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Reasoning Problems & Algorithms

Satisfiability or subsumption of concept descriptions

Satisfiability or instance relation in ABoxes

Structural subsumption algorithms
◦ Normalization of concept descriptions and structural

comparison
◦ very fast, but can only be used for small DLs

Tableau algorithms
◦ Similar to modal tableau methods
◦ Meanwhile the method of choice
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Structural Subsumption Algorithms

Small Logic FL−
◦ C uD
◦ ∀r.C
◦ ∃r (simple existential quantification)

Idea
1 In the conjunction, collect all universally quantified

expressions (also called value restrictions) with the same
role and build complex value restriction:

∀r.C u ∀r.D → ∀r.(C uD).

2 Compare all conjuncts with each other. For each conjunct
in the subsuming concept there should be a corresponding
one in the subsumed one.
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Example

D = Human u ∃has-child u ∀has-child.Human u
∀has-child.∃has-child

C = Human u Female u ∃has-child u
∀has-child.(Human u Female u ∃has-child)

Check: C v D
1 Collect value restrictions in D:
. . . ∀has-child.(Human u ∃has-child)

2 Compare:
1 For Human in D, we have Human in C
2 For ∃has-child in D, we have . . .
3 For ∀has-child.(. . . ) in D, we have . . .

1 For Human . . .
2 For ∃has-child . . .

 C is subsumed by D!
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Subsumption Algorithm

SUB(C,D) algorithm:

1 Reorder terms (commutativity, associativity and value
restriction law):

C = uAi uu∃rj uu∀rk : Ck

D = uBl uu∃sm uu∀sn : Dn

2 For each Bl in D, is there an Ai in C with Ai = Bl?

3 For each ∃sm in D, is there an ∃rj in C with sm = rj?

4 For each ∀sn : Dn in D, is there a ∀rk : Ck in C such that
Ck v Dn and sn = rk?

 C v D iff all questions are answered positively



KRR

Nebel,
Helmert,

Wölfl

Motivation

Structural
Subsumption
Algorithms

Idea

Example

Algorithm

Soundness

Completeness

Generalizations

ABox Reasoning

Tableau
Subsumption
Method

Literature

Subsumption Algorithm

SUB(C,D) algorithm:

1 Reorder terms (commutativity, associativity and value
restriction law):

C = uAi uu∃rj uu∀rk : Ck

D = uBl uu∃sm uu∀sn : Dn

2 For each Bl in D, is there an Ai in C with Ai = Bl?

3 For each ∃sm in D, is there an ∃rj in C with sm = rj?

4 For each ∀sn : Dn in D, is there a ∀rk : Ck in C such that
Ck v Dn and sn = rk?

 C v D iff all questions are answered positively



KRR

Nebel,
Helmert,

Wölfl

Motivation

Structural
Subsumption
Algorithms

Idea

Example

Algorithm

Soundness

Completeness

Generalizations

ABox Reasoning

Tableau
Subsumption
Method

Literature

Subsumption Algorithm

SUB(C,D) algorithm:

1 Reorder terms (commutativity, associativity and value
restriction law):

C = uAi uu∃rj uu∀rk : Ck

D = uBl uu∃sm uu∀sn : Dn

2 For each Bl in D, is there an Ai in C with Ai = Bl?

3 For each ∃sm in D, is there an ∃rj in C with sm = rj?

4 For each ∀sn : Dn in D, is there a ∀rk : Ck in C such that
Ck v Dn and sn = rk?

 C v D iff all questions are answered positively



KRR

Nebel,
Helmert,

Wölfl

Motivation

Structural
Subsumption
Algorithms

Idea

Example

Algorithm

Soundness

Completeness

Generalizations

ABox Reasoning

Tableau
Subsumption
Method

Literature

Subsumption Algorithm

SUB(C,D) algorithm:

1 Reorder terms (commutativity, associativity and value
restriction law):

C = uAi uu∃rj uu∀rk : Ck

D = uBl uu∃sm uu∀sn : Dn

2 For each Bl in D, is there an Ai in C with Ai = Bl?

3 For each ∃sm in D, is there an ∃rj in C with sm = rj?

4 For each ∀sn : Dn in D, is there a ∀rk : Ck in C such that
Ck v Dn and sn = rk?

 C v D iff all questions are answered positively



KRR

Nebel,
Helmert,

Wölfl

Motivation

Structural
Subsumption
Algorithms

Idea

Example

Algorithm

Soundness

Completeness

Generalizations

ABox Reasoning

Tableau
Subsumption
Method

Literature

Subsumption Algorithm

SUB(C,D) algorithm:

1 Reorder terms (commutativity, associativity and value
restriction law):

C = uAi uu∃rj uu∀rk : Ck

D = uBl uu∃sm uu∀sn : Dn

2 For each Bl in D, is there an Ai in C with Ai = Bl?

3 For each ∃sm in D, is there an ∃rj in C with sm = rj?

4 For each ∀sn : Dn in D, is there a ∀rk : Ck in C such that
Ck v Dn and sn = rk?

 C v D iff all questions are answered positively



KRR

Nebel,
Helmert,

Wölfl

Motivation

Structural
Subsumption
Algorithms

Idea

Example

Algorithm

Soundness

Completeness

Generalizations

ABox Reasoning

Tableau
Subsumption
Method

Literature

Soundness

Theorem (Soundness)

SUB(C,D)⇒ C v D

Proof sketch.

Reordering of terms (1):

a) Commutativity and associativity are trivial

b) Value restriction law. We show:
`
∀r.(C uD)

´I
=

`
∀r.C u ∀r.D

´I
Assumption: d ∈

`
∀r.(C uD)

´I
Case 1: 6 ∃e : (d, e) ∈ rI

√

Case 2: ∃e : (d, e) ∈ rI ⇒ e ∈ (C uD)I ⇒ e ∈ CI , e ∈ DI

Since e is arbitrary: d ∈ (∀r.C)I , d ∈ (∀r.D)I then
d must also be conjunction, i.e.,`
∀r.(C uD)

´I ⊆ (∀r.C u ∀r.D)I

Other direction is similar

(2+3+4): Induction on the nesting depth of ∀-expressions
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Theorem (Completeness)

C v D ⇒ SUB(C,D)

Proof idea.

One shows the contrapositive:

¬SUB(C,D)⇒ C 6v D

Idea: If one of the rules leads to a negative answer, we use this
to construct an interpretation with a special element d such
that

d ∈ CI , but d 6∈ DI
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Generalizing the Algorithm

Extensions of FL− by

¬A (atomic negation),

(≤ n r), (≥ n r) (cardinality restrictions),

r ◦ s (role composition)

does not lead to any problems.
However: If we use full existential restrictions, then it is very
unlikely that we can come up with a simple structural
subsumption algorithm – having the same flavor as the one
above.
More precisely: There is (most probably) no algorithm that
uses polynomially many reorderings and simplifications and
allows for a simple structural comparison
Reason: Subsumption for FL− + ∃r.C is NP-hard (Nutt).
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ABox Reasoning

Idea: abstraction + classification

Complete ABox by propagating value restrictions to role
fillers

Compute for each object its most specialized concepts

These can then be handled using the ordinary subsumption
algorithm
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Tableau Method

Logic ALC
◦ C uD
◦ C tD
◦ ¬C
◦ ∀r.C
◦ ∃r.C

Idea: Decide (un-)satisfiability of a concept description C
by trying to systematically construct a model for C. If that
is successful, C is satisfiable. Otherwise C is unsatisfiable.
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Example: Subsumption in a TBox

TBox
Hermaphrodite

·
= Male u Female

Parents-of-sons-and-daughters
·
=

∃has-child.Male u ∃has-child.Female
Parents-of-hermaphrodite

·
= ∃has-child.Hermaphrodite

Query
Parents-of-sons-and-daughters vT

Parents-of-hermaphrodites
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Reductions

1 Unfolding
∃has-child.Male u ∃has-child.Female v
∃has-child.(Male u Female)

2 Reduction to unsatisfiability
Is
∃has-child.Male u ∃has-child.Femaleu
¬

(
∃has-child.(Male u Female)

)
unsatisfiable?

3 Negation normal form (move negations inside):
∃has-child.Male u ∃has-child.Femaleu
∀has-child.(¬Male t ¬Female)

4 Try to construct a model
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Model Construction (1)

1 Assumption: There exists an object x in the
interpretation of our concept:

x ∈ (∃ . . .)I

2 This implies that x is in the interpretation of all conjuncts:

x ∈ (∃has-child.Male)I

x ∈ (∃has-child.Female)I

x ∈
(
∀has-child.(¬Male t ¬Female)

)I
3 This implies that there should be objects y and z such

that (x, y) ∈ has-childI , (x, z) ∈ has-childI ,
y ∈ MaleI and z ∈ FemaleI and . . .
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1 Assumption: There exists an object x in the
interpretation of our concept:

x ∈ (∃ . . .)I

2 This implies that x is in the interpretation of all conjuncts:

x ∈ (∃has-child.Male)I

x ∈ (∃has-child.Female)I

x ∈
(
∀has-child.(¬Male t ¬Female)

)I
3 This implies that there should be objects y and z such

that (x, y) ∈ has-childI , (x, z) ∈ has-childI ,
y ∈ MaleI and z ∈ FemaleI and . . .
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Model Construction (2)

x : ∃has-child.Male
x : ∃has-child.Female

Male Female

x

y z

has−child has−child
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Model Construction (3)

x : ∃has-child.Male
x : ∃has-child.Female
x : ∀has-child.(¬Male t ¬Female)

Male Female

x

y z

(¬Male or ¬Female) (¬Male or ¬Female)

has−child has−child
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Model Construction (4)

x : ∃has-child.Male
x : ∃has-child.Female
x : ∀has-child.(¬Male t ¬Female)
y : ¬Male

Male Female

x

y z

(¬Male or ¬Female) (¬Male or ¬Female)

has−child has−child

¬Male
Contradiction
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Model Construction (5)

x : ∃has-child.Male
x : ∃has-child.Female
x : ∀has-child.(¬Male t ¬Female)
y : ¬Female
z : ¬Male

Male Female

x

y z

(¬Male or ¬Female) (¬Male or ¬Female)

has−child has−child

¬Male¬Female

 Model constructed!
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Model Construction (5)

x : ∃has-child.Male
x : ∃has-child.Female
x : ∀has-child.(¬Male t ¬Female)
y : ¬Female
z : ¬Male

Male Female

x

y z

(¬Male or ¬Female) (¬Male or ¬Female)
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 Model constructed!
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Tableau Method (1): NNF

C ≡ D iff C v D and D v C.
Now we have the following equivalences:

¬(C uD) ≡ ¬C t ¬D
¬(C tD) ≡ ¬C u ¬D

¬¬C ≡ C

¬(∀r.C) ≡ ∃r.¬C
¬(∃r.C) ≡ ∀r.¬C

These equivalences can be used to move all negations signs to
the inside, resulting in concept description where only concept
names are negated: negation normal form (NNF)

Theorem (NNF)

The negation normal form of an ALC concept can be computed
in polynomial time.
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Tableau Method (2): Constraint Systems

A constraint is a syntactical object of the form: x : C or
xry , where C is a concept description in NNF, r is a role

name and x and y are variable names.
Let I be an interpretation. An I-assignment α is a function
that maps each variable symbol to an object of the universe D.
A constraint x : C (xry) is satisfied by an I-assignment α, if
α(x) ∈ CI ((α(x), α(y)) ∈ rI).
A constraint system S is a finite, non-empty set of
constraints. An I-assignment α satisfies S if α satisfies each
constraint in S. S is satisfiable if there exists I and α such
that α satisfies S.

Theorem

An ALC concept C in NNF is satisfiable iff the system {x : C}
is satisfiable.
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Tableau Method (3): Transforming Constraint
Systems

Transformation rules:

1 S →u {x : C1, x : C2} ∪ S
if (x : C1 u C2) ∈ S and either (x : C1) or (x : C2) or both
are not in S.

2 S →t {x : D} ∪ S
if (x : C1 t C2) ∈ S and neither (x : C1) ∈ S nor
(x : C2) ∈ S and D = C1 or D = C2.

3 S →∃ {xry, y : C} ∪ S
if (x : ∃r.C) ∈ S, y is a fresh variable, and there is no z
s.t. (xrz) ∈ S and (z : C) ∈ S.

4 S →∀ {y : C} ∪ S
if (x : ∀r.C), (xry) ∈ S and (y : C) 6∈ S.

Deterministic rules (1,3,4) vs. non-deterministic (2).
Generating rules (3) vs. non-generating (1,2,4).
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Generating rules (3) vs. non-generating (1,2,4).
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Tableau Method (3): Transforming Constraint
Systems

Transformation rules:
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Tableau Method (4): Invariances

Theorem (Invariance)

Let S and T be constraint systems:

1 If T has been generated by applying a deterministic rule to
S, then S is satisfiable iff T is satisfiable.

2 If T has been generated by applying a non-deterministic
rule to S, then S is satisfiable if T is satisfiable.
Furthermore, if a non-deterministic rule can be applied to
S, then it can be applied such that S is satisfiable iff the
resulting system T is satisfiable.

Theorem (Termination)

Let C be an ALC concept description in NNF. Then there
exists no infinite chain of transformations starting from the
constraint system {x : C}.
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Tableau Method (5): Soundness and Completeness

A constraint system is called closed if no transformation rule
can be applied.

A clash is a pair of constraints of the form x : A and x : ¬A,
where A is a concept name.

Theorem (Soundness and Completeness)

A closed constraint system is satisfiable iff it does not contain a
clash.

Proof idea.

⇒: obvious. ⇐: Construct a model by using the concept labels.
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Space Requirements

Because the tableau method is non-deterministic (→t rule) . . .
there could be exponentially many closed constraint systems in
the end.
Interestingly, even one constraint system can have exponential
size.
Example:

∃r.A u ∃r.Bu
∀r.

(
∃r.A u ∃r.Bu
∀r.(∃r.A u ∃r.Bu
∀r.(. . .))

)
However: One can modify the algorithm so that it needs only
poly. space.
Idea: Generating a y only for one ∃r.C and then proceeding
into the depth.



KRR

Nebel,
Helmert,

Wölfl

Motivation

Structural
Subsumption
Algorithms

Tableau
Subsumption
Method

Example

Reductions:
Unfolding &
Unsatisfiability

Model
Construction

Equivalences &
NNF

Constraint
Systems

Transforming
Constraint
Systems

Invariances

Soundness and
Completeness

Space
Complexity

ABox Reasoning

Literature

Space Requirements

Because the tableau method is non-deterministic (→t rule) . . .
there could be exponentially many closed constraint systems in
the end.
Interestingly, even one constraint system can have exponential
size.
Example:

∃r.A u ∃r.Bu
∀r.

(
∃r.A u ∃r.Bu
∀r.(∃r.A u ∃r.Bu
∀r.(. . .))

)
However: One can modify the algorithm so that it needs only
poly. space.
Idea: Generating a y only for one ∃r.C and then proceeding
into the depth.



KRR

Nebel,
Helmert,

Wölfl

Motivation

Structural
Subsumption
Algorithms

Tableau
Subsumption
Method

Example

Reductions:
Unfolding &
Unsatisfiability

Model
Construction

Equivalences &
NNF

Constraint
Systems

Transforming
Constraint
Systems

Invariances

Soundness and
Completeness

Space
Complexity

ABox Reasoning

Literature

Space Requirements

Because the tableau method is non-deterministic (→t rule) . . .
there could be exponentially many closed constraint systems in
the end.
Interestingly, even one constraint system can have exponential
size.
Example:

∃r.A u ∃r.Bu
∀r.

(
∃r.A u ∃r.Bu
∀r.(∃r.A u ∃r.Bu
∀r.(. . .))

)
However: One can modify the algorithm so that it needs only
poly. space.
Idea: Generating a y only for one ∃r.C and then proceeding
into the depth.



KRR

Nebel,
Helmert,

Wölfl

Motivation

Structural
Subsumption
Algorithms

Tableau
Subsumption
Method

Example

Reductions:
Unfolding &
Unsatisfiability

Model
Construction

Equivalences &
NNF

Constraint
Systems

Transforming
Constraint
Systems

Invariances

Soundness and
Completeness

Space
Complexity

ABox Reasoning

Literature

Space Requirements

Because the tableau method is non-deterministic (→t rule) . . .
there could be exponentially many closed constraint systems in
the end.
Interestingly, even one constraint system can have exponential
size.
Example:

∃r.A u ∃r.Bu
∀r.

(
∃r.A u ∃r.Bu
∀r.(∃r.A u ∃r.Bu
∀r.(. . .))

)
However: One can modify the algorithm so that it needs only
poly. space.
Idea: Generating a y only for one ∃r.C and then proceeding
into the depth.



KRR

Nebel,
Helmert,

Wölfl

Motivation

Structural
Subsumption
Algorithms

Tableau
Subsumption
Method

Example

Reductions:
Unfolding &
Unsatisfiability

Model
Construction

Equivalences &
NNF

Constraint
Systems

Transforming
Constraint
Systems

Invariances

Soundness and
Completeness

Space
Complexity

ABox Reasoning

Literature

ABox Reasoning

ABox satisfiability can also be decided using the tableau
method if we can add constraints of the form x 6= y (for

UNA):

Normalize and unfold and add inequalities for all pairs of
objects mentioned in the ABox.

Strictly speaking, in ALC we do not need this because we
are never forced to identify two objects.
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