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Motivation

Reasoning Problems & Algorithms

I Satisfiability or subsumption of concept descriptions

I Satisfiability or instance relation in ABoxes
I Structural subsumption algorithms

◦ Normalization of concept descriptions and structural comparison
◦ very fast, but can only be used for small DLs

I Tableau algorithms
◦ Similar to modal tableau methods
◦ Meanwhile the method of choice
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Structural Subsumption Algorithms Idea

Structural Subsumption Algorithms

I Small Logic FL−
◦ C u D
◦ ∀r .C
◦ ∃r (simple existential quantification)

I Idea
1. In the conjunction, collect all universally quantified expressions (also

called value restrictions) with the same role and build complex value
restriction:

∀r .C u ∀r .D → ∀r .(C u D).

2. Compare all conjuncts with each other. For each conjunct in the
subsuming concept there should be a corresponding one in the
subsumed one.
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Structural Subsumption Algorithms Example

Example

D = Human u ∃has-child u ∀has-child.Human u
∀has-child.∃has-child

C = Human u Female u ∃has-child u
∀has-child.(Human u Female u ∃has-child)

Check: C v D

1. Collect value restrictions in D: . . . ∀has-child.(Human u ∃has-child)

2. Compare:

2.1 For Human in D, we have Human in C
2.2 For ∃has-child in D, we have . . .
2.3 For ∀has-child.(. . . ) in D, we have . . .

2.3.1 For Human . . .
2.3.2 For ∃has-child . . .

 C is subsumed by D!
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Structural Subsumption Algorithms Algorithm

Subsumption Algorithm

SUB(C ,D) algorithm:

1. Reorder terms (commutativity, associativity and value restriction law):

C = uAi uu∃rj uu∀rk : Ck

D = uBl uu∃sm uu∀sn : Dn

2. For each Bl in D, is there an Ai in C with Ai = Bl?

3. For each ∃sm in D, is there an ∃rj in C with sm = rj?

4. For each ∀sn : Dn in D, is there a ∀rk : Ck in C such that Ck v Dn

and sn = rk?

 C v D iff all questions are answered positively
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Structural Subsumption Algorithms Soundness

Soundness

Theorem (Soundness)

SUB(C ,D)⇒ C v D

Proof sketch.
Reordering of terms (1):

a) Commutativity and associativity are trivial

b) Value restriction law. We show:
`
∀r .(C u D)

´I
=

`
∀r .C u ∀r .D

´I
Assumption: d ∈

`
∀r .(C u D)

´I
Case 1: 6 ∃e : (d , e) ∈ rI

√

Case 2: ∃e : (d , e) ∈ rI ⇒ e ∈ (C u D)I ⇒ e ∈ CI , e ∈ DI

Since e is arbitrary: d ∈ (∀r .C)I , d ∈ (∀r .D)I then d must also

be conjunction, i.e.,
`
∀r .(C u D)

´I ⊆ (∀r .C u ∀r .D)I

Other direction is similar

(2+3+4): Induction on the nesting depth of ∀-expressions
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Structural Subsumption Algorithms Completeness

Completeness

Theorem (Completeness)

C v D ⇒ SUB(C ,D)

Proof idea.
One shows the contrapositive:

¬SUB(C ,D)⇒ C 6v D

Idea: If one of the rules leads to a negative answer, we use this to
construct an interpretation with a special element d such that

d ∈ CI , but d 6∈ DI
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Structural Subsumption Algorithms Generalizations

Generalizing the Algorithm

Extensions of FL− by

I ¬A (atomic negation),

I (≤ n r), (≥ n r) (cardinality restrictions),

I r ◦ s (role composition)

does not lead to any problems.
However: If we use full existential restrictions, then it is very unlikely that
we can come up with a simple structural subsumption algorithm – having
the same flavor as the one above.
More precisely: There is (most probably) no algorithm that uses
polynomially many reorderings and simplifications and allows for a simple
structural comparison
Reason: Subsumption for FL− + ∃r .C is NP-hard (Nutt).
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Structural Subsumption Algorithms ABox Reasoning

ABox Reasoning

Idea: abstraction + classification

I Complete ABox by propagating value restrictions to role fillers

I Compute for each object its most specialized concepts

I These can then be handled using the ordinary subsumption algorithm
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Tableau Subsumption Method

Tableau Method

I Logic ALC
◦ C u D
◦ C t D
◦ ¬C
◦ ∀r .C
◦ ∃r .C

I Idea: Decide (un-)satisfiability of a concept description C by trying
to systematically construct a model for C . If that is successful, C is
satisfiable. Otherwise C is unsatisfiable.
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Tableau Subsumption Method Example

Example: Subsumption in a TBox

TBox
Hermaphrodite

·
= Male u Female

Parents-of-sons-and-daughters
·
=

∃has-child.Male u ∃has-child.Female
Parents-of-hermaphrodite

·
= ∃has-child.Hermaphrodite

Query
Parents-of-sons-and-daughters vT

Parents-of-hermaphrodites
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Tableau Subsumption Method Reductions: Unfolding & Unsatisfiability

Reductions

1. Unfolding
∃has-child.Male u ∃has-child.Female v
∃has-child.(Male u Female)

2. Reduction to unsatisfiability
Is
∃has-child.Male u ∃has-child.Femaleu
¬

(
∃has-child.(Male u Female)

)
unsatisfiable?

3. Negation normal form (move negations inside):
∃has-child.Male u ∃has-child.Femaleu
∀has-child.(¬Male t ¬Female)

4. Try to construct a model
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Tableau Subsumption Method Model Construction

Model Construction (1)

1. Assumption: There exists an object x in the interpretation of our
concept:

x ∈ (∃ . . .)I

2. This implies that x is in the interpretation of all conjuncts:

x ∈ (∃has-child.Male)I

x ∈ (∃has-child.Female)I

x ∈
(
∀has-child.(¬Male t ¬Female)

)I
3. This implies that there should be objects y and z such that

(x , y) ∈ has-childI , (x , z) ∈ has-childI , y ∈ MaleI and
z ∈ FemaleI and . . .
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Tableau Subsumption Method Model Construction

Model Construction (2)

x : ∃has-child.Male
x : ∃has-child.Female

Male Female

x

y z

has−child has−child
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Tableau Subsumption Method Model Construction

Model Construction (3)

x : ∃has-child.Male
x : ∃has-child.Female
x : ∀has-child.(¬Male t ¬Female)

Male Female

x

y z

(¬Male or ¬Female) (¬Male or ¬Female)

has−child has−child
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Tableau Subsumption Method Model Construction

Model Construction (4)

x : ∃has-child.Male
x : ∃has-child.Female
x : ∀has-child.(¬Male t ¬Female)
y : ¬Male

Male Female

x

y z

(¬Male or ¬Female) (¬Male or ¬Female)

has−child has−child

¬Male
Contradiction
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Tableau Subsumption Method Model Construction

Model Construction (5)

x : ∃has-child.Male
x : ∃has-child.Female
x : ∀has-child.(¬Male t ¬Female)
y : ¬Female
z : ¬Male

Male Female

x

y z

(¬Male or ¬Female) (¬Male or ¬Female)

has−child has−child

¬Male¬Female

 Model constructed!
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Tableau Subsumption Method Equivalences & NNF

Tableau Method (1): NNF
C ≡ D iff C v D and D v C .
Now we have the following equivalences:

¬(C u D) ≡ ¬C t ¬D

¬(C t D) ≡ ¬C u ¬D

¬¬C ≡ C

¬(∀r .C ) ≡ ∃r .¬C

¬(∃r .C ) ≡ ∀r .¬C

These equivalences can be used to move all negations signs to the inside,
resulting in concept description where only concept names are negated:
negation normal form (NNF)

Theorem (NNF)

The negation normal form of an ALC concept can be computed in
polynomial time.
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Tableau Subsumption Method Constraint Systems

Tableau Method (2): Constraint Systems

A constraint is a syntactical object of the form: x : C or xry , where C
is a concept description in NNF, r is a role name and x and y are variable
names.
Let I be an interpretation. An I-assignment α is a function that maps
each variable symbol to an object of the universe D.
A constraint x : C (xry) is satisfied by an I-assignment α, if α(x) ∈ CI

((α(x), α(y)) ∈ rI).
A constraint system S is a finite, non-empty set of constraints. An
I-assignment α satisfies S if α satisfies each constraint in S . S is
satisfiable if there exists I and α such that α satisfies S .

Theorem
An ALC concept C in NNF is satisfiable iff the system {x : C} is satisfiable.
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Tableau Subsumption Method Transforming Constraint Systems

Tableau Method (3): Transforming Constraint Systems

Transformation rules:

1. S →u {x : C1, x : C2} ∪ S
if (x : C1 uC2) ∈ S and either (x : C1) or (x : C2) or both are not in S .

2. S →t {x : D} ∪ S
if (x : C1 t C2) ∈ S and neither (x : C1) ∈ S nor (x : C2) ∈ S and
D = C1 or D = C2.

3. S →∃ {xry , y : C} ∪ S
if (x : ∃r .C ) ∈ S , y is a fresh variable, and there is no z s.t. (xrz) ∈ S
and (z : C ) ∈ S .

4. S →∀ {y : C} ∪ S
if (x : ∀r .C ), (xry) ∈ S and (y : C ) 6∈ S .

Deterministic rules (1,3,4) vs. non-deterministic (2).
Generating rules (3) vs. non-generating (1,2,4).
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Tableau Subsumption Method Invariances

Tableau Method (4): Invariances

Theorem (Invariance)

Let S and T be constraint systems:

1. If T has been generated by applying a deterministic rule to S, then S
is satisfiable iff T is satisfiable.

2. If T has been generated by applying a non-deterministic rule to S,
then S is satisfiable if T is satisfiable. Furthermore, if a
non-deterministic rule can be applied to S, then it can be applied
such that S is satisfiable iff the resulting system T is satisfiable.

Theorem (Termination)

Let C be an ALC concept description in NNF. Then there exists no infinite
chain of transformations starting from the constraint system {x : C}.
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Tableau Subsumption Method Soundness and Completeness

Tableau Method (5): Soundness and Completeness

A constraint system is called closed if no transformation rule can be
applied.

A clash is a pair of constraints of the form x : A and x : ¬A, where A is a
concept name.

Theorem (Soundness and Completeness)

A closed constraint system is satisfiable iff it does not contain a clash.

Proof idea.
⇒: obvious. ⇐: Construct a model by using the concept labels.
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Tableau Subsumption Method Space Complexity

Space Requirements

Because the tableau method is non-deterministic (→t rule) . . . there
could be exponentially many closed constraint systems in the end.
Interestingly, even one constraint system can have exponential size.
Example:

∃r .A u ∃r .Bu
∀r .

(
∃r .A u ∃r .Bu
∀r .(∃r .A u ∃r .Bu
∀r .(. . .))

)
However: One can modify the algorithm so that it needs only poly. space.
Idea: Generating a y only for one ∃r .C and then proceeding into the
depth.
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Tableau Subsumption Method ABox Reasoning

ABox Reasoning

ABox satisfiability can also be decided using the tableau method if we can
add constraints of the form x 6= y (for UNA):

I Normalize and unfold and add inequalities for all pairs of objects
mentioned in the ABox.

I Strictly speaking, in ALC we do not need this because we are never
forced to identify two objects.
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