Principles of Knowle	edge Representat	ion and Reasoning	g
Semantic Net Description Lo	tworks and Description ogics – Terminology an	n Logics II: nd Notation	
Bernhard Nebe	I, Malte Helmert and	Stefan Wölfl	
Alber	t-Ludwigs-Universität Freibu	ırg	
	July 11, 2008		
Nebel, Helmert, Wölfl (Uni Freiburg)	KRR	July 11, 2008	1 / 26

Introduction Motivation

Motivation

- ► Main problem with semantic networks and frames
- ► The lack of formal semantics!
- Disadvantage of simple inheritance networks
- Concepts are atomic and do not have any structure
- → Brachman's structural inheritance networks (1977)

KRR

Description Logics – Terminology and Notation	
Introduction	
Concept and Roles	
TBox and ABox	
Reasoning Services	
Outlook	

KRR

Structural Inheritance Networks
Concepts are *defined/described* using a small set of well-defined operators
Distinction between *conceptual* and *object-related* knowledge
Computation of *subconcept relation* and of *instance relation*Strict inheritance (of the entire structure of a concept)

3 / 26

Nebel, Helmert, Wölfl (Uni Freiburg)

KRR

July 11, 2008

2 / 26

- A parent is:a mother or a fatherA grandmother is:a woman, with at least one child that is a parentA mother-wod is:a mother with only male children
- Elizabeth is a woman Elizabeth has the child Charles Charles is a man Diana is a mother-wod Diana has the child William

Possible Questions:

Is a grandmother a parent?
Is Diana a parent?
Is William a man?
Is Elizabeth a mother-wod?

• In our example, e.g., child. Often we will use names such as

• Role names are *disjoint* from concept names

• Symbolically: t, t_1, \ldots

has-child or something similar (in the following usually *lowercase*).

• **Semantics**: Dyadic predicates $t(\cdot, \cdot)$ or set-theoretically $t^{\mathcal{I}} \subseteq \mathcal{D} \times \mathcal{D}$.

KRR

Concept and Role Description

- ▶ Out of *concept* and *role names*, complex descriptions can be created
- ▶ In our example, e.g. "a Human <u>and</u> Female."
- **Symbolically**: *C* for concept descriptions and *r* for role descriptions
- Which particular constructs are available depends on the chosen description logic
- Predicate logic semantics: A concept descriptions C corresponds to a formula C(x) with the free variable x. Similarly with r: It corresponds to formula r(x, y) with free variables x, y.
- ► Set semantics:

 $C^{\mathcal{I}} = \{d \mid C(d) \text{ "is true in" } \mathcal{I}\}$ $r^{\mathcal{I}} = \{(d, e) \mid r(d, e) \text{ "is true in" } \mathcal{I}\}$

Nebel, Helmert, Wölfl (Uni Freiburg)

Concept and Roles Concept Forming Operators

KRR

Role Restrictions

Motivation:

- Often we want to describe something by *restricting* the possible "fillers" of a role, e.g. Mother-wod.
- $\circ\,$ Sometimes we want to say that there is at least a filler of a particular type, e.g. Grandmother
- ▶ Idea: Use quantifiers that range over the role-fillers
 - Mother □ ∀has-child.Man
 - \circ Woman \sqcap \exists has-child.Parent
- ► Predicate logic semantics:

$$(\exists r.C)(x) = \exists y : (r(x,y) \land C(y))$$

 $(\forall r.C)(x) = \forall y : (r(x,y) \rightarrow C(y))$

Set semantics:

$$(\exists r.C)^{\mathcal{I}} = \{d | \exists e : (d, e) \in r^{\mathcal{I}} \land e \in C^{\mathcal{I}} \} \\ (\forall r.C)^{\mathcal{I}} = \{d | \forall e : (d, e) \in r^{\mathcal{I}} \rightarrow e \in C^{\mathcal{I}} \}$$

KRR

July 11, 2008

11 / 26

July 11, 2008

9 / 26

Concept and Roles Concept Forming Operators

Cardinality Restriction

► Motivation:

- Often we want to describe something by *restricting the number* of possible "fillers" of a role, e.g., a Mother with at least 3 children or at most 2 children.
- ▶ Idea: We restrict the cardinality of the role filler sets:
 - Mother \sqcap (\geq 3 has-child)
 - Mother $\sqcap (\leq 2 \text{ has-child})$
- ► Predicate logic semantics:

$$(\geq n r)(x) = \exists y_1 \dots y_n : (r(x, y_1) \land \dots \land r(x, y_n) \land y_1 \neq y_2 \land \dots \land y_{n-1} \neq y_n)$$
$$(\leq n r)(x) = \neg(\geq n+1 r)(x)$$

► Set semantics:

$$(\geq n r)^{\mathcal{I}} = \{d \mid |\{e|r^{\mathcal{I}}(d, e)\}| \geq n\}$$
$$(\leq n r)^{\mathcal{I}} = \mathcal{D} - (\geq n+1 r)^{\mathcal{I}}$$

KRR

Nebel, Helmert, Wölfl (Uni Freiburg)

July 11, 2008 12 / 26

Concept and Roles Role Forming Operators

Inverse Roles

- ► Motivation:
 - How can we describe the concept "children of rich parents"?
- Idea: Define the "inverse" role for a given role (the converse relation)
 has-child⁻¹
- ▶ Application: ∃has-child⁻¹.Rich
- ► Predicate logic semantics:

$$r^{-1}(x,y) = r(y,x)$$

► Set semantics:

$$(r^{-1})^{\mathcal{I}} = \{(d, e) \mid (e, d) \in r^{\mathcal{I}}\}$$

Nebel, Helmert, Wölfl (Uni Freiburg)

Concept and Roles Role Forming Operators

KRR

Role Value Maps

- ► Motivation:
 - How do we express the concept "*women who know all the friends of their children*"
- Idea: Relate role filler sets to each other
 - Woman \sqcap (has-child has-friend \sqsubseteq knows)
- ► Predicate logic semantics:

$$(r \sqsubseteq s)(x) = \forall y : (r(x, y) \rightarrow s(x, y))$$

• Set semantics: Let $r^{\mathcal{I}}(d) = \{e \mid r^{\mathcal{I}}(d, e)\}.$

$$(r \sqsubseteq s)^{\mathcal{I}} = \{d | r^{\mathcal{I}}(d) \subseteq s^{\mathcal{I}}(d)\}$$

Note: Role value maps lead to undecidability of satisfiability of concept descriptions!

KRR

15 / 26

July 11, 2008

13 / 26

Role Composition

► Motivation:

- How can we define the role has-grandchild given the role has-child?
- Idea: Compose roles (as one can compose binary relations)
 o has-child o has-child

Concept and Roles

► Predicate logic semantics:

$$(r \circ s)(x, y) = \exists z : (r(x, z) \land s(z, y))$$

Role Forming Operators

► Set semantics: $(r \circ s)^{\mathcal{I}} = \{(d, e) \mid \exists f : (d, f) \in r^{\mathcal{I}} \land (f, e) \in s^{\mathcal{I}}\}$

Nebel, Helmert, Wölfl (Uni Freiburg)

KRR

July 11, 2008 14 / 26

TBox and ABox Terminology Box

Terminology Box

- In order to *introduce* new terms, we use two kinds of terminological axioms:
 - $A \doteq C$
 - $A \sqsubseteq C$

where A is a *concept name* and C is a *concept description*.

- A terminology or TBox is a finite set of such axioms with the following additional restrictions:
 - no multiple definitions of the same symbol such as $A \doteq C$, $A \sqsubseteq D$

KRR

• no cyclic definitions (even not indirectly), such as $A \doteq \forall r.B, B \doteq \exists s.A$

19 / 26

KRR

KRR

July 11, 2008 20 / 26

July 11, 2008

18 / 26

		I Box and ABox	Example			
Example	ABox					So
CHARLES: EDWARD:	Man Man		DIANA: Woman ELIZABETH: Woman			
ANDREW:	Man					
DIANA:	Mother-with	out-daughter				
(ELIZABET	H, CHARLES):	has-child				
(ELIZABET	H, ANDREW):	has-child				
(DIANA, W	ILLIAM):	has-child				
(CHARLES,	WILLIAM):	has-child				
Nebel, Helmert, W	/ölfl (Uni Freiburg)	к	(RR	July 11, 2008 21 /	/ 26	N
				-		
				· · · · · · · · · · · · · · · · · · ·		
				· · · · ·		
		Outlook			_	
Outlook		Outlook				
Outlook		Outlook				L
Outlook		Outlook				L
Outlook		Outlook				L
Outlook		Outlook				L
Outlook		Outlook				L
Outlook ► Can w	<i>i</i> e reduce the	Outlook	ervices to perhaps just	one problem?		
Outlook ► Can w ► What	<i>v</i> e reduce the could be rea	Outlook e reasoning se soning algor	ervices to perhaps just ithms ?	one problem?		L [
Outlook Can w What What 	<i>i</i> e reduce the could be rea about comp	Outlook e reasoning se soning algor lexity and de	ervices to perhaps just <mark>ithms</mark> ? ecidability?	one problem?		
Outlook Can w What What What 	<i>v</i> e reduce the could be rea about comp has all that t	Outlook e reasoning se soning algor lexity and de to do with m	ervices to perhaps just ithms? ecidability? odal logics?	one problem?		
Outlook Can w What What What 	ve reduce the could be rea about comp has all that t	Outlook e reasoning se soning algor lexity and de to do with me	ervices to perhaps just ithms? ecidability? odal logics?	one problem?		
Outlook Can w What What What How c 	ve reduce the could be rea about comp has all that t can one build	Outlook e reasoning se soning algor lexity and de to do with me efficient sys	ervices to perhaps just ithms? ecidability? odal logics? stems?	one problem?		
Outlook Can w What What What How c 	<i>i</i> e reduce the could be rea about comp has all that t	Outlook e reasoning se soning algor lexity and de to do with me efficient sys	ervices to perhaps just ithms? ecidability? odal logics? stems?	one problem?		
Outlook Can w What What What How c 	<i>t</i> e reduce the could be rea about comp has all that t can one build	Outlook e reasoning se soning algor lexity and de to do with me efficient sys	ervices to perhaps just ithms? ecidability? odal logics? stems?	one problem?		
Outlook Can w What What What How c 	ve reduce the could be rea about comp has all that t can one build	Outlook e reasoning se soning algor lexity and de to do with ma efficient sys	ervices to perhaps just ithms? ecidability? odal logics? stems?	one problem?		
Outlook Can w What What What How c 	ve reduce the could be rea about comp has all that t can one build	Outlook e reasoning se soning algor lexity and de to do with me efficient sys	ervices to perhaps just ithms? ecidability? odal logics? stems?	one problem?		

KRR

 Does a description C make sense at all, i.e., is it satisfiable iff there exists I such that C^I ≠ Ø. Is one concept a specialization of another one, is it C is subsumed by D, in symbols C ⊆ D iff we have interpretations C^I ⊂ D^I. 	atisfiable? s an interpreta subsumed? ve for all	ition
Is a an instance of a concept C?	<i>a a</i>	
► a is an instance of C iff for all interpretations, we h	have $a^{\perp} \in C^{\perp}$.	
Note: These questions can be posed with or witho restricts the possible interpretations.	ut a TBox tha	ıt
Nebel, Helmert, Wölfl (Uni Freiburg) KRR	July 11, 2008	22 / 26

Literature

Reasoning Services

Literature

- Baader, F., D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, *The Description Logic Handbook: Theory, Implementation, Applications,* Cambridge University Press, Cambridge, UK, 2003.
- Ronald J. Brachman and James G. Schmolze. An overview of the KL-ONE knowledge representation system. *Cognitive Science*, 9(2):171–216, April 1985.
- Franz Baader, Hans-Jürgen Bürckert, Jochen Heinsohn, Bernhard Hollunder, Jürgen Müller, Bernhard Nebel, Werner Nutt, and Hans-Jürgen Profitlich. Terminological Knowledge Representation: A proposal for a terminological logic. Published in Proc. *International Workshop on Terminological Logics*, 1991, DFKI Document D-91-13.
- Bernhard Nebel. *Reasoning and Revision in Hybrid Representation Systems*, volume 422 of *Lecture Notes in Artificial Intelligence*. Springer-Verlag, Berlin, Heidelberg, New York, 1990.

23 / 26

Appendix					
Summary: Concept Descriptions					
	AbstractA $C \sqcap D$ $C \sqcup D$ $\neg C$ $\exists r$ $\geq n r$ $\leq n r$ $\exists r.C$ $\geq n r.C$ $r \models s$ $r \neq s$ $r \sqsubseteq s$ $g \doteq h$ $g \neq h$	Concrete A (and C D) (or C D) (not C) (all r C) (some r) (atleast n r) (atmost n r) (atleast n r C) (at	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ø}	
	$ \{i_1, i_2, \ldots, i_n\}$	(oneof <i>i</i> ₁ <i>i_n</i>)	$\left \left\{ i_1^L, i_2^L, \dots, i_n^L \right\} \right.$		
Nebel, Helmert, Wölfl	(Uni Freiburg)		KRR	July 11, 2008	

25 / 26

Summary.	Abstracttfr \sqcap sr \sqcup s \neg rr^{-1}r cr^+	Concrete t f (and r s) (or r s) (not r) (inverse r) (restr r C) (trans r)	$ \begin{array}{c} \begin{array}{c} \\ Interpretation \\ t^{\mathcal{I}}, \ (functional \ role) \\ r^{\mathcal{I}} \cap s^{\mathcal{I}} \\ r^{\mathcal{I}} \cup s^{\mathcal{I}} \\ \mathcal{D} \times \mathcal{D} - r^{\mathcal{I}} \\ \left\{ (d, d') \ : \ (d', d) \in r^{\mathcal{I}} \right\} \\ \left\{ (d, d') \in r^{\mathcal{I}} \ : \ d' \in C^{\mathcal{I}} \right\} \\ \left\{ (r_{\tau}^{\mathcal{I}})^{+} \\ \end{array} $		
Nebel, Helmert, Wölfl ((Uni Freiburg)	self	$\{(d,d) : d \in \mathcal{D}\}$	July 11, 2008	26 / 26

Appendix