathological situations do not happen very often
- In fact, if the definition depth is logarithmic in the size of the TBox, the whole problem vanishes.
- However in order to protect oneself against such problems, one often uses lazy unfolding
- Similarly, also for the $\mathcal{A C C}$ concept descriptions, one

Subsumption
Expressive
Power vs.
Complexity
The
Complexity of
Subsumption
in TBoxes notices that they are usually very well behaved

What Does This Complexity Result Mean?

- Note that for expressive languages such as $A L C$, we do not notice any difference!
- The TBox subsumption complexity result for less expressive languages does not play a large role in practice
- Pathological situations do not happen very often

Complexity of

- In fact, if the definition depth is logarithmic in the size of the TBox, the whole problem vanishes.
- However, in order to protect oneself against such problems, one often uses lazy unfolding
- Similarly, also for the ARC concent descrintions, one

Subsumption
Expressive
Power vs.
Complexity
The
Complexity of
Subsumption
in TBoxes notices that they are usually very well behaved

What Does This Complexity Result Mean?

- Note that for expressive languages such as $A L C$, we do not notice any difference!
- The TBox subsumption complexity result for less expressive languages does not play a large role in practice
- Pathological situations do not happen very often

Complexity of

- In fact, if the definition depth is logarithmic in the size of the TBox, the whole problem vanishes.
- However, in order to protect oneself against such problems, one often uses lazy unfolding

What Does This Complexity Result Mean?

- Note that for expressive languages such as $A L C$, we do not notice any difference!
- The TBox subsumption complexity result for less expressive languages does not play a large role in practice
- Pathological situations do not happen very often
- In fact, if the definition depth is logarithmic in the size of the TBox, the whole problem vanishes.
- However, in order to protect oneself against such problems, one often uses lazy unfolding
- Similarly, also for the $\mathcal{A K C}$ concept descriptions, one notices that they are usually very well behaved.

Complexity of
ACC
Subsumption
Expressive
Power vs.
Complexity
The
Complexity of
Subsumption
in TBoxes
Outlook
Literature

Outlook

- Description logics have a long history (Tarski's relation
algebras and Brachman's KL-ONE)

Nebel, Helmert Wölfl

- Early on, either small languages with provably easy reasoning problems (e.g., the system CLASSIC) or large languages with incomplete inference algorithms (e.g., the system Loom) were used.
- Meanwhile, one uses complete algorithms on very large descriptions logics (e.g., SHIQ), e.g. in the systems FaC7 and RACER
- RACER can handle KBs with up to 160,000 concepts (example from unified medical language system) in reasonable time (less than one day computing time)
- Description logics are used as the semantic backbone for OWL (a Web-language extending RDF)

Decidability \& Undecidability

Polynomial
Cases
Complexity of
ACC
Subsumption
Expressive
Power vs.
Complexity
The
Complexity of
Subsumption
in TBoxes
Outlook
Literature

Outlook

- Description logics have a long history (Tarski's relation
algebras and Brachman's KL-ONE)

Nebel,
Helmert,
Wölfl

- Early on, either small languages with provably easy reasoning problems (e.g., the system CLASSIC) or large languages with incomplete inference algorithms (e.g., the system Loom) were used.
- Meanwhile, one uses complete algorithms on very large descriptions logics (e.g., SHIQ), e.g. in the systems FaCT and RACER
- RACER can handle KBs with up to 160,000 concepts (example from unified medical language system) in reasonable time (less than one day computing time) Description logics are used as the semantic backbone for OWL (a Web-language extending RDF)

Decidability \&
Undecidability
Polynomial
Cases
Complexity of
ACC
Subsumption
Expressive
Power vs.
Complexity
The
Complexity of
Subsumption
in TBoxes
Outlook
Literature

Outlook

- Description logics have a long history (Tarski's relation
algebras and Brachman's KL-ONE)

Nebel,
Helmert,
Wölfl

- Early on, either small languages with provably easy reasoning problems (e.g., the system CLASSIC) or large languages with incomplete inference algorithms (e.g., the system Loom) were used.
- Meanwhile, one uses complete algorithms on very large descriptions logics (e.g., SHIQ), e.g. in the systems FaCT and RACER
- RACER can handle KBs with up to 160,000 concepts (example from unified medical language system) in reasonable time (less than one day computing time)
- Description logics are used as the semantic backbone for OWL (a Web-language extending RDF)

Decidability \&
Undecidability
Polynomial
Cases
Complexity of
ACC
Subsumption
Expressive
Power vs.
Complexity
The
Complexity of
Subsumption
in TBoxes
Outlook
Literature

Outlook

- Description logics have a long history (Tarski's relation algebras and Brachman's KL-ONE)

Nebel,
Helmert,
WölfI

- Early on, either small languages with provably easy reasoning problems (e.g., the system CLASSIC) or large languages with incomplete inference algorithms (e.g., the system Loom) were used.
- Meanwhile, one uses complete algorithms on very large descriptions logics (e.g., SHIQ), e.g. in the systems FaCT and RACER
- RACER can handle KBs with up to 160,000 concepts (example from unified medical language system) in reasonable time (less than one day computing time)
- Description logics are used as the semantic backbone for OWL (a Web-language extending RDF)

Outlook

- Description logics have a long history (Tarski's relation algebras and Brachman's KL-ONE)
- Early on, either small languages with provably easy reasoning problems (e.g., the system CLASSIC) or large

Decidability \&
Undecidability languages with incomplete inference algorithms (e.g., the system Loom) were used.

- Meanwhile, one uses complete algorithms on very large descriptions logics (e.g., SHIQ), e.g. in the systems FaCT and RACER
- RACER can handle KBs with up to 160,000 concepts (example from unified medical language system) in reasonable time (less than one day computing time)
- Description logics are used as the semantic backbone for OWL (a Web-language extending RDF)

Literature

Bernhard Nebel and Gert Smolka. Attributive description formalisms and the rest of the world. In Otthein Herzog and Claus-Rainer Rollinger, editors, Text Understanding in LILOG, pages 439-452. Springer-Verlag, Berlin, Heidelberg, New York, 1991.

Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Werner Nutt. Tractable concept languages. In Proceedings of the 12th International Joint Conference on Artificial Intelligence, pages 458-465, Sydney, Australia, August 1991. Morgan Kaufmann.
R- Klaus Schild. A correspondence theory for terminological logics: Preliminary report. In Proceedings of the 12th International Joint Conference on Artificial Intelligence, pages 466-471, Sydney, Australia, August 1991. Morgan Kaufmann.
R I. Horrocks, U. Sattler, and S. Tobies. Reasoning with Individuals for the Description Logic SHIQ. In David MacAllester, ed., Proceedings of the 17th International Conference on Automated Deduction (CADE-17), Germany, 2000. Springer Verlag.
B. Nebel. Terminological Reasoning is Inherently Intractable, Artificial

