Principles of Knowledge Representation and Reasoning

Qualitative Representation and Reasoning: Introduction

Bernhard Nebel. Malte Helmert and Stefan Wölfl.

Albert-Ludwigs-Universität Freiburg

June 17, 2008

Nebel, Helmert, Wölfl (Uni Freiburg)

June 17, 2008

Introduction

Quantitative vs. Qualitative

Spatio-temporal configurations can be described quantitatively by specifying the coordinates of the relevant objects:

Example: At time point 10.0 object A is at position (11.0, 1.0, 23.7), at time point 11.0 at position (15.2, 3.5, 23.7). From time point 0.0 to 11.0, object B is at position (15.2, 3.5, 23.7). Object C is at time point 11.0 at position (300.9, 25.6, 200.0) and at time point 35.0 at (11.0, 1.0, 23.7).

Principles of Knowledge Representation and Reasoning

June 17, 2008 — Qualitative Representation and Reasoning: Introduction

Introduction

Outlook

Motivation Constraint Satisfaction Problems Constraint Solving Methods Qualitative Constraint Satisfaction Problems

Literature

Nebel, Helmert, Wölfl (Uni Freiburg)

June 17, 2008

Introduction

Quantitative vs. Qualitative

Often, however, a qualitative description (using a finite vocabulary) is more adequate:

Example: Object A hit object B. Afterwards, object C arrived.

Sometimes we want to reason with such descriptions, e.g.:

Object C was not close to object A when it hit object B.

Nebel, Helmert, Wölfl (Uni Freiburg) KRR June 17, 2008 Nebel, Helmert, Wölfl (Uni Freiburg) KRR June 17, 2008 3 / 35

Representation of Qualitative Knowledge

Intention: Description of configurations using a finite vocabulary and reasoning about these descriptions

- ► Specification of a vocabulary: usually a finite set of relations (often binary) that are pairwise disjoint and exhaustive
- ▶ Specification of a language: often sets of atomic formulae (constraint networks), perhaps restricted disjunction
- ► Specification of a formal semantics
- ► Analysis of computational properties and design of reasoning methods (often constraint propagation)
- ▶ Perhaps, specification of operational semantics for verifying whether a relation holds in a given quantitative configuration

Nebel, Helmert, Wölfl (Uni Freiburg)

June 17, 2008

June 17, 2008

Qualitative Temporal Relations: Point Calculus

We want to talk about time instants (points) and binary relations over them.

- ► Vocabulary.
 - \blacktriangleright X equals Y: X = Y
 - ▶ X before Y: X < Y</p>
 - ▶ *X* after *Y*: *X* > *Y*
- Language:
 - ► Allow for disjunctions of basic relations to express indefinite information. Use set of relations to express that. For instance, $\{<,=\}$ expresses <.
 - ▶ 2³ different relations (including the *impossible* and the *universal*
 - ▶ Use sets of atomic formulae with these relations to describe configurations. For example:

$$\{x\{=\}y, y\{<,>\}z\}$$

▶ *Semantics*: Interpret the time point symbols and relation symbols over the rational (or real) numbers.

Applications in . . .

- ► Natural language processing
- ► Specification of abstract spatio-temporal configurations
- ▶ Query languages for spatio-temporal information systems
- ► Layout descriptions of documents (and learning of such layouts)
- ► Action planning

Nebel, Helmert, Wölfl (Uni Freiburg)

Introduction

Some Reasoning Problems

$$\left\{x\{<,=\}y,y\{<,=\}z,v\{<,=\}y,w\{>\}y,z\{<,=\}x\right\}$$

- ▶ Satisfiability: Are there values for all time points such that all formulae are satisfied?
- ▶ Satisfiability with v{=}w?
- ▶ Finding a satisfying instantiation of all time points
- ▶ Deduction: Does x{=}y logically follow? Does $v\{<,=\}w$ follow?
- ▶ Finding a minimal description: What are the most constrained relations that describe the same set of instantiations?

Nebel, Helmert, Wölfl (Uni Freiburg)

8 / 35

From a Logical Point of View . . .

In general, qualitatively described configurations are simple logical theories:

- ▶ Only sets of atomic formulae to describe the configuration
- Only existentially quantified variables (or constants)
- ▶ A fixed background theory that describes the semantics of the relations (e.g., dense linear orders)
- ▶ We are interested in satisfiability, model finding, and deduction
- ► Constraint Satisfaction Problems

Nebel, Helmert, Wölfl (Uni Freiburg)

June 17, 2008

11 / 35

CSP - Example

k-colorability: Can we color the nodes of a graph with k colors in a way such that all nodes connected by an edge have different colors?

- ▶ The node set is the set of variables
- ▶ The domain of each variable is $\{1, ..., k\}$
- ▶ The constraints are that nodes connected by an edge must have a different value

Note: This CSP has a particular restricted form:

- ► Only binary constraints
- ► The domains are finite

Other examples: Many problems (e.g. cross-word puzzle, n-queens problem, configuration, ...) can be cast as a CSP (and solved this way)

CSP - Definition

Definition

A constraint satisfaction problem (CSP) is given by

- ▶ a set V of n variables $\{v_1, \ldots, v_n\}$,
- \blacktriangleright for each v_i , a value domain D_i
- constraints (relations over subsets of the variables)

Tasks:

Find one (or all) solution(s), i.e., tuples

$$(d_1,\ldots,d_n)\in D_1\times\cdots\times D_n$$

such that the assignment $v_i \mapsto d_i$ (1 < i < n) satisfies all constraints.

Nebel, Helmert, Wölfl (Uni Freiburg)

June 17, 2008

Our Example: Point relations

- ▶ Our point relation CSP is a binary CSP with infinite domains.
- ▶ It can be represented as a *constraint graph*:

Computational Complexity

Theorem

It is NP-hard to decide solvability of CSPs, even binary CSPs.

Proof.

Since k-colorability is NP-complete (even for fixed $k \ge 3$), solvability of CSPs in general must be NP-hard.

Question: Is CSP solvability in NP?

Nebel, Helmert, Wölfl (Uni Freiburg)

KRR

June 17, 2008

13 / 35

Introduction Solving CSI

General Assumptions

- ▶ Only at most binary constraints (i.e., we can use constraint graph)
- ▶ Uniform domain *D* for all variables
- ▶ Unary constraints D_i and binary constraints R_{ij} are sets of values or sets of pairs of values, resp.
- \blacktriangleright We assume that for all nodes i, j:

$$(x,y) \in R_{ii} \Rightarrow (y,x) \in R_{ii}$$

Solving CSP

- ► Enumeration of all assignments and testing
- ► Backtracking search
- → 1001 different strategies, often "dead" search paths are explored extensively
- ► Constraint propagation: elimination of obviously impossible values followed by backtracking search
- ▶ Many other search methods, e.g., local search, stochastic search, etc.
- → How do we solve CSP with infinite domains?

Nebel, Helmert, Wölfl (Uni Freiburg)

KRF

June 17, 2008

Introduction Solving C

Local Consistency

- ▶ A CSP is *locally consistent* if for particular subsets of the variables, solutions of the restricted CSP can be extended to solutions of a larger set of variables.
- → Methods to transform a CSP into a tighter, but "equivalent" problem.

Definition

A binary CSP $\langle V, D, C \rangle$ is arc consistent (or 2-consistent) if for all nodes $1 \le i, j \le n$,

$$x \in D_i \Rightarrow \exists y \in D_j \text{ s.t. } (x,y) \in R_{ij}$$

When a CSP is arc consistent, each one variable assignment $\{v_i\} \to D$ that satisfies all (unary) constraints in v_i , i. e., D_i , can be extended to a two variable assignment $\{v_i, v_j\} \to D$ that satisfies all unary/binary constraints in these variables, i. e., D_i , D_j , and R_{ij} .

Arc Consistency

EnforceArcConsistency (C):

 $\textit{Input:} \ \mathsf{a} \ (\mathsf{binary}) \ \mathsf{CSP} \ \mathcal{C} = \langle \mathit{V}, \mathit{D}, \mathit{C} \rangle$

Output: an equivalent, but arc consistent CSP \mathcal{C}'

repeat

for each arc (v_i, v_j) with $R_{ij} \in C$ $D_i := D_i \cap \{x \in D : \text{ex. } y \in D_i \text{ s. t. } (x, y) \in R_{ii}\}$

endfor

until no domain is changed

- ▶ Terminates in time $O(n^3 \cdot k^3)$ if we have finite domains (where k is the number of values)
- There exist different (more efficient) algorithms for enforcing arc consistency.

Nebel, Helmert, Wölfl (Uni Freiburg)

KRR

June 17, 2008

/ 35

Introduction Solving CSE

Arc Consistency – Example

$$D_1 = \{1, 2, 3\}$$

 $D_2 = \{2, 3\}$
 $D_3 = \{2\}$

$$D_3 = \{2\}$$

$$R_{ij} = " \neq " \text{ for } i \neq j$$

- 1. $D_1 := D_1 \cap \{x : y \in D_3 \land (x, y) \in R_{13}\} = \{1, 3\}$
- 2. $D_2 := D_2 \cap \{x : y \in D_3 \land (x, y) \in R_{23}\} = \{3\}$
- 3. $D_1 := D_1 \cap \{x : y \in D_2 \land (x, y) \in R_{12}\} = \{1\}$
- 4. CSP is now arc consistent
- ► Since all unary constraints are singletons, this defines a solution of the CSP.
- ▶ Since enforcing arc consistency does not change the set of solutions, this is a unique solution of the original CSP.

Arc Consistency

Lemma

- ▶ Enforcing arc consistency yields an arc consistent CSP.
- ► Enforcing arc consistency is solution invariant, i. e. it does not change the set of solutions.
- → Arc consistent CSPs need not be consistent, and vice versa.

Nebel, Helmert, Wölfl (Uni Freiburg)

KRF

June 17, 2008 18 / 35

Local Consistency (2): Path Consistency

Definition

A binary CSP $\langle V, D, C \rangle$ is said to be path consistent (or 3-consistent) if for all nodes $1 \le i, j, k \le n$,

$$x \in D_i, y \in D_j, (x, y) \in R_{ij} \Rightarrow$$

 $\exists z \in D_k \text{ s. t. } (x, z) \in R_{ik} \text{ and } (y, z) \in R_{jk}$

When a CSP is path consistent, each two variable assignment $\{v_i, v_j\} \to D$ satisfying all constraints in v_i and v_j can be extended to any three variable assignment $\{v_i, v_j, v_k\} \to D$ such that all constraints in these variables are satisfied.

Path Consistency

EnforcePathConsistency (C):

Input: a (binary) CSP $C = \langle V, D, C \rangle$ of size nOutput: an equivalent, but path consistent CSP \mathcal{C}'

repeat

```
for all 1 < i, j, k < n
      R_{ii} := R_{ii} \cap
            \{(x,y) : \text{ex. } z \in D_k \text{ s.t. } (x,z) \in R_{ik} \text{ and } (y,z) \in R_{ik} \}
```

endfor

until no binary constraint is changed

- \rightarrow Terminates in time $O(n^5 \cdot k^5)$ if we have finite domains (where k is the number of values)
- → Enforcing path consistency is solution invariant.

Nebel, Helmert, Wölfl (Uni Freiburg)

June 17, 2008 21 / 35

23 / 35

Local Consistency (3)

- \triangleright k-consistency: The computation costs grow exponentially with k.
- ▶ If a CSP is globally consistent, then
 - ▶ a solution can be constructed in polynomial time,
 - ▶ its constraints are minimal.
 - ▶ and it has a solution iff there is no empty constraint.
- ▶ k-consistent $\Rightarrow k 1$ -consistent

Introduction

Local Consistency (3): k-Consistency and Strong k-Consistency

Definition

- ▶ A binary CSP $\langle V, D, C \rangle$ is **k-consistent** if, given variables x_1, \ldots, x_k and an assignment $a: \{x_1, \dots, x_{k-1}\} \to D$ that satisfies all constraint in these variables, a can be extended to an assignment $a': \{x_1, \ldots, x_k\} \to D$ that satisfies all constraints in these kvariables.
- ▶ A binary CSP $\langle V, D, C \rangle$ is strongly k-consistent if it is k'-consistent for each k' < k.
- ightharpoonup A binary CSP $\langle V, D, C \rangle$ is globally consistent if it is strongly n-consistent where n is the size of V

Nebel, Helmert, Wölfl (Uni Freiburg)

June 17, 2008 22 / 35

Qualitative Reasoning with CSP

If we want to use CSPs for qualitative reasoning, we have

- ▶ infinite domains
- mostly only finitely many relations (basic relations and their unions)
- ► arc consistent CSPs (usually)

Questions:

- ▶ How do we achieve k-consistency (for some fixed k)?
- ▶ Is k-consistency (for some fixed k) enough to guarantee global consistency?

Operations on Binary Relations

Composition:

$$R_1 \circ R_2 = \{(x, y) \in D^2 : \exists z \in D \text{ s. t. } (x, z) \in R_1 \text{ and } (z, y) \in R_2\}$$

Converse:

$$R^{-1} = \{(x,y) \in D^2 : (y,x) \in R\}$$

Intersection:

$$R_1 \cap R_2 = \{(x,y) \in D^2 : (x,y) \in R_1 \text{ and } (x,y) \in R_2\}$$

Union:

$$R_1 \cup R_2 = \{(x,y) \in D^2 : (x,y) \in R_1 \text{ or } (x,y) \in R_2\}$$

Complement:

$$\overline{R} = \{(x, y) \in D^2 : (x, y) \notin R\}$$

Nebel, Helmert, Wölfl (Uni Freiburg)

KRR

June 17, 2008

08 25 /

27 / 35

Introduction Qualitative CSP

Computing Operations on Relations

Let **A** be a relation system over the set of base relations **B** that satisfies the conditions spelled out above.

We may write relations as sets of base relations:

$$B_1 \cup \cdots \cup B_n \sim \{B_1, \ldots, B_n\}$$

Then the operations on the relations can be *computed* as follows:

Composition:

$$\{B_1,\ldots B_n\}\circ\{B_1',\ldots,B_m'\}=\bigcup_{i=1}^n\bigcup_{j=1}^m(B_i\circ B_j')$$

Converse:

$$\{B_1,\ldots,B_n\}^{-1}=\{B_1^{-1},\ldots,B_n^{-1}\}$$

Complement:

$$\overline{\{B_1, \dots, B_n\}} = \{B \in \mathbf{B} : B \neq B_i, \text{ for each } 1 < i < n\}$$

Intersection and union are defined set-theoretically.

Nebel, Helmert, Wölfl (Uni Freiburg) KRR June 17, 2008

Conditions on Vocabulary for Qualitative Reasoning

- ▶ Let **B** be a finite set of (binary) base relations.
- The relations in **B** should be JEPD, i. e., jointly exhaustive and pairwise disjoint.
- ▶ **B** should be *closed under converse*.
- ▶ Let **A** be the set of relations that can be built by taking the unions of relations from **B** (\rightsquigarrow 2^{|B|} different relations).
- → **A** is closed under converse, complement, intersection and union.
- ▶ **A** should be *closed under composition of base relations*, i. e., for all $B, B' \in \mathbf{B}, B \circ B' \in A$.
- → **A** is closed under composition of arbitrary relations.
- This condition does not hold necessarily.

 Example: **B** = {<,=,>} interpreted over the integers is not closed under composition (and has no finite closure):

$$\langle \circ \langle = \langle \setminus \{(i,j) : i = j-1\} \subset \langle$$

Nebel, Helmert, Wölfl (Uni Freiburg)

KRF

June 17, 2008

26 / 35

Introduction Qualitative CSF

Reasoning Problems

Given a qualitative CSP:

CSP-Satisfiability (CSAT):

▶ Is the CSP satisfiable/solvable?

CSP-Entailment (CENT):

ightharpoonup Given in addition xRy: Is xRy satisfied in each solution of the CSP?

Computation of an equivalent minimal CSPs (CMIN):

- ► Compute for each pair *x*, *y* the strongest constrained (minimal) relation entailed by the CSP.
- → These problems are equivalent under Turing reductions

Reductions between CSP Problems

Theorem

CSAT, CENT and CMIN are equivalent under polynomial Turing reductions.

Proof.

CSAT \leq_T CENT and CENT \leq_T CMIN are obvious.

CENT \leq_T CSAT: We solve CENT ($CSP \models xRy$?) by testing satisfiability of the CSP extended by $x\{B\}y$ where B ranges over all base relations. Let B_1, \ldots, B_k be the relations for which we get a positive answer. Then $x\{B_1, \ldots, B_k\}y$ is entailed by the CSP.

CMIN \leq_T CENT: We use entailment for computing the minimal constraint for each pair. Starting with the universal relation, we remove one base relation until we have a minimal relation that is still entailed. \Box

Nebel, Helmert, Wölfl (Uni Freiburg)

KRR

June 17, 2008

Introduction Qualitative CSP

Example: Point Relations

Composition table:

	<	=	>
<	<	<	<,=,>
=	<	=	>
>	<,=,>	>	>

Figure: Composition table for the point algebra. For example: $\{<\} \circ \{=\} = \{<\}$

- ► {<,=} ∘ {<} = {<}
- ► {<,>} ∘ {<} = {<,=,>}
- $\{<,=\}^{-1}=\{>,=\}$
- $\{<,=\} \cap \{>,=\} = \{=\}$

Path Consistency for Qualitative CSPs

Given a qualitative CSP with $R_{ij} = R_{ji}^{-1}$. Then path consistency can be enforced by doing the following:

$$R_{ij} := R_{ij} \cap (R_{ik} \circ R_{kj}).$$

Path consistency guarantees . . .

- ► sometimes minimality
- ▶ sometimes satisfiability
- ► however sometimes the CSP is not satisfiable, even if the CSP contains only base relations
- → All this depends on the vocabulary.

Nebel, Helmert, Wölfl (Uni Freiburg)

KRF

June 17, 2008

30 / 35

Introduction Qualitative CSP

Some Properties of the Point Relations

Theorem

A path consistent CSP over the point relations is consistent.

Corollary

CSAT, CENT and CMIN are polynomial problems for the point relations.

Theorem

A path consistent CSP over all point relations without $\{<,>\}$ is minimal.

Proofs later . . .

Introduction Outlook

Outlook

- ▶ Qualitative representation and reasoning usually starts with a finite vocabulary (a finite set of relations).
- ▶ Qualitative descriptions are usually simply logical theories consisting of sets of atomic formulae (and some background theory).
- ▶ Reasoning problems are (as usual) satisfiability, model finding, and deduction.
- ▶ Can be addressed with CSP methods (but note: infinite domains).
- ▶ Path consistency is the basic reasoning step ... sometimes this is enough.
- ▶ Usually, path-consistent atomic CSPs are satisfiable. However, there exist some pathological relation systems.
- ► Can be taken further → relation algebra

Nebel, Helmert, Wölfl (Uni Freiburg)

KRR

June 17, 2008

33 / 35

Literatur

Literature II

R. Hirsch.

Tractable approximations for temporal constraint handling.

Artificial Intelligence, 116: 287-295, 2000.

(Contains a pathological set of relations.)

Nebel, Helmert, Wölfl (Uni Freiburg)

KRR

June 17, 2008

35 / 35

Literature

Literature I

Alan K. Mackworth.

Constraint satisfaction.

In S. C. Shapiro, editor, *Encyclopedia of Artificial Intelligence*, pages 205–211. Wiley, Chichester, England, 1987.

Alan K. Mackworth.

Consistency in networks of relations.

Artificial Intelligence, 8:99-118, 1977.

Peter B. Ladkin and Roger Maddux.

On binary constraint networks.

Journal of the ACM, 41:435-469, 1994.

Ugo Montanari.

Networks of constraints: fundamental properties and applications to picture processing.

Information Science, 7:95–132, 1974.

Nebel, Helmert, Wölfl (Uni Freiburg)

KRF

June 17, 2008 34 / 35