Principles of Knowledge Representation and Reasoning

Description Logics – Decidability and Complexity

Bernhard Nebel, Malte Helmert and Stefan Wölfl

Albert-Ludwigs-Universität Freiburg

July 22, 2008

Nebel, Helmert, Wölfl (Uni Freiburg)

July 22, 2008

Description Logics - Decidability and Complexity

Decidability & Undecidability

Polynomial Cases

Complexity of ALC Subsumption

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Nebel, Helmert, Wölfl (Uni Freiburg)

July 22, 2008

Decidability & Undecidability

Decidability

L₂ is the fragment of first-order predicate logic using only two different variable names (note: variable names can be reused!).

 L_2^{\pm} the same including equality.

Theorem

. $L_2^{=}$ is decidable.

Corollary

Subsumption and satisfiability of concept descriptions is decidable in description logics using only the following concept and role forming operators: $C \sqcap D$, $C \sqcup D$, $\neg C$, $\forall r.C$, $\exists r.C$, $r \sqsubseteq s$, $r \sqcap s$, $r \sqcup s$, $\neg r$, r^{-1} .

Potential problems: Role composition and cardinality restrictions for role fillers. Cardinality restrictions, however, are not a real problem.

Decidability & Undecidability

Undecidability

- $ightharpoonup r \circ s, r \sqcap s, \neg r, 1 [Schild 88]$
- ▶ not relevant; Tarski had shown that already! for relation algebras
- ▶ $r \circ s$, r = s, $C \sqcap D$, $\forall r.C$ [Schmidt-Schauß 89]
- ▶ This is in fact a fragment of the early description logic KL-ONE, where people had hoped to come up with a complete subsumption algorithm

How Hard is \mathcal{ALC} Subsumption?

Decidable, Polynomial-Time Cases

- \triangleright \mathcal{FL}^- has obviously a polynomial subsumption problem (in the empty TBox) – the SUB algorithm needs only quadratic time.
- ▶ Donini et al [IJCAI 91] have shown that in the following languages subsumption can be decided using only polynomial time (and they are maximal wrt. this property):

$$C o A | \neg A | C \sqcap C' | \forall r.C | (\geq n r) | (\leq n r), r \to t | r^{-1}$$
 and $C \to A | C \sqcap C' | \forall r.C | \exists r, r \to t | r^{-1} | r \sqcap r' | r \circ r'$ **Open**: $C \to A | C \sqcap C' | \forall r.C | (\geq n r) | (\leq n r), r \to t | r \circ r'.$

Nebel, Helmert, Wölfl (Uni Freiburg)

July 22, 2008 5 / 18 **Proposition**

ALC subsumption and unsatisfiability are co-NP-hard.

Proof

Unsatisfiability and subsumption are reducible to each other. We give a reduction from UNSAT. A propositional formula φ over the atoms a_i is mapped to $\pi(\varphi)$:

$$\begin{array}{cccc}
a_i & \mapsto & a_i \\
\psi \wedge \psi' & \mapsto & \pi(\psi) \sqcap \pi(\psi') \\
\psi' \vee \psi & \mapsto & \pi(\psi) \sqcup \pi(\psi') \\
\neg \psi & \mapsto & \neg \pi(\psi)
\end{array}$$

Obviously, φ is satisfiable iff $\pi(\varphi)$ is satisfiable (use structural induction). If φ has a model, construct a model for $\pi(\varphi)$ with just one element t standing for the truth of the atoms and the formula. Conversely, if $\pi(\varphi)$ satisfiable, pick one element $d \in \pi(\varphi)^{\mathcal{I}}$ and set the truth value of atom a_i according to the fact that $d \in \pi(a_i)^{\mathcal{I}}$.

Nebel, Helmert, Wölfl (Uni Freiburg)

July 22, 2008

6 / 18

Complexity of ACC Subsumption

How Hard Does It Get?

- ▶ Is ACC unsatisfiability and subsumption also complete for co-NP?
- ▶ Unlikely since models of a single concept description can already become exponentially large!
- ▶ We will show PSPACE-completeness, whereby hardness is proved using a complexity result for (un)satisifiability in the modal logic K
- ▶ Satisifiability and unsatisfiability in *K* is PSPACE-complete

Complexity of ACC Subsumption

Reduction from K-Satisfiability

Lemma (Lower bound for ACC)

ALC subsumption, unsatisfiability and satisfiability are all PSPACE-hard.

Proof.

Extend the reduction given in the last proof by the following two rules – assuming that bis a fixed role name:

$$\Box \psi \quad \mapsto \quad \forall b.\pi(\psi)$$
$$\Diamond \psi \quad \mapsto \quad \exists b.\pi(\psi)$$

Again, obviously, φ is satisfiable iff $\pi(\varphi)$ is satisfiable (again using structural induction). If φ has a Kripke model, interpret each world w as an object in the universe of discourse that is an instances of the primitive concept $\pi(a_i)$ iff a_i is true in w. For the converse direction use the interpretation the other way around.

Nebel, Helmert, Wölfl (Uni Freiburg)

8 / 18

Computational Complexity of ALC Subsumption

Lemma (Upper Bound for $\mathcal{A}\mathcal{L}\mathcal{C}$)

ALC subsumption, unsatisfiability and satisfiability are all in PSPACE.

Proof.

This follows from the tableau algorithm for \mathcal{ACC} . Although there may be exponentially many closed constraint systems, we can visit them step by step generating only one at a time. When closing a system, we have to consider only one role at a time – resulting in an only polynomial space requirement, i.e., satisfiability can be decided in PSPACE. \Box

Theorem (Complexity of ALC)

ACC subsumption, unsatisfiability and satisfiability are all PSPACE-complete.

Nebel, Helmert, Wölfl (Uni Freiburg)

KRR

July 22, 2008

9 / 18

Expressive Power vs. Complexity

Expressive Power vs. Complexity

- ▶ Of course, one wants to have a description logic with high expressive power. However, high expressive power implies usually that the computational complexity of the reasoning problems might also be high, e.g., FL⁻ vs. ALC
- ightharpoonup Does it make sense to use a language such as $\mathcal{A}\mathcal{L}\mathcal{C}$ or even extensions (corresponding to PDL) with higher complexity?
- ▶ There are three approaches to this problem:
 - 1. Use only *small* description logics with *complete* inference algorithms
 - 2. Use *expressive* description logics, but employ *incomplete* inference algorithms
 - 3. Use expressive description logics with complete inference algorithms
- ► For a long time, only options 1 and 2 were studied. Meanwhile, most researcher concentrate on *option 3*!

Further Consequences of the Reducibility of K to \mathcal{ALC}

- ▶ In the reduction we used only *one* role symbol. Are there modal logics that would require more than one such role symbol?
- The multi-modal logic $K_{(n)}$ has n different Box operators \Box_i (for n different agents)
- \rightarrow \mathcal{ALC} is a *notational variant* of $K_{(n)}$ [Schild, IJCAI-91]
- ► Are there perhaps other modal logics that correspond to other descriptions logics?
- → propositional dynamic logic (PDL), e.g., transitive closure, composition, role inverse, . . .
- DL can be thought as fragments of *first-order predicate logic*. However, they are much more similar to *modal logics*

Nebel, Helmert, Wölfl (Uni Freiburg)

KRE

July 22, 2008 10 / 18

The Complexity of Subsumption in TBoxes

Is Subsumption in the Empty TBox Enough?

- ▶ We have shown that we can *reduce* concept subsumption in a given TBox to concept subsumption in the empty TBox.
- ▶ However, it is not obvious that this can be done in *polynomial time*
- ▶ In particular, in the following example *unfolding* leads to an exponential blowup:

$$C_{1} \stackrel{\dot{=}}{=} \forall r. C_{0} \sqcap \forall s. C_{0}$$

$$C_{2} \stackrel{\dot{=}}{=} \forall r. C_{1} \sqcap \forall s. C_{1}$$

$$\vdots$$

$$C_{n} \stackrel{\dot{=}}{=} \forall r. C_{n-1} \sqcap \forall s. C_{n-1}$$

- Unfolding C_n leads to a concept description with a size $\Omega(2^n)$
- ▶ Is it possible to avoid this blowup?
- ► Can we avoid exponential preprocessing?

TBox Subsumption for Small Languages

- ▶ Question: Can we decide in polynomial time TBox subsumption for a description logic such as \mathcal{FL}^- , for which concept subsumption in the empty TBox can be decided in polynomial time?
- ▶ Let us consider \mathcal{FL}_0 : $C \sqcap D$, $\forall r.C$ with terminological axioms.
- ► Subsumption without a TBox can be done easily, using a structural subsumption algorithm.
- ▶ Unfolding + strucural subsumption gives us an exponential algorithm.

Nebel, Helmert, Wölfl (Uni Freiburg)

KRR

July 22, 2008

13 / 18

The Complexity of Subsumption in TBoxes

Complexity of TBox Subsumption

Theorem (Complexity of TBox subsumption)

TBox subsumption for \mathcal{FL}_0 is NP-hard.

Proof sketch.

We use the **NDFA-equivalence problem**, which is NP-complete for *cycle-free* automatons and PSPACE-complete for general NDFAs. We transform a cycle-free NDFA to a \mathcal{FL}_0 -terminology with the mapping π as follows:

 $\begin{array}{cccc} \text{automaton } A & \mapsto & \text{terminology } \mathcal{T}_A \\ & \text{state } q & \mapsto & \text{concept name } q \end{array}$

terminal state $q_f \mapsto \mathsf{concept}$ name q_f

input symbol $r \mapsto \text{role name } r$

r-transition from q to $q' \mapsto q = \dots \sqcap \forall r : q' \sqcap \dots$

Nebel, Helmert, Wölfl (Uni Freiburg)

KRF

July 22, 2008 14 / 18

The Complexity of Subsumption in TBoxes

"Proof" by Example

Nebel, Helmert, Wölfl (Uni Freiburg)

 $q_1 \stackrel{\cdot}{=} \forall a.q_3 \sqcap \forall a.q_2$

 $q_2 \stackrel{\cdot}{=} \forall a.q_3 \sqcap \forall a.q_5$

 $q_3 \stackrel{\cdot}{=} \forall b.q_4$

 $q_4 \stackrel{\cdot}{=} \forall b.q_f \sqcap \forall c.q_f$

 $q_5 \stackrel{\cdot}{=} \forall b.q_6$

 $q_6 \stackrel{\cdot}{=} \forall b.q_f$

 $q_1 \equiv orall abc.q_f \sqcap orall abb.q_f \sqcap
otag \ orall aabc.q_f \sqcap orall aabb.q_f$

 $q_2 \equiv \forall abb.q_f \sqcap \forall abc.q_f$

 $q_1 \sqsubseteq_{\mathcal{T}} q_2$ and $\mathcal{L}(q_2) \subseteq \mathcal{L}(g_1)$

July 22, 2008

15 / 18

In general, we have: $\mathcal{L}(q) \subseteq \mathcal{L}(q')$ iff $q' \sqsubseteq_{\mathcal{T}} q$, from which the *correctness of the reduction* and the *complexity result* follows.

The Complexity of Subsumption in TBoxes

What Does This Complexity Result Mean?

- ▶ Note that for expressive languages such as *ALC*, we do not notice any difference!
- ► The TBox subsumption complexity result for less expressive languages does not play a large role *in practice*
- ▶ Pathological situations do not happen very often
- ▶ In fact, if the definition depth is logarithmic in the size of the TBox, the whole problem vanishes.
- ► However, in order to protect oneself against such problems, one often uses lazy unfolding
- ightharpoonup Similarly, also for the \mathcal{ACC} concept descriptions, one notices that they are usually very well behaved.

Outlook

Outlook

- ▶ Description logics have a long history (Tarski's relation algebras and Brachman's KL-ONE)
- ► Early on, either small languages with provably easy reasoning problems (e.g., the system **CLASSIC**) or large languages with incomplete inference algorithms (e.g., the system **Loom**) were used.
- ► Meanwhile, one uses complete algorithms on very large descriptions logics (e.g., SHIQ), e.g. in the systems FaCT and RACER
- ► RACER can handle KBs with up to 160,000 concepts (example from *unified medical language system*) in reasonable time (less than one day computing time)
- ▶ Description logics are used as the semantic backbone for OWL (a Web-language extending RDF)

Nebel, Helmert, Wölfl (Uni Freiburg) KRR July 22, 2008 17 / 18

Literature

Literature

Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Werner Nutt. Tractable concept languages. In *Proceedings of the 12th International Joint Conference on Artificial Intelligence*, pages 458–465, Sydney, Australia, August 1991. Morgan Kaufmann.

Klaus Schild. A correspondence theory for terminological logics: Preliminary report. In *Proceedings of the 12th International Joint Conference on Artificial Intelligence*, pages 466–471, Sydney, Australia, August 1991. Morgan Kaufmann.

I. Horrocks, U. Sattler, and S. Tobies. Reasoning with Individuals for the Description Logic SHIQ. In David MacAllester, ed., *Proceedings of the 17th International Conference on Automated Deduction (CADE-17)*, Germany, 2000. Springer Verlag.

B. Nebel. Terminological Reasoning is Inherently Intractable, *Artificial Intelligence*, **43**: 235-249, 1990.

 Nebel, Helmert, Wölfl (Uni Freiburg)
 KRR
 July 22, 2008
 18 / 18