Principles of Knowledge Representation and Reasoning

Description Logics - Algorithms

Bernhard Nebel, Malte Helmert and Stefan Wölfl

Albert-Ludwigs-Universität Freiburg

July 22, 2008

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Description Logics – Algorithms

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Tableau Subsumption

- Motivation
- Structural Subsumption Algorithms
- Tableau Subsumption Method

- Satisfiability or subsumption of concept descriptions
- Satisfiability or instance relation in ABoxes
- Structural subsumption algorithms
 - Normalization of concept descriptions and structural comparison
 - very fast, but can only be used for small DLs
- Tableau algorithms
 - Similar to modal tableau methods
 - Meanwhile the method of choice

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

- Satisfiability or subsumption of concept descriptions
- Satisfiability or instance relation in ABoxes
- Structural subsumption algorithms
 - Normalization of concept descriptions and structural comparison
 - very fast, but can only be used for small DLs
- Tableau algorithms
 - Similar to modal tableau methods
 - Meanwhile the method of choice

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

- Satisfiability or subsumption of concept descriptions
- Satisfiability or instance relation in ABoxes
- Structural subsumption algorithms
 - Normalization of concept descriptions and structural comparison
 - very fast, but can only be used for small DLs
- Tableau algorithms
 - Similar to modal tableau methods
 - Meanwhile the method of choice

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

- Satisfiability or subsumption of concept descriptions
- Satisfiability or instance relation in ABoxes
- Structural subsumption algorithms
 - Normalization of concept descriptions and structural comparison
 - very fast, but can only be used for small DLs
- Tableau algorithms
 - Similar to modal tableau methods
 - Meanwhile the method of choice

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

- Satisfiability or subsumption of concept descriptions
- Satisfiability or instance relation in ABoxes
- Structural subsumption algorithms
 - Normalization of concept descriptions and structural comparison
 - very fast, but can only be used for small DLs
- Tableau algorithms
 - Similar to modal tableau methods
 - Meanwhile the method of choice

KRR

Nebel, Helmert Wölfl

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

- Satisfiability or subsumption of concept descriptions
- Satisfiability or instance relation in ABoxes
- Structural subsumption algorithms
 - Normalization of concept descriptions and structural comparison
 - very fast, but can only be used for small DLs
- Tableau algorithms
 - Similar to modal tableau methods
 - Meanwhile the method of choice

KRR

Nebel, Helmert Wölfl

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

- Satisfiability or subsumption of concept descriptions
- Satisfiability or instance relation in ABoxes
- Structural subsumption algorithms
 - Normalization of concept descriptions and structural comparison
 - very fast, but can only be used for small DLs
- Tableau algorithms
 - Similar to modal tableau methods
 - Meanwhile the method of choice

KRR

Nebel, Helmert Wölfl

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

- Satisfiability or subsumption of concept descriptions
- Satisfiability or instance relation in ABoxes
- Structural subsumption algorithms
 - Normalization of concept descriptions and structural comparison
 - very fast, but can only be used for small DLs
- Tableau algorithms
 - Similar to modal tableau methods
 - Meanwhile the method of choice

KRR

Nebel, Helmert Wölfl

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

• Small Logic FL⁻

- $\circ C \sqcap I$
- $\circ \ \forall r.C$
- $\circ \exists r \text{ (simple existential quantification)}$

Idea

In the conjunction, collect all universally quantified expressions (also called value restrictions) with the same role and build complex value restriction:

$$\forall r.C \sqcap \forall r.D \rightarrow \forall r.(C \sqcap D).$$

Compare all conjuncts with each other. For each conjunct in the subsuming concept there should be a corresponding one in the subsumed one. KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

ldea

Example
Algorithm
Soundness
Completeness
Generalizations
ABox Reasoning

Tableau Subsumption Method

- Small Logic FL⁻
 - $\circ C \sqcap D$
 - $\circ \ \forall r.C$
 - $\circ \exists r \text{ (simple existential quantification)}$
- Idea
 - In the conjunction, collect all universally quantified expressions (also called value restrictions) with the same role and build complex value restriction:

$$\forall r.C \sqcap \forall r.D \rightarrow \forall r.(C \sqcap D).$$

Compare all conjuncts with each other. For each conjunct in the subsuming concept there should be a corresponding one in the subsumed one. KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

dea
Example
Algorithm
Soundness
Completeness
Generalizations

Tableau Subsumption Method

- Small Logic FL⁻
 - $\circ C \sqcap D$
 - $\circ \ \forall r.C$
 - $\circ \exists r \text{ (simple existential quantification)}$
- Idea
 - In the conjunction, collect all universally quantified expressions (also called value restrictions) with the same role and build complex value restriction:

$$\forall r.C \sqcap \forall r.D \ \rightarrow \ \forall r.(C \sqcap D).$$

Compare all conjuncts with each other. For each conjunct in the subsuming concept there should be a corresponding one in the subsumed one. KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Idea
Example
Algorithm
Soundness
Completeness
Generalizations

Tableau Subsumption Method

- Small Logic FL⁻
 - $\circ C \sqcap D$
 - $\circ \ \forall r.C$
 - $\circ \exists r \text{ (simple existential quantification)}$
- Idea
 - In the conjunction, collect all universally quantified expressions (also called value restrictions) with the same role and build complex value restriction:

$$\forall r.C \sqcap \forall r.D \rightarrow \forall r.(C \sqcap D).$$

2 Compare all conjuncts with each other. For each conjunct in the subsuming concept there should be a corresponding one in the subsumed one. KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Idea
Example
Algorithm
Soundness
Completeness
Generalizations

Tableau Subsumption Method

- Small Logic FL⁻
 - $\circ C \sqcap D$
 - $\circ \ \forall r.C$
 - $\circ \exists r \text{ (simple existential quantification)}$
- Idea
 - In the conjunction, collect all universally quantified expressions (also called value restrictions) with the same role and build complex value restriction:

$$\forall r.C \sqcap \forall r.D \rightarrow \forall r.(C \sqcap D).$$

Compare all conjuncts with each other. For each conjunct in the subsuming concept there should be a corresponding one in the subsumed one. KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Idea
Example
Algorithm
Soundness
Completeness
Generalizations

Tableau Subsumption Method

- D = Human □ ∃has-child □ ∀has-child.Human □
 ∀has-child ∃has-child
- $C = \operatorname{Human} \sqcap \operatorname{Female} \sqcap \exists \operatorname{has-child} \sqcap$ $\forall \operatorname{has-child}.(\operatorname{Human} \sqcap \operatorname{Female} \sqcap \exists \operatorname{has-child})$

Check: $C \sqsubseteq D$

- Collect value restrictions in D: ...∀has-child.(Human □ ∃has-child)
- Compare:
 - lacksquare For Human in D, we have Human in C
 - ② For \exists has-child in D, we have ...
 - \bigcirc For \forall has-child. (\dots) in D, we have \dots
 - ① For Human ...
 - ② For ∃has-child ...
- \leadsto C is subsumed by D!

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Idea
Example
Algorithm
Soundness
Completeness
Generalizations

Tableau Subsumption Method

- D = Human □ ∃has-child □ ∀has-child.Human □
 ∀has-child ∃has-child
- $C = \operatorname{Human} \sqcap \operatorname{Female} \sqcap \exists \operatorname{has-child} \sqcap$ $\forall \operatorname{has-child}.(\operatorname{Human} \sqcap \operatorname{Female} \sqcap \exists \operatorname{has-child})$

Check: $C \sqsubseteq D$

- Collect value restrictions in D: ...∀has-child.(Human □ ∃has-child)
- Compare:
 - lacksquare For Human in D, we have Human in C
 - **2** For \exists has-child in D, we have ...
 - \bigcirc For \forall has-child. (\dots) in D, we have \dots
 - ① For Human ...
 - ② For ∃has-child ...
- $\leadsto C$ is subsumed by D!

KRR

Nebel, Helmert, Wölfl

iviotivation

Structural Subsumption Algorithms

Idea
Example
Algorithm
Soundness
Completeness
Generalizations

Tableau Subsumption Method

- D = Human □ ∃has-child □ ∀has-child.Human □
 ∀has-child ∃has-child
- $C = \operatorname{Human} \sqcap \operatorname{Female} \sqcap \exists \operatorname{has-child} \sqcap$ $\forall \operatorname{has-child}.(\operatorname{Human} \sqcap \operatorname{Female} \sqcap \exists \operatorname{has-child})$

Check: $C \sqsubseteq D$

- **1** Collect value restrictions in *D*:
 - $\dots \forall \mathtt{has-child}.(\mathtt{Human} \sqcap \exists \mathtt{has-child})$
- Compare:
 - lacksquare For Human in D, we have Human in C
 - ② For \exists has-child in D, we have ...
 - **③** For \forall has-child.(...) in D, we have ...
 - For Human . . .
 - ② For ∃has-child ...

$\leadsto C$ is subsumed by D!

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Idea
Example
Algorithm
Soundness
Completeness
Generalizations

Tableau Subsumption Method

- D = Human □ ∃has-child □ ∀has-child.Human □ ∀has-child.∃has-child
- $C = \operatorname{Human} \sqcap \operatorname{Female} \sqcap \exists \operatorname{has-child} \sqcap$ $\forall \operatorname{has-child}.(\operatorname{Human} \sqcap \operatorname{Female} \sqcap \exists \operatorname{has-child})$

Check: $C \sqsubseteq D$

- **①** Collect value restrictions in D:
 - $\dots \forall \mathtt{has-child}.(\mathtt{Human} \sqcap \exists \mathtt{has-child})$
- 2 Compare:
 - lacktriangle For Human in D, we have Human in C
 - 2 For \exists has-child in D, we have ...
 - \bigcirc For \forall has-child. (\dots) in D, we have \dots
 - For Human . . .
 - ② For ∃has-child ...

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Idea
Example
Algorithm
Soundness
Completeness
Generalizations

Tableau Subsumption Method

Literature

- D = Human □ ∃has-child □ ∀has-child.Human □
 ∀has-child ∃has-child
- $C = \operatorname{Human} \sqcap \operatorname{Female} \sqcap \exists \operatorname{has-child} \sqcap$ $\forall \operatorname{has-child}.(\operatorname{Human} \sqcap \operatorname{Female} \sqcap \exists \operatorname{has-child})$

Check: $C \sqsubseteq D$

- **①** Collect value restrictions in D:
 - $\dots \forall \mathtt{has-child}.(\mathtt{Human} \sqcap \exists \mathtt{has-child})$
- 2 Compare:
 - lacktriangle For Human in D, we have Human in C
 - f 2 For $\exists {\tt has-child}$ in D, we have ...
 - \bigcirc For \forall has-child. (\dots) in D, we have \dots
 - For Human ...
 - ② For ∃has-child ...

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Idea
Example
Algorithm
Soundness
Completeness
Generalizations

Tableau Subsumption Method

Literature

- D = Human □ ∃has-child □ ∀has-child.Human □
 ∀has-child ∃has-child
- $C = \operatorname{Human} \sqcap \operatorname{Female} \sqcap \exists \operatorname{has-child} \sqcap$ $\forall \operatorname{has-child}.(\operatorname{Human} \sqcap \operatorname{Female} \sqcap \exists \operatorname{has-child})$

Check: $C \sqsubseteq D$

- Collect value restrictions in *D*:
 - $\dots \forall \mathtt{has-child}. (\mathtt{Human} \sqcap \exists \mathtt{has-child})$
- Compare:
 - lacktriangle For Human in D, we have Human in C
 - 2 For \exists has-child in D, we have ...
 - **3** For \forall has-child.(...) in D, we have ...
 - For Human . . .
 - ② For ∃has-child...

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Idea
Example
Algorithm
Soundness
Completeness
Generalizations

Tableau Subsumption Method

Literature

- D = Human □ ∃has-child □ ∀has-child.Human □ ∀has-child.∃has-child
- $C = \operatorname{Human} \sqcap \operatorname{Female} \sqcap \exists \operatorname{has-child} \sqcap$ $\forall \operatorname{has-child}.(\operatorname{Human} \sqcap \operatorname{Female} \sqcap \exists \operatorname{has-child})$

Check: $C \sqsubseteq D$

- **Ollect** value restrictions in *D*:
 - $\dots \forall \mathtt{has-child}. (\mathtt{Human} \sqcap \exists \mathtt{has-child})$
- 2 Compare:
 - lacktriangle For Human in D, we have Human in C
 - f 2 For $\exists {\tt has-child}$ in D, we have ...
 - **3** For \forall has-child.(...) in D, we have ...
 - For Human . . .
 - ② For ∃has-child . . .

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Idea
Example
Algorithm
Soundness
Completeness
Generalizations

Tableau Subsumption Method

Literature

 \rightarrow C is subsumed by D!

```
D = Human □ ∃has-child □ ∀has-child.Human □
∀has-child ∃has-child
```

 $C = \operatorname{Human} \sqcap \operatorname{Female} \sqcap \exists \operatorname{has-child} \sqcap$ $\forall \operatorname{has-child}.(\operatorname{Human} \sqcap \operatorname{Female} \sqcap \exists \operatorname{has-child})$

Check: $C \sqsubseteq D$

- Collect value restrictions in *D*:
 - $\dots \forall \mathtt{has}\mathtt{-child}.(\mathtt{Human} \sqcap \exists \mathtt{has}\mathtt{-child})$
- 2 Compare:
 - lacktriangle For Human in D, we have Human in C
 - f 2 For $\exists {\tt has-child}$ in D, we have ...
 - **3** For \forall has-child.(...) in D, we have ...
 - For Human . . .
 - ② For ∃has-child ...

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Idea
Example
Algorithm
Soundness
Completeness
Generalizations

Tableau Subsumption Method

Literature

```
D = Human □ ∃has-child □ ∀has-child.Human □
∀has-child ∃has-child
```

 $C = \operatorname{Human} \sqcap \operatorname{Female} \sqcap \exists \operatorname{has-child} \sqcap$ $\forall \operatorname{has-child}.(\operatorname{Human} \sqcap \operatorname{Female} \sqcap \exists \operatorname{has-child})$

Check: $C \sqsubseteq D$

- Collect value restrictions in D:
 - $\dots \forall \mathtt{has}\mathtt{-child}.(\mathtt{Human} \sqcap \exists \mathtt{has}\mathtt{-child})$
- 2 Compare:
 - lacktriangle For Human in D, we have Human in C
 - f 2 For $\exists {\tt has-child}$ in D, we have ...
 - **3** For \forall has-child.(...) in D, we have ...
 - For Human . . .
 - ② For ∃has-child ...
- \leadsto C is subsumed by D!

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Idea
Example
Algorithm
Soundness
Completeness
Generalizations

Tableau Subsumption Method

SUB(C, D) algorithm:

Reorder terms (commutativity, associativity and value restriction law):

$$C = \prod A_i \sqcap \prod \exists r_j \sqcap \prod \forall r_k : C_k$$

$$D = \prod B_l \sqcap \prod \exists s_m \sqcap \prod \forall s_n : D_n$$

- For each B_l in D, is there an A_i in C with $A_i = B_l$?
- **3** For each $\exists s_m$ in D, is there an $\exists r_j$ in C with $s_m = r_j$?
- ① For each $\forall s_n : D_n$ in D, is there a $\forall r_k : C_k$ in C such that $C_k \sqsubseteq D_n$ and $s_n = r_k$?
- \cdots $C \sqsubseteq D$ iff all questions are answered positively

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Idea
Example
Algorithm
Soundness
Completeness
Generalizations

Tableau Subsumption Method

SUB(C, D) algorithm:

Reorder terms (commutativity, associativity and value restriction law):

$$C = \prod A_i \sqcap \prod \exists r_j \sqcap \prod \forall r_k : C_k$$

$$D = \prod B_l \sqcap \prod \exists s_m \sqcap \prod \forall s_n : D_n$$

- ② For each B_l in D, is there an A_i in C with $A_i = B_l$?
- **3** For each $\exists s_m$ in D, is there an $\exists r_j$ in C with $s_m = r_j$?
- ① For each $\forall s_n: D_n$ in D, is there a $\forall r_k: C_k$ in C such that $C_k \sqsubseteq D_n$ and $s_n = r_k$?
- \cdots $C \sqsubseteq D$ iff all questions are answered positively

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Idea
Example
Algorithm
Soundness
Completeness

Tableau Subsumption Method

SUB(C, D) algorithm:

Reorder terms (commutativity, associativity and value restriction law):

$$C = \prod A_i \sqcap \prod \exists r_j \sqcap \prod \forall r_k : C_k$$

$$D = \prod B_l \sqcap \prod \exists s_m \sqcap \prod \forall s_n : D_n$$

- ② For each B_l in D, is there an A_i in C with $A_i = B_l$?
- **3** For each $\exists s_m$ in D, is there an $\exists r_j$ in C with $s_m = r_j$?
- ① For each $\forall s_n: D_n$ in D, is there a $\forall r_k: C_k$ in C such that $C_k \sqsubseteq D_n$ and $s_n = r_k$?
- \cdots $C \sqsubseteq D$ iff all questions are answered positively

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Idea Example Algorithm Soundness Completeness

Tableau Subsumption Method

SUB(C, D) algorithm:

Reorder terms (commutativity, associativity and value restriction law):

$$C = \prod A_i \sqcap \prod \exists r_j \sqcap \prod \forall r_k : C_k$$

$$D = \prod B_l \sqcap \prod \exists s_m \sqcap \prod \forall s_n : D_n$$

- ② For each B_l in D, is there an A_i in C with $A_i = B_l$?
- **3** For each $\exists s_m$ in D, is there an $\exists r_j$ in C with $s_m = r_j$?
- **③** For each $\forall s_n : D_n$ in D, is there a $\forall r_k : C_k$ in C such that $C_k \sqsubseteq D_n$ and $s_n = r_k$?
- \longrightarrow $C \sqsubseteq D$ iff all questions are answered positively

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Idea
Example
Algorithm
Soundness
Completeness
Generalizations

Tableau Subsumption Method

SUB(C, D) algorithm:

Reorder terms (commutativity, associativity and value restriction law):

$$C = \prod A_i \sqcap \prod \exists r_j \sqcap \prod \forall r_k : C_k$$
$$D = \prod B_l \sqcap \prod \exists s_m \sqcap \prod \forall s_n : D_n$$

- ② For each B_l in D, is there an A_i in C with $A_i = B_l$?
- **3** For each $\exists s_m$ in D, is there an $\exists r_j$ in C with $s_m = r_j$?
- **③** For each $\forall s_n : D_n$ in D, is there a $\forall r_k : C_k$ in C such that $C_k \sqsubseteq D_n$ and $s_n = r_k$?
- \longrightarrow $C \sqsubseteq D$ iff all questions are answered positively

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Idea
Example
Algorithm
Soundness
Completeness

Tableau Subsumption Method

Theorem (Soundness)

 $SUB(C, D) \Rightarrow C \sqsubseteq D$

Proof sketch.

Reordering of terms (1):

- a) Commutativity and associativity are trivial
- b) Value restriction law. We show: $(\forall r.(C \sqcap D))^{\mathcal{I}} = (\forall r.C \sqcap \forall r.D)^{\mathcal{I}}$

Assumption:
$$d \in (\forall r.(C \sqcap D))^{\mathcal{I}}$$

Case 1:
$$\exists e: (d,e) \in r^{\hat{\mathcal{I}}}$$

Case 2:
$$\exists e : (d, e) \in r^{\mathcal{I}} \Rightarrow e \in (C \sqcap D)^{\mathcal{I}} \Rightarrow e \in C^{\mathcal{I}}, e \in D^{\mathcal{I}}$$

d must also be conjunction, i.e.,

 $(\forall r.(C \sqcap D))^{\mathcal{I}} \subseteq (\forall r.C \sqcap \forall r.D)^{\mathcal{I}}$

Other direction is similar

(2+3+4): Induction on the nesting depth of \forall -expressions

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Example

Algorithm
Soundness
Completeness
Generalizations

Tableau Subsumption Method

Theorem (Soundness)

 $SUB(C, D) \Rightarrow C \sqsubseteq D$

Proof sketch.

Reordering of terms (1):

- a) Commutativity and associativity are trivial
- b) Value restriction law. We show: $(\forall r.(C \sqcap D))^{\mathcal{I}} = (\forall r.C \sqcap \forall r.D)^{\mathcal{I}}$

```
Assumption: d \in (\forall r.(C \sqcap D))^{\mathcal{I}}
```

Case 1: $\not\exists e: (d,e) \in r^{\mathcal{I}}$ \checkmark

 $\exists e: (d,e) \in r^{\mathcal{I}} \Rightarrow e \in (C \sqcap D)^{\mathcal{I}} \Rightarrow e \in C^{\mathcal{I}}, \ e \in D^{\mathcal{I}}$ Since e is arbitrary: $d \in (\forall r.C)^{\mathcal{I}}, \ d \in (\forall r.D)^{\mathcal{I}}$ then d must also be conjunction, i.e.,

 $(\forall r.(C \sqcap D))^{\mathcal{I}} \subseteq (\forall r.C \sqcap \forall r.D)^{\mathcal{I}}$

Other direction is similar

(2+3+4): Induction on the nesting depth of \forall -expressions

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

> ldea Example

Algorithm Soundness Completeness

Tableau Subsumption

Theorem (Soundness)

 $SUB(C, D) \Rightarrow C \sqsubseteq D$

Proof sketch.

Reordering of terms (1):

- a) Commutativity and associativity are trivial
- b) Value restriction law. We show: $(\forall r.(C \sqcap D))^{\mathcal{I}} = (\forall r.C \sqcap \forall r.D)^{\mathcal{I}}$

Assumption:
$$d \in (\forall r.(C \sqcap D))^{\mathcal{I}}$$

Case 1:
$$\not\exists e: (d,e) \in r^{\mathcal{I}}$$

ase 2:
$$\exists e: (d,e) \in r^{\mathcal{I}} \Rightarrow e \in (C \sqcap D)^{\mathcal{I}} \Rightarrow e \in C^{\mathcal{I}}, \ e \in D^{\mathcal{I}}$$

Since e is arbitrary: $d \in (\forall r.C)^{\mathcal{I}}, \ d \in (\forall r.D)^{\mathcal{I}}$ then d must also be conjunction, i.e.,

Other direction is similar

(2+3+4): Induction on the nesting depth of \forall -expressions

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

> Idea Example Algorithm

Algorithm
Soundness
Completeness
Generalizations

Tableau Subsumption Method

Theorem (Soundness)

 $SUB(C, D) \Rightarrow C \sqsubseteq D$

Proof sketch.

Reordering of terms (1):

- a) Commutativity and associativity are trivial
- b) Value restriction law. We show: $(\forall r.(C \sqcap D))^{\mathcal{I}} = (\forall r.C \sqcap \forall r.D)^{\mathcal{I}}$

Assumption: $d \in (\forall r.(C \sqcap D))^{\mathcal{I}}$

Case 1: $\not\exists e: (d,e) \in r^{\mathcal{I}}$

Case 2: $\exists e: (d,e) \in r^{\mathcal{I}} \Rightarrow e \in (C \sqcap D)^{\mathcal{I}} \Rightarrow e \in C^{\mathcal{I}}, \ e \in D^{\mathcal{I}}$ Since e is arbitrary: $d \in (\forall r.C)^{\mathcal{I}}, \ d \in (\forall r.D)^{\mathcal{I}}$ then d must also be conjunction, i.e., $(\forall r.C \sqcap D)^{\mathcal{I}} \subseteq (\forall r.C \sqcap \forall r.D)^{\mathcal{I}}$

Other direction is similar

(2+3+4): Induction on the nesting depth of \forall -expressions

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

> Idea Example

Algorithm
Soundness
Completeness
Generalizations

Tableau Subsumption Method

Theorem (Soundness)

 $SUB(C, D) \Rightarrow C \sqsubseteq D$

Proof sketch.

Reordering of terms (1):

- a) Commutativity and associativity are trivial
- b) Value restriction law. We show: $(\forall r.(C \sqcap D))^{\mathcal{I}} = (\forall r.C \sqcap \forall r.D)^{\mathcal{I}}$

Assumption: $d \in (\forall r.(C \sqcap D))^{\mathcal{I}}$

Case 1: $\not\exists e: (d,e) \in r^{\mathcal{I}}$

2: $\exists e: (d, e) \in r^{\mathcal{I}} \Rightarrow e \in (C \sqcap D)^{\mathcal{I}} \Rightarrow e \in C^{\mathcal{I}}, \ e \in D^{\mathcal{I}}$ Since e is arbitrary: $d \in (\forall r.C)^{\mathcal{I}}, \ d \in (\forall r.D)^{\mathcal{I}}$ then d must also be conjunction, i.e., $(\forall r.(C \sqcap D))^{\mathcal{I}} \subseteq (\forall r.C \sqcap \forall r.D)^{\mathcal{I}}$

Other direction is similar

(2+3+4): Induction on the nesting depth of \forall -expressions

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

> Idea Example

Algorithm
Soundness
Completeness
Generalizations

Tableau Subsumption Method

Theorem (Soundness)

 $SUB(C, D) \Rightarrow C \sqsubseteq D$

Proof sketch.

Reordering of terms (1):

- a) Commutativity and associativity are trivial
- b) Value restriction law. We show: $(\forall r.(C \sqcap D))^{\mathcal{I}} = (\forall r.C \sqcap \forall r.D)^{\mathcal{I}}$

Assumption: $d \in (\forall r.(C \sqcap D))^{\mathcal{I}}$

Case 1: $\not\exists e: (d,e) \in r^{\mathcal{I}}$

Case 2: $\exists e: (d,e) \in r^{\mathcal{I}} \Rightarrow e \in (C \sqcap D)^{\mathcal{I}} \Rightarrow e \in C^{\mathcal{I}}, \ e \in D^{\mathcal{I}}$

Since e is arbitrary: $d \in (\forall r.C)^-$, $d \in (\forall r.D)^-$ to d must also be conjunction, i.e.,

 $(\forall r.(C \sqcap D))^{\mathcal{I}} \subseteq (\forall r.C \sqcap \forall r.D)^{\mathcal{I}}$

Other direction is similar

(2+3+4): Induction on the nesting depth of \forall -expressions

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

> Idea Example

Algorithm Soundness Completeness

Tableau Subsumption Method

Theorem (Soundness)

 $SUB(C, D) \Rightarrow C \sqsubseteq D$

Proof sketch.

Reordering of terms (1):

- a) Commutativity and associativity are trivial
- b) Value restriction law. We show: $(\forall r.(C \sqcap D))^{\mathcal{I}} = (\forall r.C \sqcap \forall r.D)^{\mathcal{I}}$

Assumption: $d \in (\forall r.(C \sqcap D))^{\mathcal{I}}$

Case 1: $\not\exists e: (d,e) \in r^{\mathcal{I}}$

Case 2: $\exists e: (d,e) \in r^{\mathcal{I}} \Rightarrow e \in (C \sqcap D)^{\mathcal{I}} \Rightarrow e \in C^{\mathcal{I}}, \ e \in D^{\mathcal{I}}$ Since e is arbitrary: $d \in (\forall r.C)^{\mathcal{I}}, \ d \in (\forall r.D)^{\mathcal{I}}$ then

d must also be conjunction, i.e.,

 $(\forall r.(C \sqcap D))^{\mathcal{I}} \subseteq (\forall r.C \sqcap \forall r.D)^{\mathcal{I}}$

Other direction is similar

(2+3+4): Induction on the nesting depth of \forall -expressions

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

> Idea Example Algorithm

Soundness Completeness Generalizations

Tableau Subsumption Method

Soundness

Theorem (Soundness)

 $SUB(C, D) \Rightarrow C \sqsubseteq D$

Proof sketch.

Reordering of terms (1):

- a) Commutativity and associativity are trivial
- b) Value restriction law. We show: $(\forall r.(C \sqcap D))^{\mathcal{I}} = (\forall r.C \sqcap \forall r.D)^{\mathcal{I}}$

Assumption: $d \in (\forall r.(C \sqcap D))^{\mathcal{I}}$

Case 1: $\exists e: (d,e) \in r^{\mathcal{I}}$

Case 2: $\exists e: (d,e) \in r^{\mathcal{I}} \Rightarrow e \in (C \sqcap D)^{\mathcal{I}} \Rightarrow e \in C^{\mathcal{I}}, \ e \in D^{\mathcal{I}}$ Since e is arbitrary: $d \in (\forall r.C)^{\mathcal{I}}, \ d \in (\forall r.D)^{\mathcal{I}}$ then

d must also be conjunction, i.e., $(\forall r.(C \sqcap D))^{\mathcal{I}} \subseteq (\forall r.C \sqcap \forall r.D)^{\mathcal{I}}$

Other direction is similar

(2+3+4): Induction on the nesting depth of \forall -expressions

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

> Idea Example

Soundness Completeness Generalizations

Tableau Subsumption Method

Soundness

Theorem (Soundness)

 $SUB(C, D) \Rightarrow C \sqsubseteq D$

Proof sketch.

Reordering of terms (1):

- a) Commutativity and associativity are trivial
- b) Value restriction law. We show: $(\forall r.(C \sqcap D))^{\mathcal{I}} = (\forall r.C \sqcap \forall r.D)^{\mathcal{I}}$

Assumption: $d \in (\forall r.(C \sqcap D))^{\mathcal{I}}$

Case 1: $\exists e: (d,e) \in r^{\mathcal{I}}$

Case 2: $\exists e: (d,e) \in r^{\mathcal{I}} \Rightarrow e \in (C \sqcap D)^{\mathcal{I}} \Rightarrow e \in C^{\mathcal{I}}, \ e \in D^{\mathcal{I}}$ Since e is arbitrary: $d \in (\forall r.C)^{\mathcal{I}}, \ d \in (\forall r.D)^{\mathcal{I}}$ then

d must also be conjunction, i.e., $(\forall r.(C \sqcap D))^{\mathcal{I}} \subseteq (\forall r.C \sqcap \forall r.D)^{\mathcal{I}}$

Other direction is similar

(2+3+4): Induction on the nesting depth of \forall -expressions

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

> Idea Example

Soundness Completeness Generalizations

Tableau Subsumption Method

Soundness

Theorem (Soundness)

 $SUB(C, D) \Rightarrow C \sqsubseteq D$

Proof sketch.

Reordering of terms (1):

- a) Commutativity and associativity are trivial
- b) Value restriction law. We show: $(\forall r.(C \sqcap D))^{\mathcal{I}} = (\forall r.C \sqcap \forall r.D)^{\mathcal{I}}$

Assumption: $d \in (\forall r.(C \sqcap D))^{\mathcal{I}}$

Case 1: $\exists e: (d,e) \in r^{\mathcal{I}}$

Case 2: $\exists e: (d,e) \in r^{\mathcal{I}} \Rightarrow e \in (C \sqcap D)^{\mathcal{I}} \Rightarrow e \in C^{\mathcal{I}}, \ e \in D^{\mathcal{I}}$ Since e is arbitrary: $d \in (\forall r.C)^{\mathcal{I}}, \ d \in (\forall r.D)^{\mathcal{I}}$ then

d must also be conjunction, i.e., $(\forall r.(C \sqcap D))^{\mathcal{I}} \subseteq (\forall r.C \sqcap \forall r.D)^{\mathcal{I}}$

Other direction is similar

(2+3+4): Induction on the nesting depth of \forall -expressions

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

> ldea Example Algorithm

Soundness Completeness Generalizations

Tableau Subsumption Method

Theorem (Completeness)

$$C \sqsubseteq D \Rightarrow SUB(C, D)$$

Proof idea

One shows the contrapositive:

$$\neg \mathsf{SUB}(C,D) \Rightarrow C \not\sqsubseteq D$$

Idea: If one of the rules leads to a negative answer, we use this to construct an interpretation with a special element d such that

$$d \in C^{\mathcal{I}}$$
, but $d \notin D^{\mathcal{I}}$

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

ldea Example

Algorithm Soundness Completeness

ABox Reasonin

Subsumption Method

Theorem (Completeness)

$$C \sqsubseteq D \Rightarrow SUB(C, D)$$

Proof idea.

One shows the contrapositive:

$$\neg \mathsf{SUB}(C,D) \Rightarrow C \not\sqsubseteq D$$

Idea: If one of the rules leads to a negative answer, we use this to construct an interpretation with a special element d such that

$$d \in C^{\mathcal{I}}$$
, but $d \notin D^{\mathcal{I}}$

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Idea Example

Algorithm Soundness Completeness

Tableau Subsumption

Literature

Theorem (Completeness)

$$C \sqsubseteq D \Rightarrow SUB(C, D)$$

Proof idea.

One shows the contrapositive:

$$\neg \mathsf{SUB}(C, D) \Rightarrow C \not\sqsubseteq D$$

Idea: If one of the rules leads to a negative answer, we use this to construct an interpretation with a special element d such that

$$d \in C^{\mathcal{I}}$$
, but $d \notin D^{\mathcal{I}}$

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Example

Algorithm Soundness Completeness Generalizations

Tableau Subsumption

Theorem (Completeness)

$$C \sqsubseteq D \Rightarrow SUB(C, D)$$

Proof idea.

One shows the contrapositive:

$$\neg \mathsf{SUB}(C, D) \Rightarrow C \not\sqsubseteq D$$

Idea: If one of the rules leads to a negative answer, we use this to construct an interpretation with a special element d such that

$$d \in C^{\mathcal{I}}$$
, but $d \notin D^{\mathcal{I}}$

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Example

Algorithm Soundness Completeness

Tableau Subsumption

Extensions of \mathcal{FL}^- by

- $\neg A$ (atomic negation),
- $(\leq n \, r)$, $(\geq n \, r)$ (cardinality restrictions),
- $r \circ s$ (role composition)

does not lead to any problems.

However: If we use full existential restrictions, then it is very unlikely that we can come up with a *simple* structural subsumption algorithm — having the same flavor as the one above.

More precisely: There is (most probably) no algorithm that uses polynomially many reorderings and simplifications and allows for a simple structural comparison

Reason: Subsumption for $\mathcal{FL}^- + \exists r.C$ is NP-hard (Nutt).

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Idea
Example
Algorithm
Soundness
Completeness
Generalizations

Tableau Subsumption Method

Extensions of \mathcal{FL}^- by

- $\neg A$ (atomic negation),
- $(\leq n r)$, $(\geq n r)$ (cardinality restrictions),
- $r \circ s$ (role composition)

does not lead to any problems.

However: If we use full existential restrictions, then it is very unlikely that we can come up with a *simple* structural subsumption algorithm — having the same flavor as the one above.

More precisely: There is (most probably) no algorithm that uses polynomially many reorderings and simplifications and allows for a simple structural comparison

Reason: Subsumption for $\mathcal{FL}^- + \exists r.C$ is NP-hard (Nutt)

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Idea
Example
Algorithm
Soundness
Completeness
Generalizations

Tableau Subsumption Method

Extensions of \mathcal{FL}^- by

- $\neg A$ (atomic negation),
- $(\leq n r)$, $(\geq n r)$ (cardinality restrictions),
- $r \circ s$ (role composition)

does not lead to any problems.

However: If we use full existential restrictions, then it is very unlikely that we can come up with a *simple* structural subsumption algorithm — having the same flavor as the one above.

More precisely: There is (most probably) no algorithm that uses polynomially many reorderings and simplifications and allows for a simple structural comparison

Reason: Subsumption for $\mathcal{FL}^- + \exists r.C$ is NP-hard (Nutt).

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Idea Example Algorithm Soundness Completeness Generalizations

Tableau Subsumption Method

Extensions of \mathcal{FL}^- by

- $\neg A$ (atomic negation),
- $(\leq n r)$, $(\geq n r)$ (cardinality restrictions),
- $r \circ s$ (role composition)

does not lead to any problems.

However: If we use full existential restrictions, then it is very unlikely that we can come up with a *simple* structural subsumption algorithm — having the same flavor as the one above.

More precisely: There is (most probably) no algorithm that uses polynomially many reorderings and simplifications and allows for a simple structural comparison

Reason: Subsumption for $\mathcal{FL}^- + \exists r.C$ is NP-hard (Nutt).

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Idea Example Algorithm Soundness Completeness Generalizations

Tableau Subsumption Method

Extensions of \mathcal{FL}^- by

- $\neg A$ (atomic negation),
- $(\leq n r)$, $(\geq n r)$ (cardinality restrictions),
- $r \circ s$ (role composition)

does not lead to any problems.

However: If we use full existential restrictions, then it is very unlikely that we can come up with a *simple* structural subsumption algorithm — having the same flavor as the one above.

More precisely: There is (most probably) no algorithm that uses polynomially many reorderings and simplifications and allows for a simple structural comparison

Reason: Subsumption for $\mathcal{FL}^- + \exists r.C$ is NP-hard (Nutt).

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Idea
Example
Algorithm
Soundness
Completeness
Generalizations

Tableau Subsumption Method

Extensions of \mathcal{FL}^- by

- $\neg A$ (atomic negation),
- $(\leq n r)$, $(\geq n r)$ (cardinality restrictions),
- $r \circ s$ (role composition)

does not lead to any problems.

However: If we use full existential restrictions, then it is very unlikely that we can come up with a *simple* structural subsumption algorithm – having the same flavor as the one above.

More precisely: There is (most probably) no algorithm that uses polynomially many reorderings and simplifications and allows for a simple structural comparison

Reason: Subsumption for $\mathcal{FL}^- + \exists r.C$ is NP-hard (Nutt)

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Idea
Example
Algorithm
Soundness
Completeness
Generalizations

Tableau Subsumption Method

Extensions of \mathcal{FL}^- by

- $\neg A$ (atomic negation),
- $(\leq n r)$, $(\geq n r)$ (cardinality restrictions),
- $r \circ s$ (role composition)

does not lead to any problems.

However: If we use full existential restrictions, then it is very unlikely that we can come up with a *simple* structural subsumption algorithm – having the same flavor as the one above.

More precisely: There is (most probably) no algorithm that uses polynomially many reorderings and simplifications and allows for a simple structural comparison

Reason: Subsumption for $\mathcal{FL}^- + \exists r.C$ is NP-hard (Nutt).

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Idea
Example
Algorithm
Soundness
Completeness
Generalizations

Tableau Subsumption Method

Idea: abstraction + classification

- Complete ABox by propagating value restrictions to role fillers
- Compute for each object its most specialized concepts
- These can then be handled using the ordinary subsumption algorithm

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Idea
Example
Algorithm
Soundness
Completeness
Generalizations

ABox Reasoning Tableau Subsumption Method

Idea: abstraction + classification

- Complete ABox by propagating value restrictions to role fillers
- Compute for each object its most specialized concepts
- These can then be handled using the ordinary subsumption algorithm

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Idea
Example
Algorithm
Soundness
Completeness
Generalizations
ABox Reasoning

Tableau Subsumption Method

Idea: abstraction + classification

- Complete ABox by propagating value restrictions to role fillers
- Compute for each object its most specialized concepts
- These can then be handled using the ordinary subsumption algorithm

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Idea
Example
Algorithm
Soundness
Completeness
Generalizations
ABox Reasoning

Tableau Subsumption Method

Idea: abstraction + classification

- Complete ABox by propagating value restrictions to role fillers
- Compute for each object its most specialized concepts
- These can then be handled using the ordinary subsumption algorithm

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Idea
Example
Algorithm
Soundness
Completeness
Generalizations
ABox Reasoning

Tableau Subsumption Method

Tableau Method

- Logic ALC
 - \circ $C \sqcap D$
 - \circ $C \sqcup D$
 - $\circ \neg C$
 - $\circ \ \forall r.C$
 - $\circ \exists r.C$
- Idea: Decide (un-)satisfiability of a concept description C by trying to *systematically construct* a model for C. If that is successful, C is satisfiable. Otherwise C is unsatisfiable.

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example
Reductions:
Unfolding &
Unsatisfiability
Model
Construction

Constraint Systems Transforming Constraint Systems

Tableau Method

- Logic ALC
 - \circ $C \sqcap D$
 - \circ $C \sqcup D$
 - $\circ \neg C$
 - $\circ \ \forall r.C$
 - $\circ \exists r.C$
- Idea: Decide (un-)satisfiability of a concept description C by trying to *systematically construct* a model for C. If that is successful, C is satisfiable. Otherwise C is unsatisfiable.

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Reductions: Unfolding & Unsatisfiability Model Construction

Constraint Systems Transforming Constraint Systems

TBox

$\texttt{Hermaphrodite} \stackrel{.}{=} \texttt{Male} \sqcap \texttt{Female}$

Parents-of-sons-and-daughters

 \exists has-child.Male $\sqcap \exists$ has-child.Female

Parents-of-hermaphrodite = ∃has-child.Hermaphrodite

Query

 ${\tt Parents-of-sons-and-daughters} \sqsubseteq_{\mathcal{T}}$

 ${\tt Parents-of-hermaphrodites}$

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Tableau Subsumption

Example

Unfolding & Unsatisfiability
Model
Construction

Constraint Systems Transformin

Systems nvariances

TBox

 $\texttt{Hermaphrodite} \stackrel{\cdot}{=} \texttt{Male} \sqcap \texttt{Female}$

Parents-of-sons-and-daughters $\stackrel{\cdot}{=}$

 \exists has-child.Male \sqcap \exists has-child.Female

 $Parents-of-hermaphrodite = \exists has-child. Hermaphrodite$

Query

 ${\tt Parents-of-sons-and-daughters} \sqsubseteq_{\mathcal{T}}$

 ${\tt Parents-of-hermaphrodites}$

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example

Reductions:
Unfolding &
Unsatisfiability
Model
Construction

Constraint Systems Fransformin

ystems nvariances

TBox

```
\texttt{Hermaphrodite} \stackrel{\cdot}{=} \texttt{Male} \sqcap \texttt{Female}
```

Parents-of-sons-and-daughters =

∃has-child.Male □ ∃has-child.Female

Parents-of-hermaphrodite $\stackrel{\cdot}{=} \exists \mathtt{has-child}. \mathtt{Hermaphrodite}$

Parents-of-sons-and-daughters $\square_{\mathcal{T}}$

Parents-of-hermaphrodites

KRR

Example

ABox Reasoning

TBox

```
Hermaphrodite = Male □ Female

Parents-of-sons-and-daughters
```

 ${\tt Parents-of-sons-and-daughters} \stackrel{\cdot}{=}$

 \exists has-child.Male $\sqcap \exists$ has-child.Female

 ${\tt Parents-of-hermaphrodite} \stackrel{\cdot}{=} \exists {\tt has-child.Hermaphrodite}$

Query

 ${\tt Parents-of-sons-and-daughters} \sqsubseteq_{\mathcal{T}}$

 ${\tt Parents-of-hermaphrodites}$

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example

Unfolding & Unsatisfiability
Model
Construction

Constraint Systems

onstraint ystems ivariances

Unfolding

 \exists has-child.Male $\sqcap \exists$ has-child.Female $\sqsubseteq \exists$ has-child.(Male $\sqcap \exists$ Female)

- ② Reduction to unsatisfiability

 Is

 ∃has-child.Male □ ∃has-child.Female□

 ¬(∃has-child.(Male □ Female))

 unsatisfiable?
- Negation normal form (move negations inside): ∃has-child.Male □ ∃has-child.Female□ ∀has-child.(¬Male □ ¬Female)
- Try to construct a model

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Tableau
Subsumption
Method
Example
Reductions:
Unfolding &
Unsatisfiability
Model

Equivalences & NNF Constraint Systems Transforming

Transforming Constraint Systems Invariances Soundness an

Unfolding

 \exists has-child.Male \sqcap \exists has-child.Female \sqsubseteq \exists has-child.(Male \sqcap Female)

- Reduction to unsatisfiability
 ls
 Has-child.Male □ Has-child.Female□
 ¬(∃has-child.(Male □ Female))
 unsatisfiable?
- Negation normal form (move negations inside):
 ∃has-child.Male □ ∃has-child.Female□
 ∀has-child.(¬Male □ ¬Female)
- 4) Try to construct a model

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method Example Reductions: Unfolding & Unsatisfiability

Model Construction Equivalences & NNF

Systems
Transforming
Constraint
Systems

oundness and ompleteness bace

Unfolding

 \exists has-child.Male $\sqcap \exists$ has-child.Female $\sqsubseteq \exists$ has-child.(Male $\sqcap \exists$ Female)

- Reduction to unsatisfiability
 Is
 ∃has-child.Male □ ∃has-child.Female□
 ¬(∃has-child.(Male □ Female))
 unsatisfiable?
- Negation normal form (move negations inside): ∃has-child.Male □ ∃has-child.Female□ ∀has-child.(¬Male □ ¬Female)
- Try to construct a model

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Tableau
Subsumption
Method
Example
Reductions:
Unfolding &
Unsatisfiability
Model
Construction

Constraint Systems Transforming Constraint Systems

Unfolding

 \exists has-child.Male \sqcap \exists has-child.Female \sqsubseteq \exists has-child.(Male \sqcap Female)

- Reduction to unsatisfiability
 ls
 Has-child.Male □ Has-child.Female□
 ¬(∃has-child.(Male □ Female))
 unsatisfiable?
- Negation normal form (move negations inside): ∃has-child.Male □ ∃has-child.Female□ ∀has-child.(¬Male □ ¬Female)
- Try to construct a model

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Tableau
Subsumption
Method
Example
Reductions:
Unfolding &
Unsatisfiability
Model
Construction

Constraint Systems Fransforming Constraint Systems

Soundness and Completeness Space Complexity ABox Reasoning

Assumption: There exists an object x in the interpretation of our concept:

$$x \in (\exists \ldots)^{\mathcal{I}}$$

② This implies that x is in the interpretation of all conjuncts:

$$x \in (\exists \mathtt{has-child.Male})^{\mathcal{I}} \\ x \in (\exists \mathtt{has-child.Female})^{\mathcal{I}}$$

 $x \ \in \ ig(orall \mathsf{has} ext{-child.} ig(
eg \mathsf{Male} \sqcup
eg \mathsf{Female} ig)^T$

① This implies that there should be objects y and z such that $(x,y) \in \mathtt{has-child}^{\mathcal{I}}$, $(x,z) \in \mathtt{has-child}^{\mathcal{I}}$, $y \in \mathtt{Male}^{\mathcal{I}}$ and $z \in \mathtt{Female}^{\mathcal{I}}$ and ...

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Tableau
Subsumption
Method
Example
Reductions:
Unfolding &
Unsatisfiability
Model

Construction
Equivalences & NNF
Constraint

Systems
Transforming
Constraint
Systems

oundness an ompleteness oace omplexity

Assumption: There exists an object x in the interpretation of our concept:

$$x \in (\exists \ldots)^{\mathcal{I}}$$

f Q This implies that x is in the interpretation of all conjuncts:

$$x \in (\exists \mathtt{has-child.Male})^{\mathcal{I}}$$
 $x \in (\exists \mathtt{has-child.Female})^{\mathcal{I}}$

$$x \ \in \ \left(\forall \mathtt{has-child}. \big(\neg \mathtt{Male} \sqcup \neg \mathtt{Female} \big) \right)^{\mathcal{I}}$$

This implies that there should be objects y and z such that $(x,y) \in \mathtt{has-child}^{\mathcal{I}}$, $(x,z) \in \mathtt{has-child}^{\mathcal{I}}$, $y \in \mathtt{Male}^{\mathcal{I}}$ and $z \in \mathtt{Female}^{\mathcal{I}}$ and ...

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Subsumption
Method
Example
Reductions:
Unfolding &
Unsatisfiability
Model
Construction
Equivalences &

Constraint Systems Transforming Constraint Systems Invariances

Soundness and Completeness Space Complexity ABox Reasoning

Assumption: There exists an object x in the interpretation of our concept:

$$x \in (\exists \ldots)^{\mathcal{I}}$$

f Q This implies that x is in the interpretation of all conjuncts:

$$x \in (\exists \mathtt{has-child.Male})^{\mathcal{I}} \\ x \in (\exists \mathtt{has-child.Female})^{\mathcal{I}}$$

$$x \ \in \ \left(\forall \mathtt{has-child}. \big(\neg \mathtt{Male} \sqcup \neg \mathtt{Female} \big) \right)^{\mathcal{I}}$$

③ This implies that there should be objects y and z such that $(x,y) \in \text{has-child}^{\mathcal{I}}$, $(x,z) \in \text{has-child}^{\mathcal{I}}$, $y \in \text{Male}^{\mathcal{I}}$ and $z \in \text{Female}^{\mathcal{I}}$ and . . .

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Subsumption
Method
Example
Reductions:
Unfolding &
Unsatisfiability
Model
Construction
Equivalences &

Constraint Systems Transforming Constraint Systems Invariances

Soundness and Completeness Space Complexity ABox Reasoning

Assumption: There exists an object x in the interpretation of our concept:

$$x \in (\exists \ldots)^{\mathcal{I}}$$

f Q This implies that x is in the interpretation of all conjuncts:

$$x \in (\exists \mathtt{has-child.Male})^{\mathcal{I}}$$
 $x \in (\exists \mathtt{has-child.Female})^{\mathcal{I}}$

$$x \ \in \ \left(\forall \mathtt{has-child}. \big(\neg \mathtt{Male} \sqcup \neg \mathtt{Female} \big) \right)^{\mathcal{I}}$$

③ This implies that there should be objects y and z such that $(x,y) \in \text{has-child}^{\mathcal{I}}$, $(x,z) \in \text{has-child}^{\mathcal{I}}$, $y \in \text{Male}^{\mathcal{I}}$ and $z \in \text{Female}^{\mathcal{I}}$ and

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Subsumption
Method
Example
Reductions:
Unfolding &
Unsatisfiability
Model
Construction
Equivalences &

Constraint Systems Transforming Constraint Systems Invariances Soundness and

Assumption: There exists an object x in the interpretation of our concept:

$$x \in (\exists \ldots)^{\mathcal{I}}$$

f Q This implies that x is in the interpretation of all conjuncts:

$$x \in (\exists \mathtt{has-child.Male})^{\mathcal{I}}$$

 $x \in (\exists \mathtt{has-child.Female})^{\mathcal{I}}$

$$x \ \in \ \left(\forall \mathtt{has-child}. \big(\neg \mathtt{Male} \sqcup \neg \mathtt{Female} \big) \right)^{\mathcal{I}}$$

③ This implies that there should be objects y and z such that $(x,y) \in \text{has-child}^{\mathcal{I}}$, $(x,z) \in \text{has-child}^{\mathcal{I}}$, $y \in \text{Male}^{\mathcal{I}}$ and $z \in \text{Female}^{\mathcal{I}}$ and . . .

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Subsumption
Wethod
Example
Reductions:
Unfolding &
Unsatisfiability
Model
Construction
Equivalences &

Constraint Systems Transforming Constraint Systems Invariances Soundness and

 $x: \exists \mathtt{has-child.Male} \ x: \exists \mathtt{has-child.Female}$

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example
Reductions:
Unfolding &
Unsatisfiability
Model

Model Construction Equivalences & NNF

Constraint Systems Transforming Constraint Systems

Invariances Soundness and Completeness c----

 $x: \exists has-child.Male$ $x: \exists has-child.Female$

 $x: \forall \mathtt{has-child}.(\neg \mathtt{Male} \sqcup \neg \mathtt{Female})$

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method Example

Unfolding & Unsatisfiability Model Construction

Construction Equivalences NNF

Constraint Systems Transforming Constraint Systems

Invariances Soundness an Completeness Space

 $x: \exists has-child.Male$ $x: \exists has-child.Female$

 $x: \forall \mathtt{has-child}.(\neg \mathtt{Male} \sqcup \neg \mathtt{Female})$

y : $\neg \texttt{Male}$

KRR

Nebel, Helmert, Wölfl

iviotivation

Structural Subsumption Algorithms

Tableau Subsumption Method Example

Unsatisfiability
Model
Construction

Constructio Equivalence NNF

Systems
Transformin
Constraint
Systems

Invariances Soundness

Model Construction (5)

 $x: \exists \mathtt{has-child.Male}$ $x: \exists \mathtt{has-child.Female}$

 $x: \forall \mathtt{has-child}.(\neg \mathtt{Male} \sqcup \neg \mathtt{Female})$

 $y: \neg \texttt{Female}$ $z: \neg \texttt{Male}$

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method Example Reductions: Unfolding &

Model Construction Equivalences

Equivalences NNF Constraint

Systems
Transformin
Constraint
Systems

Invariances Soundness

Space Complexity ABox Reasoning

→ Model constructed!

Model Construction (5)

 $x: \exists \mathtt{has-child.Male}$ $x: \exists \mathtt{has-child.Female}$

 $x: \forall \mathtt{has-child.}(\neg \mathtt{Male} \sqcup \neg \mathtt{Female})$

 $y: \neg \texttt{Female}$ $z: \neg \texttt{Male}$

KRR

Nebel, Helmert, Wölfl

iviotivation

Structural Subsumption Algorithms

Tableau Subsumption Method Example Reductions: Unfolding &

Model Construction Equivalences

Constraint Systems Transforming Constraint

Invariances Soundness a Completene

Space Complexity ABox Reasoning

→ Model constructed!

$C \equiv D$ iff $C \sqsubseteq D$ and $D \sqsubseteq C$.

Now we have the following equivalences:

$$\neg(C \sqcap D) \equiv \neg C \sqcup \neg D$$

$$\neg(C \sqcup D) \equiv \neg C \sqcap \neg D$$

$$\neg \neg C \equiv C$$

$$\neg(\forall r.C) \equiv \exists r. \neg C$$

$$\neg(\exists r.C) \equiv \forall r. \neg C$$

These equivalences can be used to move all negations signs to the inside, resulting in concept description where only concept names are negated: **negation normal form (NNF)**

Theorem (NNF)

The negation normal form of an ACC concept can be computed in polynomial time.

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method Example Reductions: Unfolding & Unsatificability

Model Construction Equivalences & NNF

Systems Transforming

variances

$$C \equiv D$$
 iff $C \sqsubseteq D$ and $D \sqsubseteq C$.

Now we have the following equivalences:

$$\neg(C \sqcap D) \equiv \neg C \sqcup \neg D$$

$$\neg(C \sqcup D) \equiv \neg C \sqcap \neg D$$

$$\neg \neg C \equiv C$$

$$\neg(\forall r.C) \equiv \exists r. \neg C$$

$$\neg(\exists r.C) \equiv \forall r. \neg C$$

These equivalences can be used to move all negations signs to the inside, resulting in concept description where only concept names are negated: negation normal form (NNF)

Theorem (NNF)

The negation normal form of an ALC concept can be computed in polynomial time.

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Tableau
Subsumption
Method
Example
Reductions:
Unfolding &
Unsatisfiability
Model
Construction

Equivalences & NNF
Constraint
Systems

ransforming onstraint ystems ivariances

variances oundness and ompleteness

$$C \equiv D$$
 iff $C \sqsubseteq D$ and $D \sqsubseteq C$.

Now we have the following equivalences:

$$\neg(C \sqcap D) \equiv \neg C \sqcup \neg D$$

$$\neg(C \sqcup D) \equiv \neg C \sqcap \neg D$$

$$\neg \neg C \equiv C$$

$$\neg(\forall r.C) \equiv \exists r. \neg C$$

$$\neg(\exists r.C) \equiv \forall r. \neg C$$

These equivalences can be used to move all negations signs to the inside, resulting in concept description where only concept names are negated: negation normal form (NNF)

Theorem (NNF)

The negation normal form of an ALC concept can be computed in polynomial time.

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Tableau
Subsumption
Method
Example
Reductions:
Unfolding &
Unsatisfiability
Model
Construction

Equivalences & NNF
Constraint
Systems

ransforming onstraint ystems ivariances

variances oundness and ompleteness

$$C \equiv D$$
 iff $C \sqsubseteq D$ and $D \sqsubseteq C$.

Now we have the following equivalences:

$$\neg(C \sqcap D) \equiv \neg C \sqcup \neg D$$

$$\neg(C \sqcup D) \equiv \neg C \sqcap \neg D$$

$$\neg \neg C \equiv C$$

$$\neg(\forall r.C) \equiv \exists r. \neg C$$

$$\neg(\exists r.C) \equiv \forall r. \neg C$$

These equivalences can be used to move all negations signs to the inside, resulting in concept description where only concept names are negated: negation normal form (NNF)

Theorem (NNF)

The negation normal form of an ALC concept can be computed in polynomial time.

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Tableau
Subsumption
Method
Example
Reductions:
Unfolding &
Unsatisfiability
Model
Construction

Equivalences & NNF
Constraint
Systems

ransforming onstraint ystems ivariances

variances oundness and ompleteness

$$C \equiv D$$
 iff $C \sqsubseteq D$ and $D \sqsubseteq C$.

Now we have the following equivalences:

$$\neg(C \sqcap D) \equiv \neg C \sqcup \neg D$$

$$\neg(C \sqcup D) \equiv \neg C \sqcap \neg D$$

$$\neg \neg C \equiv C$$

$$\neg(\forall r.C) \equiv \exists r. \neg C$$

$$\neg(\exists r.C) \equiv \forall r. \neg C$$

These equivalences can be used to move all negations signs to the inside, resulting in concept description where only concept names are negated: negation normal form (NNF)

Theorem (NNF)

The negation normal form of an ALC concept can be computed in polynomial time.

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Tableau
Subsumption
Method
Example
Reductions:
Unfolding &
Unsatisfiability
Model
Construction

Equivalences & NNF
Constraint
Systems

onstraint vstems variances

$$C \equiv D$$
 iff $C \sqsubseteq D$ and $D \sqsubseteq C$.

Now we have the following equivalences:

$$\neg(C \sqcap D) \equiv \neg C \sqcup \neg D$$

$$\neg(C \sqcup D) \equiv \neg C \sqcap \neg D$$

$$\neg \neg C \equiv C$$

$$\neg(\forall r.C) \equiv \exists r. \neg C$$

$$\neg(\exists r.C) \equiv \forall r. \neg C$$

These equivalences can be used to move all negations signs to the inside, resulting in concept description where only concept names are negated: negation normal form (NNF)

Theorem (NNF)

The negation normal form of an ALC concept can be computed in polynomial time.

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Tableau
Subsumption
Method
Example
Reductions:
Unfolding &
Unsatisfiability
Model
Construction

Equivalences & NNF
Constraint
Systems

onstraint vstems variances

$$C \equiv D$$
 iff $C \sqsubseteq D$ and $D \sqsubseteq C$.

Now we have the following equivalences:

$$\neg(C \sqcap D) \equiv \neg C \sqcup \neg D$$

$$\neg(C \sqcup D) \equiv \neg C \sqcap \neg D$$

$$\neg \neg C \equiv C$$

$$\neg(\forall r.C) \equiv \exists r. \neg C$$

$$\neg(\exists r.C) \equiv \forall r. \neg C$$

These equivalences can be used to move all negations signs to the inside, resulting in concept description where only concept names are negated: **negation normal form (NNF)**

Theorem (NNF)

The negation normal form of an ALC concept can be computed in polynomial time.

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Tableau
Subsumption
Method
Example
Reductions:
Unfolding &
Unsatisfiability
Model
Construction

Equivalences & NNF
Constraint
Systems

Fransforming Constraint Systems nvariances

variances undness and ompleteness

 $C \equiv D$ iff $C \sqsubseteq D$ and $D \sqsubseteq C$.

Now we have the following equivalences:

$$\neg(C \sqcap D) \equiv \neg C \sqcup \neg D$$

$$\neg(C \sqcup D) \equiv \neg C \sqcap \neg D$$

$$\neg \neg C \equiv C$$

$$\neg(\forall r.C) \equiv \exists r. \neg C$$

$$\neg(\exists r.C) \equiv \forall r. \neg C$$

These equivalences can be used to move all negations signs to the inside, resulting in concept description where only concept names are negated: negation normal form (NNF)

Theorem (NNF)

The negation normal form of an ACC concept can be computed in polynomial time.

KRR

Equivalences &

NNF

ABox Reasoning

A **constraint** is a syntactical object of the form: x:C or xry, where C is a concept description in NNF, r is a role name and x and y are *variable names*.

Let $\mathcal I$ be an interpretation. An $\mathcal I$ -assignment α is a function that maps each variable symbol to an object of the universe $\mathcal D$. A constraint $x \colon C\ (xry)$ is satisfied by an $\mathcal I$ -assignment α , if $\alpha(x) \in C^{\mathcal I}\ ((\alpha(x),\alpha(y)) \in r^{\mathcal I})$.

A constraint system S is a finite, non-empty set of constraints. An \mathcal{I} -assignment α satisfies S if α satisfies each constraint in S. S is **satisfiable** if there exists \mathcal{I} and α such that α satisfies S.

Theorem

An ACC concept C in NNF is satisfiable iff the system $\{x \colon C\}$ is satisfiable.

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Subsumption
Method
Example
Reductions:
Unfolding &
Unsatisfiability
Model
Construction

Constraint Systems Transforming Constraint Systems

variances oundness and ompleteness

A **constraint** is a syntactical object of the form: x: C or xry, where C is a concept description in NNF, r is a role name and x and y are *variable names*.

Let \mathcal{I} be an interpretation. An \mathcal{I} -assignment α is a function that maps each variable symbol to an object of the universe \mathcal{D} .

A constraint x : C(xry) is satisfied by an \mathcal{I} -assignment α , if $\alpha(x) \in C^{\mathcal{I}}((\alpha(x), \alpha(y)) \in r^{\mathcal{I}})$.

A constraint system S is a finite, non-empty set of constraints. An \mathcal{I} -assignment α satisfies S if α satisfies each constraint in S. S is **satisfiable** if there exists \mathcal{I} and α such that α satisfies S.

Theorem

An ACC concept C in NNF is satisfiable iff the system $\{x \colon C\}$ is satisfiable.

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Subsumption
Method
Example
Reductions:
Unfolding &
Unsatisfiability
Model
Construction

Constraint Systems Transforming Constraint Systems

ariances undness and mpleteness

A **constraint** is a syntactical object of the form: x: C or xry, where C is a concept description in NNF, r is a role name and x and y are *variable names*.

Let \mathcal{I} be an interpretation. An \mathcal{I} -assignment α is a function that maps each variable symbol to an object of the universe \mathcal{D} . A *constraint* $x \colon C$ (xry) is **satisfied** by an \mathcal{I} -assignment α , if $\alpha(x) \in C^{\mathcal{I}}$ $((\alpha(x), \alpha(y)) \in r^{\mathcal{I}})$.

A constraint system S is a finite, non-empty set of constraints. An \mathcal{I} -assignment α satisfies S if α satisfies each constraint in S. S is **satisfiable** if there exists \mathcal{I} and α such that α satisfies S.

Theorem

An ALC concept C in NNF is satisfiable iff the system $\{x \colon C\}$ is satisfiable.

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Subsumption
Method
Example
Reductions:
Unfolding &
Unsatisfiability
Model
Construction

Constraint Systems Transforming Constraint

Invariances
Soundness and
Completeness

A **constraint** is a syntactical object of the form: x: C or xry, where C is a concept description in NNF, r is a role name and x and y are *variable names*.

Let $\mathcal I$ be an interpretation. An $\mathcal I$ -assignment α is a function that maps each variable symbol to an object of the universe $\mathcal D$. A constraint $x \colon C$ (xry) is satisfied by an $\mathcal I$ -assignment α , if $\alpha(x) \in C^{\mathcal I}$ $((\alpha(x), \alpha(y)) \in r^{\mathcal I})$.

A constraint system S is a finite, non-empty set of constraints. An \mathcal{I} -assignment α satisfies S if α satisfies each constraint in S. S is satisfiable if there exists \mathcal{I} and α such that α satisfies S.

Theorem

An ACC concept C in NNF is satisfiable iff the system $\{x \colon C\}$ is satisfiable.

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Subsumption
Method
Example
Reductions:
Unfolding &
Unsatisfiability
Model
Construction

Constraint Systems Transforming Constraint Systems

Invariances Soundness and Completeness

A **constraint** is a syntactical object of the form: x: C or xry, where C is a concept description in NNF, r is a role name and x and y are *variable names*.

Let \mathcal{I} be an interpretation. An \mathcal{I} -assignment α is a function that maps each variable symbol to an object of the universe \mathcal{D} . A *constraint* $x \colon C$ (xry) is **satisfied** by an \mathcal{I} -assignment α , if $\alpha(x) \in C^{\mathcal{I}}$ $((\alpha(x), \alpha(y)) \in r^{\mathcal{I}})$.

A constraint system S is a finite, non-empty set of constraints. An \mathcal{I} -assignment α satisfies S if α satisfies each constraint in S. S is satisfiable if there exists \mathcal{I} and α such that α satisfies S.

Theorem

An \mathcal{ALC} concept C in NNF is satisfiable iff the system $\{x\colon C\}$ is satisfiable.

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Method

Example

Reductions:
Unfolding &
Unsatisfiability
Model
Construction

Constraint Systems Transforming Constraint

Invariances
Soundness and
Completeness

A **constraint** is a syntactical object of the form: x:C or xry, where C is a concept description in NNF, r is a role name and x and y are *variable names*.

Let \mathcal{I} be an interpretation. An \mathcal{I} -assignment α is a function that maps each variable symbol to an object of the universe \mathcal{D} . A *constraint* $x \colon C$ (xry) is **satisfied** by an \mathcal{I} -assignment α , if $\alpha(x) \in C^{\mathcal{I}}$ $((\alpha(x), \alpha(y)) \in r^{\mathcal{I}})$.

A constraint system S is a finite, non-empty set of constraints. An \mathcal{I} -assignment α satisfies S if α satisfies each constraint in S. S is **satisfiable** if there exists \mathcal{I} and α such that α satisfies S.

Theorem

An \mathcal{ALC} concept C in NNF is satisfiable iff the system $\{x \colon C\}$ is satisfiable.

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Subsumption
Method
Example
Reductions:
Unfolding &
Unsatisfiability
Model
Construction

Constraint Systems Transforming Constraint Systems

Invariances Soundness and Completeness Space

Transformation rules:

- $\bullet \quad S \to_{\sqcap} \{x \colon C_1, x \colon C_2\} \cup S$ if $(x \colon C_1 \sqcap C_2) \in S$ and either $(x \colon C_1)$ or $(x \colon C_2)$ or both are not in S.
- ③ $S \rightarrow_{\exists} \{xry, y : C\} \cup S$ if $(x : \exists r.C) \in S$, y is a *fresh variable*, and there is no zs.t. $(xrz) \in S$ and $(z : C) \in S$.

Deterministic rules (1,3,4) vs. non-deterministic (2).

Generating rules (3) vs. non-generating (1,2,4).

KRR

Nebel, Helmert, Wölfl

MOLIVATION

Structural Subsumption Algorithms

Tableau Subsumption Method Example Reductions: Unfolding & Unsatisfiability Model Construction Equivalences &

Constraint Systems Transforming Constraint Systems

Transformation rules:

- $\begin{array}{l} \bullet \quad S \rightarrow_{\sqcap} \{x \colon C_1, x \colon C_2\} \cup S \\ \text{if } (x \colon C_1 \sqcap C_2) \in S \text{ and either } (x \colon C_1) \text{ or } (x \colon C_2) \text{ or both are not in } S. \end{array}$
- $\begin{array}{l} \textbf{ } & S \rightarrow_{\sqcup} \{x \colon D\} \cup S \\ & \text{ if } (x \colon C_1 \sqcup C_2) \in S \text{ and neither } (x \colon C_1) \in S \text{ nor } \\ & (x \colon C_2) \in S \text{ and } D = C_1 \text{ or } D = C_2. \end{array}$
- ③ $S \rightarrow_{\exists} \{xry, y : C\} \cup S$ if $(x : \exists r.C) \in S$, y is a *fresh variable*, and there is no zs.t. $(xrz) \in S$ and $(z : C) \in S$.

Deterministic rules (1,3,4) vs. non-deterministic (2).

Generating rules (3) vs. non-generating (1,2,4).

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method Example Reductions: Unfolding & Unsatisfiability Model Construction

Systems
Transforming
Constraint
Systems

Transformation rules:

- $\bullet S \to_{\sqcap} \{x \colon C_1, x \colon C_2\} \cup S$ if $(x \colon C_1 \sqcap C_2) \in S$ and either $(x \colon C_1)$ or $(x \colon C_2)$ or both are not in S.
- $\begin{array}{l} \textbf{ } & S \rightarrow_{\sqcup} \{x \colon D\} \cup S \\ & \text{ if } (x \colon C_1 \sqcup C_2) \in S \text{ and neither } (x \colon C_1) \in S \text{ nor } \\ & (x \colon C_2) \in S \text{ and } D = C_1 \text{ or } D = C_2. \end{array}$
- **③** $S \rightarrow_{\exists} \{xry, y : C\} \cup S$ if $(x : \exists r.C) \in S$, y is a *fresh variable*, and there is no z s.t. $(xrz) \in S$ and $(z : C) \in S$.

Deterministic rules (1,3,4) vs. non-deterministic (2).

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Tableau
Subsumption
Method
Example
Reductions:
Unfolding &
Unsatisfiability
Model
Construction

Constraint Systems Transforming Constraint Systems

Transformation rules:

- $\bullet \quad S \to_{\sqcap} \{x \colon C_1, x \colon C_2\} \cup S$ if $(x \colon C_1 \sqcap C_2) \in S$ and either $(x \colon C_1)$ or $(x \colon C_2)$ or both are not in S.
- $\begin{array}{l} \textbf{ } & S \rightarrow_{\sqcup} \{x \colon D\} \cup S \\ & \text{ if } (x \colon C_1 \sqcup C_2) \in S \text{ and neither } (x \colon C_1) \in S \text{ nor } \\ & (x \colon C_2) \in S \text{ and } D = C_1 \text{ or } D = C_2. \end{array}$
- **③** $S \rightarrow_{\exists} \{xry, y : C\} \cup S$ if $(x : \exists r.C) \in S$, y is a *fresh variable*, and there is no z s.t. $(xrz) \in S$ and $(z : C) \in S$.

Deterministic rules (1,3,4) vs. non-deterministic (2).

Generating rules (3) vs. non-generating (1,2,4).

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Tableau
Subsumption
Method
Example
Reductions:
Unfolding &
Unsatisfiability
Model
Construction

Constraint Systems Transforming Constraint Systems

nvariances Soundness and Completeness Space

ABox Reasoning

Transformation rules:

- $\bullet \quad S \to_{\sqcap} \{x \colon C_1, x \colon C_2\} \cup S$ if $(x \colon C_1 \sqcap C_2) \in S$ and either $(x \colon C_1)$ or $(x \colon C_2)$ or both are not in S.
- $\begin{array}{l} \textbf{ } & S \rightarrow_{\sqcup} \{x \colon D\} \cup S \\ & \text{ if } (x \colon C_1 \sqcup C_2) \in S \text{ and neither } (x \colon C_1) \in S \text{ nor } \\ & (x \colon C_2) \in S \text{ and } D = C_1 \text{ or } D = C_2. \end{array}$
- **③** $S \rightarrow_{\exists} \{xry, y : C\} \cup S$ if $(x : \exists r.C) \in S$, y is a *fresh variable*, and there is no z s.t. $(xrz) \in S$ and $(z : C) \in S$.

Deterministic rules (1,3,4) vs. non-deterministic (2).

Generating rules (3) vs. non-generating (1,2,4).

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Tableau
Subsumption
Method
Example
Reductions:
Unfolding &
Unsatisfiability
Model
Construction

Constraint Systems Transforming Constraint Systems

nvariances Soundness and Completeness Space

ABox Reasoning

Transformation rules

- $\begin{array}{l} \bullet \quad S \rightarrow_{\sqcap} \{x \colon C_1, x \colon C_2\} \cup S \\ \text{if } (x \colon C_1 \sqcap C_2) \in S \text{ and either } (x \colon C_1) \text{ or } (x \colon C_2) \text{ or both are not in } S. \end{array}$
- $\begin{array}{l} \textbf{ } & S \rightarrow_{\sqcup} \{x \colon D\} \cup S \\ & \text{ if } (x \colon C_1 \sqcup C_2) \in S \text{ and neither } (x \colon C_1) \in S \text{ nor } \\ & (x \colon C_2) \in S \text{ and } D = C_1 \text{ or } D = C_2. \end{array}$
- **③** $S \rightarrow_\exists \{xry, y : C\} \cup S$ if $(x : \exists r.C) \in S$, y is a *fresh variable*, and there is no z s.t. $(xrz) \in S$ and $(z : C) \in S$.

Deterministic rules (1,3,4) vs. non-deterministic (2). Generating rules (3) vs. non-generating (1,2,4).

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Tableau
Subsumption
Method
Example
Reductions:
Unfolding &
Unsatisfiability
Model
Construction

Constraint Systems Transforming Constraint Systems

Tableau Method (4): Invariances

Theorem (Invariance)

Let S and T be constraint systems:

- If T has been generated by applying a deterministic rule to S, then S is satisfiable iff T is satisfiable.
- ② If T has been generated by applying a non-deterministic rule to S, then S is satisfiable if T is satisfiable. Furthermore, if a non-deterministic rule can be applied to S, then it can be applied such that S is satisfiable iff the resulting system T is satisfiable.

Theorem (Termination)

Let C be an \mathcal{ALC} concept description in NNF. Then there exists no infinite chain of transformations starting from the constraint system $\{x\colon C\}$.

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Tableau
Subsumption
Method
Example
Reductions:
Unfolding &
Unsatisfiability

onstraint ystems

Transforming Constraint Systems Invariances

Invariances Soundness and Completeness

Tableau Method (4): Invariances

Theorem (Invariance)

Let S and T be constraint systems:

- If T has been generated by applying a deterministic rule to S, then S is satisfiable iff T is satisfiable.
- If T has been generated by applying a non-deterministic rule to S, then S is satisfiable if T is satisfiable. Furthermore, if a non-deterministic rule can be applied to S, then it can be applied such that S is satisfiable iff the resulting system T is satisfiable.

Theorem (Termination)

Let C be an \mathcal{ALC} concept description in NNF. Then there exists no infinite chain of transformations starting from the constraint system $\{x\colon C\}$.

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Reductions: Unfolding & Unsatisfiability

Constraint Systems

Transforming Constraint Systems Invariances Soundness and

Tableau Method (4): Invariances

Theorem (Invariance)

Let S and T be constraint systems:

- If T has been generated by applying a deterministic rule to S, then S is satisfiable iff T is satisfiable.
- If T has been generated by applying a non-deterministic rule to S, then S is satisfiable if T is satisfiable. Furthermore, if a non-deterministic rule can be applied to S, then it can be applied such that S is satisfiable iff the resulting system T is satisfiable.

Theorem (Termination)

Let C be an \mathcal{ACC} concept description in NNF. Then there exists no infinite chain of transformations starting from the constraint system $\{x\colon C\}$.

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Tableau Subsumptic Method

Reductions: Unfolding & Unsatisfiability Model Construction

Constraint Systems Transforming

Constraint Systems Invariances Soundness and

A constraint system is called **closed** if no transformation rule can be applied.

A **clash** is a pair of constraints of the form $x \colon A$ and $x \colon \neg A$, where A is a concept name.

Theorem (Soundness and Completeness)

A closed constraint system is satisfiable iff it does not contain a clash.

Proof idea

 \Rightarrow : obvious. \Leftarrow : Construct a model by using the concept labels.

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example Reductions: Unfolding & Unsatisfiabilit

Unfolding & Unsatisfiability Model Construction

onstraint

Transforming Constraint Systems

Soundness and Completeness

A constraint system is called **closed** if no transformation rule can be applied.

A **clash** is a pair of constraints of the form $x \colon A$ and $x \colon \neg A$, where A is a concept name.

Theorem (Soundness and Completeness)

A closed constraint system is satisfiable iff it does not contain a clash.

Proof idea

 \Rightarrow : obvious. \Leftarrow : Construct a model by using the concept labels.

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method Example

Reductions: Unfolding & Unsatisfiability Model Construction

Constraint Systems Transformir

Transforming Constraint Systems

Soundness and Completeness

A constraint system is called **closed** if no transformation rule can be applied.

A **clash** is a pair of constraints of the form $x \colon A$ and $x \colon \neg A$, where A is a concept name.

Theorem (Soundness and Completeness)

A closed constraint system is satisfiable iff it does not contain a clash.

Proof idea

 \Rightarrow : obvious. \Leftarrow : Construct a model by using the concept labels.

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Reductions: Unfolding & Unsatisfiability Model Construction

Constraint Systems

Transforming Constraint Systems

Invariances
Soundness and
Completeness

A constraint system is called **closed** if no transformation rule can be applied.

A **clash** is a pair of constraints of the form $x \colon A$ and $x \colon \neg A$, where A is a concept name.

Theorem (Soundness and Completeness)

A closed constraint system is satisfiable iff it does not contain a clash.

Proof idea.

 \Rightarrow : obvious. \Leftarrow : Construct a model by using the concept labels.

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Subsumption Method Example

Reductions: Unfolding & Unsatisfiability Model Construction

> onstraint ystems ransforming

Constraint Systems

Soundness and Completeness

Because the tableau method is *non-deterministic* (\rightarrow_{\square} rule) ... there could be exponentially many closed constraint systems in the end.

Interestingly, even one constraint system can have *exponential size*.

Example

$$\exists r.A \sqcap \exists r.B \sqcap$$

$$\forall r. \Big(\exists r.A \sqcap \exists r.B \sqcap$$

$$\forall r. \big(\exists r.A \sqcap \exists r.B \sqcap$$

$$\forall r. (\exists r.A \sqcap \exists r.B \sqcap$$

However: One can modify the algorithm so that it needs only poly. space.

Idea: Generating a y only for one $\exists r.C$ and then proceeding into the depth.

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Subsumption
Method
Example
Reductions:
Unfolding &
Unsatisfiability
Model
Construction
Equivalences &

Systems
Transforming
Constraint
Systems

oundness and completeness

Because the tableau method is *non-deterministic* (\rightarrow_{\sqcup} rule) ... there could be exponentially many closed constraint systems in the end.

Interestingly, even one constraint system can have *exponential size*.

Example

$$\exists r.A \sqcap \exists r.B \sqcap$$
$$\forall r. \Big(\exists r.A \sqcap \exists r.B \sqcap$$
$$\forall r. \big(\exists r.A \sqcap \exists r.B \sqcap$$
$$\forall r. \big(\exists r.A \sqcap \exists r.B \sqcap$$

However: One can modify the algorithm so that it needs only poly. space.

Idea: Generating a y only for one $\exists r.C$ and then proceeding into the depth.

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Subsumption
Method
Example
Reductions:
Unfolding &
Unsatisfiability
Model
Construction
Equivalences &

Systems Transforming Constraint Systems

Soundness and Completeness Space

Because the tableau method is *non-deterministic* (\rightarrow_{\square} rule) . . . there could be exponentially many closed constraint systems in the end.

Interestingly, even one constraint system can have *exponential size*.

Example:

$$\exists r.A \sqcap \exists r.B \sqcap$$

$$\forall r. \Big(\exists r.A \sqcap \exists r.B \sqcap$$

$$\forall r. \big(\exists r.A \sqcap \exists r.B \sqcap$$

$$\forall r. (\exists r.A \sqcap \exists r.B \sqcap$$

However: One can modify the algorithm so that it needs only poly. space.

Idea: Generating a y only for one $\exists r.C$ and then proceeding into the depth.

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Subsumption
Method

Example
Reductions:
Unfolding &
Unsatisfiability
Model
Construction
Equivalences &

Systems
Transforming
Constraint
Systems

nvariances Soundness an

Because the tableau method is *non-deterministic* (\rightarrow_{\square} rule) . . . there could be exponentially many closed constraint systems in the end.

Interestingly, even one constraint system can have *exponential size*.

Example:

$$\exists r.A \sqcap \exists r.B \sqcap$$

$$\forall r. \Big(\exists r.A \sqcap \exists r.B \sqcap$$

$$\forall r. \big(\exists r.A \sqcap \exists r.B \sqcap$$

$$\forall r. (...) \Big) \Big)$$

However: One can modify the algorithm so that it needs only poly. space.

Idea: Generating a y only for one $\exists r.C$ and then proceeding into the depth.

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Subsumption
Method
Example
Reductions:
Unfolding &
Unsatisfiability
Model
Construction

Constraint Systems Transforming Constraint Systems

ivariances oundness and ompleteness

ABox Reasoning

ABox satisfiability can also be decided using the tableau method if we can add constraints of the form $x \neq y$ (for UNA)

- Normalize and unfold and add inequalities for all pairs of objects mentioned in the ABox.
- Strictly speaking, in ALC we do not need this because we are never forced to identify two objects.

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

lableau
Subsumption
Method
Example
Reductions:
Unfolding &
Unsatisfiability
Model
Construction
Equivalences &

Constraint Systems Transforming Constraint Systems Invariances

ABox Reasoning

ABox satisfiability can also be decided using the tableau method if we can add constraints of the form $x \neq y$ (for UNA):

- Normalize and unfold and add inequalities for all pairs of objects mentioned in the ABox.
- Strictly speaking, in ALC we do not need this because we are never forced to identify two objects.

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Subsumption
Method
Example
Reductions:
Unfolding &
Unsatisfiability
Model
Construction

Constraint bystems Fransforming Constraint bystems

Completeness
Space
Complexity
ABox Reasoning

ABox Reasoning

ABox satisfiability can also be decided using the tableau method if we can add constraints of the form $x \neq y$ (for *UNA*):

- Normalize and unfold and add inequalities for all pairs of objects mentioned in the ABox.
- Strictly speaking, in ACC we do not need this because we are never forced to identify two objects.

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Subsumption
Method
Example
Reductions:
Unfolding &
Unsatisfiability
Model
Construction

onstraint ystems ransforming onstraint ystems

Literature

- Hector J. Levesque and Ronald J. Brachman. Expressiveness and tractability in knowledge representation and reasoning. *Computational Intelligence*, 3:78–93, 1987.
- Manfred Schmidt-Schauß and Gert Smolka. Attributive concept descriptions with complements. *Artificial Intelligence*, 48:1–26, 1991
- Bernhard Hollunder and Werner Nutt. Subsumption Algorithms for Concept Languages. DFKI Research Report RR-90-04. DFKI, Saarbrücken, 1990. Revised version of paper that was published at ECAI-90.
- F. Baader and U. Sattler. An Overview of Tableau Algorithms for Description Logics. *Studia Logica*, 69:5-40, 2001.
- I. Horrocks, U. Sattler, and S. Tobies. Practical Reasoning for Very Expressive Description Logics. *Logic Journal of the IGPL*, 8(3):239-264, May 2000.

KRR

Nebel, Helmert, Wölfl

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Literature