Principles of Knowledge Representation and Reasoning
Qualitative Representation and Reasoning II: Allen's Interval Calculus

Bernhard Nebel, Malte Helmert and Stefan Wölfl

Albert-Ludwigs-Universität Freiburg
June 24, 2008

Allen's Interval Calculus - Outline

Allen's Interval Calculus
Motivation
Intervals and Relations Between Them
Processing an Example
Composition Table
Outlook

Reasoning in Allen's Interval Calculus

A Maximal Tractable Sub-Algebra

Literature

Principles of Knowledge Representation and Reasoning

June 24, 2008 - Qualitative Representation and Reasoning II: Allen's Interval Calculus Allen's Interval Calculus

Motivation
Intervals and Relations Between Them
Processing an Example
Composition Table
Outlook
Reasoning in Allen's Interval Calculus
Constraint propagation algorithms (enforcing path consistency)
Example for Incompleteness
NP-Hardness Example
The Continuous Endpoint Class
Completeness for the CEP Class
A Maximal Tractable Sub-Algebra
The Endpoint Subclass
The ORD-Horn Subclass
Maximality

Qualitative Temporal Representation and Reasoning

Often we do not want to talk about precise times:

- NLP - we do not have precise time points
- Planning - we do not want to commit to time points too early
- Scenario descriptions - we do not have the exact times or do not want to state them

What are the primitives in our representation system?

- Time points: actions and events are instantaneous, or we consider their beginning and ending
- Time intervals: actions and events have duration
- Reducibility? Expressiveness? Computational costs for reasoning?

Allen's Interval Calculus Motivation

Motivation: Example

Consider a planning scenario for multimedia generation:
P1: Display Picture1
P2: Say "Put the plug in."
P3: Say "The device should be shut off."
P4: Point to Plug-in-Picture1.
Temporal relations between events:

P2	should happen during	P1
P3	should happen during	P1
P2	should happen before or directly precede	P3
P4	should happen during or end together with	P2

\rightsquigarrow P4 happens before or directly precedes P3
\rightsquigarrow We could add the statement "P4 does not overlap with P3" without creating an inconsistency.

Nebel, Helmert, Wölfl (Uni Freiburg)
KRR
June 24, $2008 \quad 5 / 41$

Allen's Interval Calculus

- Allen's interval calculus: time intervals and binary relations over them
- Time intervals: $X=\left(X^{-}, X^{+}\right)$, where X^{-}and X^{+}are interpreted over the reals and $X^{-}<X^{+}(\rightsquigarrow$ naïve approach $)$
- Relations between concrete intervals, e.g.:
$(1.0,2.0)$ strictly before $(3.0,5.5)$
$(1.0,3.0)$ meets $(3.0,5.5)$
$(1.0,4.0)$ overlaps $(3.0,5.5)$
\rightsquigarrow Which relations are conceivable?
Allen's Interval Calculus Intervals and Relations Between Them

The Base Relations

How many ways are there to order the four points of two intervals?

Relation	Symbol	Name
$\left\{(X, Y): X^{-}<X^{+}<Y^{-}<Y^{+}\right\}$	\prec	before
$\left\{(X, Y): X^{-}<X^{+}=Y^{-}<Y^{+}\right\}$	m	meets
$\left\{(X, Y): X^{-}<Y^{-}<X^{+}<Y^{+}\right\}$	\circ	overlaps
$\left\{(X, Y): X^{-}=Y^{-}<X^{+}<Y^{+}\right\}$	s	starts
$\left\{(X, Y): Y^{-}<X^{-}<X^{+}=Y^{+}\right\}$	f	finishes
$\left\{(X, Y): Y^{-}<X^{-}<X^{+}<Y^{+}\right\}$	d	during
$\left\{(X, Y): Y^{-}=X^{-}<X^{+}=Y^{+}\right\}$	\equiv	equal

and the converse relations (obtained by exchanging X and Y)
\rightsquigarrow These relations are JEPD.

Disjunctive Descriptions

－Assumption：We don＇t have precise information about the relation between X and Y ，e．g．：

$$
X \circ Y \text { or } X \mathrm{~m} Y
$$

－．．．modelled by sets of base relations（meaning the union of the relations）：

$$
X\{o, m\} Y
$$

$\rightsquigarrow 2^{13}$ imprecise relations（incl．\emptyset and \mathbf{B} ）
Example of an indefinite qualitative description：

$$
\{X\{\mathrm{o}, \mathrm{~m}\} Y, Y\{\mathrm{~m}\} Z, X\{\mathrm{o}, \mathrm{~m}\} Z\}
$$

	\prec	\succ	d	d^{-1}	－	\circ^{-1}	m	$\left\|\mathrm{m}^{-1}\right\|$	s	s^{-1}	\pm	f^{-1}
\prec	\prec	B	$\begin{gathered} \hline \mathbf{p d} \\ \text { md } \\ \mathrm{s} \end{gathered}$	\prec	\checkmark	$\begin{gathered} \hline \text { md } \\ \text { md } \\ \mathrm{s} \end{gathered}$	\prec	$\begin{gathered} \hline 20 \\ \mathrm{md} \\ \mathrm{~s} \end{gathered}$	${ }^{\circ}$	\prec	¢ $\begin{gathered}\text { ¢ } \\ \text { md } \\ \text { s }\end{gathered}$	\prec
\succ	B	\succ	$\begin{gathered} \succ_{\mathrm{m}^{-1}}^{\mathrm{m}^{-1} \mathrm{~d}} \\ \mathrm{f} \end{gathered}$	\succ	$\underset{\substack{\succ^{\circ-1} \\ \mathrm{~m}^{-1} \mathrm{~d} \\ \mathrm{f}}}{ }$	\succ	$\begin{gathered} \stackrel{0^{-1}}{\mathrm{~m}^{-1} \mathrm{~d}} \\ \mathrm{f} \end{gathered}$	\succ	$\begin{gathered} \succ_{0}^{0^{-1}} \\ \mathrm{~m}^{-1} \mathrm{~d} \\ \mathrm{f} \end{gathered}$	\succ	\succ	\succ
d	\prec	$\stackrel{\succ}{ }{ }^{\circ}$	d	B	$\begin{gathered} \text { रo } \\ \text { md } \\ \mathrm{s} \end{gathered}$	$\begin{gathered} \overbrace{0}^{0^{-1}} \\ \mathrm{~m}^{-1} \mathrm{~d} \\ \mathrm{f} \end{gathered}$	く	\succ	d	$\begin{gathered} \succ_{0^{-1}}^{\mathrm{m}^{-1} d} \\ \mathrm{f} \end{gathered}$	d	¢od
d^{-1}		$\begin{gathered} \succ \mathrm{o}^{-1} \\ \mathrm{~m}^{-1} \mathrm{~d}^{-1} \\ \mathrm{~s}^{-1} \end{gathered}$	$\underset{\substack{\mathrm{B}-\\ \checkmark \succ \\ \mathrm{mm}^{-1}}}{ }$	d^{-1}	$\begin{aligned} & 0 \\ & \mathrm{~d}^{-1} \\ & \mathrm{f}^{-1} \end{aligned}$	$\begin{aligned} & \mathrm{o}^{-1} \\ & \mathrm{~d}^{-1} \\ & \mathrm{~s}^{-1} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \mathrm{~d}^{-1} \\ & \mathrm{f}^{-1} \end{aligned}$	$\begin{aligned} & \mathrm{o}^{-1} \\ & \mathrm{~d}^{-1} \\ & \mathrm{~s}^{-1} \end{aligned}$	$\begin{gathered} 0 \\ \hline \mathrm{~d}^{-1} \\ \mathrm{f}^{-1} \end{gathered}$	d^{-1}	$\begin{aligned} & \mathrm{o}^{-1} \\ & \mathrm{~d}^{-1} \\ & \mathrm{~s}^{-1} \end{aligned}$	d^{-1}
－	\prec	$\begin{array}{\|c} \succ \mathrm{o}^{-1} \\ \mathrm{~m}^{-1} \mathrm{~d}^{-1} \\ \mathrm{~s}^{-1} \end{array}$	$\begin{aligned} & \hline 0 \\ & \mathrm{~d} \\ & \mathrm{~s} \end{aligned}$	$\begin{gathered} \checkmark 00 \\ \mathrm{md}^{-1} \\ \mathrm{f}^{-1} \end{gathered}$	$\begin{aligned} & \hline \\ & \hline \\ & \text { o } \\ & \mathrm{m} \\ & \hline \end{aligned}$		\prec	$\begin{aligned} & \mathrm{o}^{-1} \\ & \mathrm{~d}^{-1} \\ & \mathrm{~s}^{-1} \\ & \hline \end{aligned}$	。	$\begin{aligned} & \begin{array}{c} \mathrm{d}^{-1} \\ \mathrm{f}^{-1} \\ 0 \end{array} \end{aligned}$	d	 0 m
o^{-1}	$\begin{array}{\|c} 2 \\ x_{0}, \mathrm{~d}^{-1} \\ f^{-1} \end{array}$	\succ	$\begin{aligned} & s \\ & 0^{-1} \\ & d \\ & d \\ & f \end{aligned}$	$\begin{array}{\|c} \underbrace{\succ}_{1}, 0^{-1} \\ \mathrm{~m}^{-1} \mathrm{~d}^{-1} \\ \mathrm{~s}^{-1} \end{array}$		$\begin{array}{\|c\|} \hline \succ \\ \mathrm{o}^{-1} \\ \mathrm{~m}^{-1} \end{array}$	$\begin{aligned} & \hline 0 \\ & \mathrm{~d}^{-1} \\ & \mathrm{f}^{-1} \\ & \hline \end{aligned}$	\succ	$\begin{aligned} & o^{-1} \\ & d \\ & d \\ & f \end{aligned}$	$\underset{\mathrm{m}^{-1}}{\stackrel{-1}{o^{-1}}}$	0^{-1}	
m	\prec	$\begin{array}{\|c} \succ \mathrm{o}^{-1} \\ \mathrm{~m}^{-1} \mathrm{~d}^{-1} \\ \mathrm{~s}^{-1} \end{array}$	$\begin{aligned} & \mathrm{d} \\ & \mathrm{~s} \end{aligned}$	\prec	\prec	$\begin{aligned} & \circ \\ & \text { d } \end{aligned}$	\prec	$\begin{gathered} \stackrel{f}{f^{-1}} \\ \equiv \\ \equiv \end{gathered}$	m	m	d	\prec
m^{-1}	$\underset{\substack{\text { 2d } \\ m^{-1} \\ f^{-1}}}{ }$	\succ	$\begin{gathered} 0^{-1} \\ d \\ d \\ f \\ \hline \end{gathered}$	\succ	$\begin{aligned} & \mathrm{o}^{-1} \\ & \mathrm{~d} \\ & \mathrm{f} \\ & \hline \end{aligned}$	\succ	$\begin{gathered} \mathrm{s} \\ \mathrm{~s}^{-1} \\ \equiv \end{gathered}$	\succ	$\begin{gathered} d \\ f \\ o^{-1} \end{gathered}$	\succ	m^{-1}	m^{-1}
s	\prec	\succ	${ }^{\text {d }}$	$\underset{\substack{\prec 0 \\ \mathrm{md}^{-1} \\ \mathrm{f}^{-1}}}{ }$	$\begin{aligned} & \mathbf{\gamma} \\ & 0 \\ & \text { o } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{o}^{-1} \\ & \mathrm{~d} \\ & \mathrm{f} \end{aligned}$	\prec	m^{-1}	s	$\begin{gathered} \hline \mathrm{s} \\ \mathrm{~s}^{-1} \\ \equiv \end{gathered}$	d	$\stackrel{\downarrow}{\text { m }}$
s^{-1}	$\underset{\substack{\alpha o \\ m^{-1} \\ \mathrm{f}^{-1} \\ \mathrm{f}^{-1}}}{ }$	\succ	$\begin{gathered} \mathrm{o}^{-1} \\ \cdot \mathrm{~d} \\ \mathrm{f} \\ \hline \end{gathered}$	d^{-1}	$\begin{gathered} 0 \\ \mathrm{~d}^{-1} \\ \mathrm{f}^{-1} \end{gathered}$	0^{-1}	$\begin{aligned} & \stackrel{0}{\mathrm{~d}^{-1}} \\ & \mathrm{f}^{-1} \end{aligned}$	m^{-1}	$\begin{gathered} \mathrm{s} \\ \mathrm{~s}^{-1} \\ \equiv \end{gathered}$	s^{-1}	0^{-1}	d^{-1}
${ }^{\text {f }}$	\prec	\succ	d	$\left\|\begin{array}{c} \succ o^{-1} \\ m^{-1} \mathrm{~d}^{-1} \\ \mathrm{~s}^{-1} \end{array}\right\|$		$\begin{aligned} & \succ \\ & \stackrel{\succ}{-1} \\ & \mathrm{~m}^{-1} \end{aligned}$	m	\succ	d	$\begin{aligned} & \quad= \\ & o^{-1} \\ & \mathrm{~m}^{-1} \end{aligned}$	${ }^{\text {f }}$	$\underset{\mathrm{f}^{-1}}{\text { f }}$
f^{-1}	\prec	$\begin{gathered} \begin{array}{\|c} \succ 0^{-1} \\ m^{-1} d^{-1} \\ s^{-1} \\ \hline \end{array} \\ \hline \end{gathered}$		d^{-1}	。	$\begin{aligned} & \mathrm{ol}^{-1} \\ & \mathrm{~d}^{-1} \\ & \mathrm{~s}^{-1} \\ & \hline \end{aligned}$	m	$\begin{aligned} & \mathrm{s}^{-1} \\ & o^{-1} \\ & \mathrm{~d}^{-1} \end{aligned}$	${ }^{\circ}$	d^{-1}		f^{-1}

Our Example ．．．Formal

P1：Display Picture1
P3：Say＂The device should be shut off．＂
2：Say＂Put the plug in．＂ P4：Point to Plug－in－Picture1．

Compose the constraints：$P 4\{\mathrm{~d}, \mathrm{f}\} P 2$ and $P 2\{\mathrm{~d}\} P 1: P 4\{\mathrm{~d}\} P 1$
Nebel，Helmert，Wölfl（Uni Freiburg） KRR June 24， 200810 ／ 41

Allen＇s Interval Calculus
 Outlook

Outlook

－Using the composition table and the rules about operations on relations，we can deduce new relations between time intervals．
－What would be a systematic approach？
－How costly is that？
－Is that complete？
－If not，could it be complete on a subset of the relation system？

Reasoning in Allen's Interval Calculus

Allen's Interval Calculus

Reasoning in Allen's Interval Calculus
Constraint propagation algorithms (enforcing path consistency)
Example for Incompleteness
NP-Hardness Example
The Continuous Endpoint Class
Completeness for the CEP Class

A Maximal Tractable Sub-Algebra

Literature

An $O\left(n^{3}\right)$ Algorithm

EnforcePathConsistency2 (C):

Input: a (binary) $\operatorname{CSP} \mathcal{C}=\langle V, D, C\rangle$
Output: an equivalent, but path consistent $\operatorname{CSP} \mathcal{C}^{\prime}$
Paths $(i, j)=\{(i, j, k): 1 \leq k \leq n\} \cup\{(k, i, j): 1 \leq k \leq n\}$
Queue := $\bigcup_{i, j} \operatorname{Paths}(i, j)$
While $Q \neq \emptyset$
select and delete (i, k, j) from Q
$T:=$ Table $[i, j] \cap($ Table $[i, k] \circ$ Table $[k, j])$
if $T \neq$ Table $[i, j]$
Table $[i, j]:=T$
Table $[j, i]:=T^{-1}$
Queue $:=$ Queue \cup Paths (i, j)
endif
endwhile

Example for Incompleteness

Reasoning in Allen's Interval Calculus NP-Hardness Example

NP-Hardness

Theorem (Kautz \& Vilain)

CSAT is NP-hard for Allen's interval calculus.

Proof.
Reduction from 3-colorability (original proof using 3Sat).
Let $G=(V, E), V=\left\{v_{1}, \ldots, v_{n}\right\}$ be an instance of 3-colorability. Then we use the intervals $\left\{v_{1}, \ldots, v_{n}, 1,2,3\right\}$ with the following constraints:

1	$\{\mathrm{~m}\}$	2	
2	$\{\mathrm{~m}\}$	3	
v_{i}	$\left\{\mathrm{~m}, \equiv, \mathrm{~m}^{-1}\right\}$	2	$\forall v_{i} \in V$
v_{i}	$\left\{\mathrm{~m}, \mathrm{~m}^{-1}, \prec, \succ\right\}$	v_{j}	$\forall\left(v_{i}, v_{j}\right) \in E$

This constraint system is satisfiable iff G can be colored with 3 colors.

The Continuous Endpoint Class

Continuous Endpoint Class \mathcal{C} : This is a subset of \mathcal{A} such that there exists a clause form for each relation containing only unit clauses where $\neg(a=b)$ is forbidden.
Example: All basic relations and $\{\mathrm{d}, \mathrm{o}, \mathrm{s}\}$, because

$$
\begin{aligned}
& \pi(X\{\mathrm{~d}, \mathrm{o}, \mathrm{~s}\} Y)=\begin{array}{r}
\\
\\
X^{-}<X^{+}, Y^{-}<Y^{+}, \\
\\
X^{-}<Y^{+}, X^{+}>Y^{-},
\end{array} \\
& \left.X^{+}<Y^{+}\right\} \\
& Y
\end{aligned}
$$

Looking for Special Cases

- Idea: Let us look for polynomial special cases. In particular, let us look for sets of relations (subsets of the entire set of relations) that have an easy CSAT problem.
- Note: Interval formulae $X R Y$ can be expressed as clauses over atoms of the form a op b, where:
- a and b are endpoints X^{-}, X^{+}, Y^{-}and Y^{+}and
- $o p \in\{<,>,=, \leq, \geq\}$.
- Example: All base relations can be expressed as unit clauses.

Lemma

Let $\pi(\Theta)$ be the translation of Θ to clause form. Θ is satisfiable over intervals iff $\pi(\Theta)$ is satisfiable over the rational numbers.

Reasoning in Allen's Interval Calculus Completeness for the CEP Class

Why Do We Have Completeness?

The set \mathcal{C} is closed under intersection, composition, and converse (it is a sub-algebra wrt. these three operations on relations). This can be shown by using a computer program.
Lemma
Each 3-consistent interval CSP over \mathcal{C} is globally consistent.
Theorem (van Beek)
Path consistency solves CMIN(C) and decides $\operatorname{CSAT}(\mathcal{C})$.
Proof.
Follows from the above lemma and the fact that a strongly n-consistent CSP is minimal.

Corollary
A path consistent interval CSP consisting of base relations only is satisfiable.

Reasoning in Allen's Interval Calculus Completeness for the CEP Class

Helly's Theorem

Definition

A set $M \subseteq \mathbf{R}^{n}$ is convex iff for all pairs of points $a, b \in M$, all points on the line connecting a and b belong to M.

Theorem (Helly)
Let F be a family of at least $n+1$ convex sets in \mathbf{R}^{n}. If all sub-families of F with $n+1$ sets have a non-empty intersection, then $\bigcap F \neq \emptyset$.

Strong n-Consistency (2): Instantiating the k th Variable

Proof (Part 2).

The instantiation of the $k-1$ variables X_{i} to $\left(s_{i}, e_{i}\right)$ restricts the instantiation of X_{k}
Note: Since $R_{i j} \in \mathcal{C}$ by assumption, these restrictions can be expressed by inequalities of the form:

$$
s_{i}<X_{k}^{+} \wedge e_{j} \geq X_{k}^{-} \wedge \ldots
$$

Such inequalities define convex subsets in \mathbf{R}^{2}.
\rightsquigarrow Consider sets of 3 inequalities ($=3$ convex sets).

Strong n-Consistency (1)

Proof.
We prove the claim by induction over k with $k \leq n$.
Base case: $k=1,2,3 \quad \sqrt{ }$
Induction assumption: Assume strong $k-1$-consistency (and non-emptiness of all relations)
Induction step: From the assumption, it follows that there is an instantiation of $k-1$ variables X_{i} to pairs $\left(s_{i}, e_{i}\right)$ satisfying the constraints $R_{i j}$ between the $k-1$ variables.
We have to show that we can extend the instantiation to any k th variable.

Strong n-Consistency (3): Using Helly's Theorem

Proof (Part 3).
Case 1: All 3 inequalities mention only X_{k}^{-}(or mention only X_{k}^{+}). Then it suffices to consider only 2 of these inequalities (the strongest). Because of 3 -consistency, there exists at least 1 common point satisfying these 3 inequalities.
Case 2: The inequalities mention X_{k}^{-}and X_{k}^{+}, but it does not contain the inequality $X_{k}^{-}<X_{k}^{+}$. Then there are at most 2 inequalities with the same variable and we have the same situation as in Case 1
Case 3: The set contains the inequality $X_{k}^{-}<X_{k}^{+}$. In this case, only three intervals (incl. X_{k}) can be involved and by the same argument as above there exists a common point.
\rightsquigarrow With Helly's Theorem, it follows that there exists a consistent instantiation for all subsets of variables.
\rightsquigarrow Strong k-consistency for all $k \leq n$.

Outlook

- $\operatorname{CMIN}(\mathcal{C})$ can be computed in $O\left(n^{3}\right)$ time (for n being the number of intervals) using the path consistency algorithm.
- \mathcal{C} is a set of relations occurring "naturally" when observations are uncertain.
- \mathcal{C} contains 83 relations (incl. the impossible and the universal relations).
- Are there larger sets such that path consistency computes minimal CSPs? Probably not
- Are there larger sets of relations that permit polynomial satisfiability testing? Yes

The EP-Subclass

End-Point Subclass: $\mathcal{P} \subseteq \mathcal{A}$ is the subclass that permits a clause form containing only unit clauses ($a \neq b$ is allowed).
Example: all basic relations and $\{\mathrm{d}, \mathrm{o}\}$ since

$$
\begin{aligned}
\pi(X\{\mathrm{~d}, \mathrm{o}\} Y)= & \{ \\
& X^{-}<X^{+}, Y^{-}<Y^{+} \\
& X^{-}<Y^{+}, X^{+}>Y^{-}, X^{-} \neq Y^{-} \\
& \left.X^{+}<Y^{+}\right\}
\end{aligned}
$$

Y

Theorem (Vilain \& Kautz 86, Ladkin \& Maddux 88)
The path-consistency method decides $\operatorname{CSAT}(\mathcal{P})$.

A Maximal Tractable Sub-Algebra
A Maximal Tractable Sub-Algebra

Allen's Interval Calculus

Reasoning in Allen's Interval Calculus

A Maximal Tractable Sub-Algebra
The Endpoint Subclass
The ORD-Horn Subclass
Maximality
Solving Arbitrary Allen CSPs

Literature

Nebel, Helmert, Wölfl (Uni Freiburg)

A Maximal Tractable Sub-Algebra The ORD-Horn Subclass

The ORD-Horn Subclass

ORD-Horn Subclass: $\mathcal{H} \subseteq \mathcal{A}$ is the subclass that permits a clause form containing only Horn clauses, where only the following literals are allowed:

$$
a \leq b, a=b, a \neq b
$$

$\neg a \leq b$ is not allowed!
Example: all $R \in \mathcal{P}$ and $\left\{o, \mathrm{~s}, \mathrm{f}^{-1}\right\}$:

$$
\pi\left(X\left\{o, \mathrm{~s}, \mathrm{f}^{-1}\right\} Y\right)=\left\{\begin{array}{l}
X^{-} \leq X^{+}, X^{-} \neq X^{+}, \\
Y^{-} \leq Y^{+}, Y^{-} \neq Y^{+}, \\
\\
X^{-} \leq Y^{-}, \\
\\
X^{-} \leq Y^{+}, X^{-} \neq Y^{+}, \\
\\
Y^{-} \leq X^{+}, X^{+} \neq Y^{-}, \\
\\
\\
\\
\\
\\
\end{array} X^{+} \neq Y^{+}, Y^{-} \vee X^{+} \neq Y^{+}\right\} .
$$

A Maximal Tractable Sub-Algebra The ORD-Horn Subclass

Partial Orders: The ORD Theory

Let $O R D$ be the following theory:

$$
\begin{array}{lllll}
\forall x, y, z: & x \leq y \wedge y \leq z & \rightarrow x \leq z & \text { (transitivity) } \\
\forall x: & x \leq x & & & \text { (reflexivity) } \\
\forall x, y: & x \leq y \wedge y \leq x & \rightarrow x=y & \text { (anti-symmetry) } \\
\forall x, y: & x=y & \rightarrow x \leq y & \text { (weakening of }=\text {) } \\
\forall x, y: & x=y & \rightarrow y \leq x & \text { (weakening of }=\text {). }
\end{array}
$$

- ORD describes partially ordered sets, \leq being the ordering relation
- ORD is a Horn theory
- What is missing wrt to dense and linear orders?

Complexity of $\operatorname{CSAT}(\mathcal{H})$
Let $O R D_{\pi(\Theta)}$ be the propositional theory resulting from instantiating all axioms with the endpoints occurring in $\pi(\Theta)$.
Proposition
$O R D \cup \pi(\Theta)$ is satisfiable iff $O R D_{\pi(\Theta)} \cup \pi(\Theta)$ is so.
Proof idea: Herbrand expansion!

Theorem
$\operatorname{CSAT}(\mathcal{H})$ can be decided in polynomial time.
Proof.
$\operatorname{CSAT}(\mathcal{H})$ instances can be translated into a propositional Horn theory with blowup $O\left(n^{3}\right)$ according to the previous Prop., and such a theory is decidable in polynomial time.

$$
\mathcal{C} \subset \mathcal{P} \subset \mathcal{H} \quad \text { with } \quad|\mathcal{C}|=83,|\mathcal{P}|=188,|\mathcal{H}|=868
$$

Nebel, Helmert, Wölfl (Uni Freiburg)
June 24, 2008

A Maximal Tractable Sub-Algebra The ORD-Horn Subclass

Satisfiability over Partial Orders

Proposition
Let Θ be a CSP over \mathcal{H}. Θ is satisfiable over interval interpretations iff $\pi(\Theta) \cup O R D$ is satisfiable over arbitrary interpretations.

Proof.
\Rightarrow : Since the reals form a partially ordered set (i.e., satisfy ORD), this direction is trivial.
\Leftarrow : Each extension of a partial order to a linear order satisfies all formulae of the form $a \leq b, a=b$, and $a \neq b$ which have been satisfied over the original partial order.

Path-Consistency and the OH-Class

Lemma
Let Θ be a path-consistent set over \mathcal{H}. Then

$$
(X\} Y) \notin \Theta \text { iff } \Theta \text { is satisfiable }
$$

Proof Idea.

One can show that $O R D_{\pi(\Theta)} \cup \pi(\Theta)$ is closed wrt positive unit resolution. Since this inference rule is refutation complete for Horn theories, the claim follows.

Lemma
\mathcal{H} is closed under intersection, composition, and conversion.
Theorem
The path-consistency method decides $\operatorname{CSAT}(\mathcal{H})$.
\rightsquigarrow Maximality of \mathcal{H} ?
\rightsquigarrow Do we have to check all 8192-868 extensions?
Nebel, Helmert, Wölfl (Uni Freiburg)

A Maximal Tractable Sub-Algebra The ORD-Horn Subclass

Complexity of Sub-Algebras

Let \hat{S} be the closure of $S \subseteq \mathcal{A}$ under converse, intersection, and composition (i.e., the carrier of the least sub-algebra generated by S)
Theorem
$\operatorname{CSAT}(\hat{S})$ can be polynomially transformed to $\operatorname{CSAT}(S)$.
Proof Idea.
All relations in $\hat{S}-S$ can be modeled by a fixed number of compositions, intersections, and conversions of relations in S, introducing perhaps some fresh variables.
\rightsquigarrow Polynomiality of S extends to \hat{S}.
$\rightsquigarrow N P-h a r d n e s s$ of \hat{S} is inherited by all generating sets S.
\rightsquigarrow Note: $\mathcal{H}=\hat{\mathcal{H}}$.

"Interesting" Subclasses

Interesting subclasses of \mathcal{A} should contain all basic relations.
A computer-aided case analysis reveals: For $S \supseteq\{\{B\}: B \in \mathbf{B}\}$ it holds that

1. $\hat{S} \subseteq \mathcal{H}$, or
2. N_{1} or N_{2} is in \hat{S}.

In case 2, one can show: $\operatorname{CSAT}(S)$ is NP-complete.
$\rightsquigarrow \mathcal{H}$ is the only maximal tractable subclass that is interesting.
Meanwhile, there is a complete classification of all sub-algebras containing at least one basic relation [IJCAI 2001] ... but the question for sub-algebras not containing a basic relation is open.

A Maximal Tractable Sub-Algebra Maximality

Minimal Extensions of the \mathcal{H}-Subclass

A computer-aided case analysis leads to the following result:
Lemma
There are only two minimal sub-algebras that strictly contain \mathcal{H} : $\mathcal{X}_{1}, \mathcal{X}_{2}$

$$
\begin{aligned}
& N_{1}=\left\{\mathrm{d}, \mathrm{~d}^{-1}, \mathrm{o}^{-1}, \mathrm{~s}^{-1}, \mathrm{f}\right\} \in \mathcal{X}_{1} \\
& N_{2}=\left\{\mathrm{d}^{-1}, \mathrm{o}, \mathrm{o}^{-1}, \mathrm{~s}^{-1}, \mathrm{f}^{-1}\right\} \in \mathcal{X}_{2}
\end{aligned}
$$

The clause form of these relations contain "proper" disjunctions!
Theorem
$\operatorname{CSAT}\left(\mathcal{H} \cup\left\{N_{i}\right\}\right)$ is NP-complete.
Question: Are there other maximal tractable subclasses?

Nebel, Helmert, Wölfl (Uni Freiburg)
KRR

Relevance?

Theoretical:
We now know the boundary between polynomial and NP-hard reasoning problems along the dimension expressiveness.
Practical: All known applications either need only \mathcal{P} or they need more than \mathcal{H} !
Backtracking methods might profit from the result because the branching factor is lower.
\rightsquigarrow How difficult is $\operatorname{CSAT}(\mathcal{A})$ in practice?
\rightsquigarrow What are the relevant branching factors?

A Maximal Tractable Sub-Algebra Solving Arbitrary Allen CSPs

Solving General Allen CSPs

- Backtracking algorithm using path-consistency as a forward-checking method
- Relies on tractable fragments of Allen's calculus: split relations into relations of a tractable fragment, and backtrack over these.
- Refinements and evaluation of different heuristics
\rightsquigarrow Which tractable fragment should one use? of events that have duration.
- The satisfiability problem for CSPs using the relations is NP-complete.
- For the continuous endpoint class, minimal CSPs can be computed using the path-consistency method.
- For the larger ORD-Horn class, CSAT is still decided by the path-consistency method.
- Can be used in practice for backtracking algorithms.
- If the labels are split into ORD-Horn relations (\mathcal{H}), then on average a label is split into

2.533 relations

\rightsquigarrow A difference of 0.422
\rightsquigarrow This makes a difference for "hard" instances.

Literature I

artyclef. Allen
Maintaining knowledge about temporal intervals.
Communications of the ACM, 26(11):832-843, November 1983.
Also in Readings in Knowledge Representation

Branching Factors

- If the labels are split into base relations, then on average a label is split into

6.5 relations

- If the labels are split into pointizable relations (\mathcal{P}), then on average a label is split into

2.955 relations

burfPelevan Beek and R. Cohen.
Exact and approximate reasoning about temporal relations Computational Intelligence, 6:132-144, 1990
mericonarB
Ble Nebel and H.-J. Bürckert
Reasoning about temporal relations: A maximal tractable subclass of Allen's interval algebra
Journal of the ACM, 42(1): 43-66, 1995
Ble Nebel.
Solving hard qualitative temporal reasoning problems: Evaluating the efficiency of using the ORD-horn class.
CONSTRAINTS, 1(3): 175-190, 1997

Literature II

conarafale Krokhin, P. Jeavons and P. Jonsson.
A complete classification of complexity in Allen's algebra in the presence of a non-trivial basic relation.
Proc. 17th Int. Joint Conf. on AI (IJCAI-01), 83-88, Seattle, WA, 2001.

