Principles of Knowledge Representation and Reasoning

Qualitative Representation and Reasoning: Introduction

Bernhard Nebel, Malte Helmert and Stefan Wolfl

Albert-Ludwigs-Universitat Freiburg

June 17, 2008

Nebel, Helmert, Walfl (Uni Freiburg) KRR June 17, 2008 1/35

Principles of Knowledge Representation and Reasoning

June 17, 2008 — Qualitative Representation and Reasoning: Introduction

Introduction
Motivation
Constraint Satisfaction Problems
Constraint Solving Methods
Qualitative Constraint Satisfaction Problems
Outlook

Literature

Nebel, Helmert, Walfl (Uni Freiburg) KRR June 17, 2008

2/35

Introduction Motivation

Quantitative vs. Qualitative

Spatio-temporal configurations can be described quantitatively by
specifying the coordinates of the relevant objects:
Example: At time point 10.0 object A is at position
(11.0,1.0,23.7), at time point 11.0 at position (15.2,3.5,23.7).
From time point 0.0 to 11.0, object B is at position
(15.2,3.5,23.7). Object C is at time point 11.0 at position
(300.9, 25.6,200.0) and at time point 35.0 at (11.0,1.0,23.7).
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Introduction Motivation

Quantitative vs. Qualitative

Often, however, a qualitative description (using a finite vocabulary) is
more adequate:

Example: Object A hit object B. Afterwards, object C arrived.

Sometimes we want to reason with such descriptions, e.g.:
Object C was not close to object A when it hit object B.
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Introduction Motivation

Representation of Qualitative Knowledge

Intention: Description of configurations using a finite vocabulary and
reasoning about these descriptions

» Specification of a vocabulary: usually a finite set of relations (often
binary) that are pairwise disjoint and exhaustive

» Specification of a language: often sets of atomic formulae (constraint
networks), perhaps restricted disjunction

» Specification of a formal semantics

» Analysis of computational properties and design of reasoning methods
(often constraint propagation)

» Perhaps, specification of operational semantics for verifying whether a
relation holds in a given quantitative configuration
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Introduction Motivation

Applications in ...

» Natural language processing
» Specification of abstract spatio-temporal configurations
» Query languages for spatio-temporal information systems
» Layout descriptions of documents (and learning of such layouts)
» Action planning
>
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Introduction Motivation

Qualitative Temporal Relations: Point Calculus

We want to talk about time instants (points) and binary relations over
them.

» Vocabulary:

» Xequals Y: X=Y

» X before Y: X <Y

» X after Y: X > Y

» Language:

» Allow for disjunctions of basic relations to express indefinite
information. Use set of relations to express that. For instance, {<,=}
expresses <.

» 23 different relations (including the impossible and the universal
relation)

> Use sets of atomic formulae with these relations to describe
configurations. For example:

{(x{=ly.y{<.>}z}
» Semantics: Interpret the time point symbols and relation symbols
over the rational (or real) numbers.
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Introduction Motivation

Some Reasoning Problems

{x{< =< =tz < =y, wishy z{< = }x}

» Satisfiability: Are there values for all time points such that all
formulae are satisfied?

» Satisfiability with v{=}w?
» Finding a satisfying instantiation of all time points

» Deduction: Does x{=}y logically follow?
Does v{<,=}w follow?

» Finding a minimal description: What are the most constrained
relations that describe the same set of instantiations?
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Introduction CsP

From a Logical Point of View ...

In general, qualitatively described configurations are simple logical theories:

Introduction CsP

CSP - Definition

Definition

A constraint satisfaction problem (CSP) is given by
> aset V of nvariables {vq,..., vy},
» for each v;, a value domain D;

» constraints (relations over subsets of the variables)

Tasks:
Find one (or all) solution(s), i.e., tuples

(dl,...,dn)€D1><‘”><Dn

such that the assignment v; — d; (1 < i < n) satisfies all constraints.
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» Only sets of atomic formulae to describe the configuration
» Only existentially quantified variables (or constants)
» A fixed background theory that describes the semantics of the
relations (e.g., dense linear orders)
» We are interested in satisfiability, model finding, and deduction
» Constraint Satisfaction Problems
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Introduction Ccsp
CSP — Example

k-colorability: Can we color the nodes of a graph with k colors in a way
such that all nodes connected by an edge have different colors?

» The node set is the set of variables

» The domain of each variable is {1,..., k}

» The constraints are that nodes connected by an edge must have a

different value

Note: This CSP has a particular restricted form:

» Only binary constraints

» The domains are finite

Other examples: Many problems (e.g. cross-word puzzle, n-queens
problem, configuration, ...) can be cast as a CSP (and solved this way)
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Introduction Ccsp

Our Example: Point relations

» Qur point relation CSP is a binary CSP with infinite domains.

» It can be represented as a constraint graph:
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Introduction CsP

Computational Complexity

Theorem
It is NP-hard to decide solvability of CSPs, even binary CSPs.

Proof.
Since k-colorability is NP-complete (even for fixed k > 3), solvability of
CSPs in general must be NP-hard. O

Question: Is CSP solvability in NP?
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Introduction Solving CSP

Solving CSP

» Enumeration of all assignments and testing

~> ... too costly

» Backtracking search

~ 1001 different strategies, often “dead” search paths are explored
extensively

» Constraint propagation: elimination of obviously impossible values
followed by backtracking search

» Many other search methods, e.g., local search, stochastic search, etc.

~» How do we solve CSP with infinite domains?
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Introduction Solving CSP

General Assumptions

» Only at most binary constraints (i.e., we can use constraint graph)
» Uniform domain D for all variables

» Unary constraints D; and binary constraints R;; are sets of values or
sets of pairs of values, resp.

» We assume that for all nodes i, :

(va) € RI_I:>(.an) € Rji
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Introduction Solving CSP

Local Consistency

» A CSP is locally consistent if for particular subsets of the variables,
solutions of the restricted CSP can be extended to solutions of a
larger set of variables.

~> Methods to transform a CSP into a tighter, but “equivalent” problem.

Definition
A binary CSP (V, D, C) is arc consistent (or 2-consistent) if for all nodes
1<i,j<n,

x € Dj= 3y € DJ' s. t. (x,y) S R,J

~> When a CSP is arc consistent, each one variable assignment {v;} — D that
satisfies all (unary) constraints in v;, i.e., D;, can be extended to a two
variable assignment {v;, v;} — D that satisfies all unary/binary constraints
in these variables, i.e., D;, D;, and Rj.
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Introduction Solving CSP

Arc Consistency

EnforceArcConsistency (C):
Input: a (binary) CSP C = (V,D, C)
Output: an equivalent, but arc consistent CSP C’
repeat
for each arc (vj, v;) with Rjj € C
Di:=Din{xe D :ex.yeDjs.t (x,y) € Rj}
endfor
until no domain is changed

» Terminates in time O(n® - k3) if we have finite domains (where k is
the number of values)

~~ There exist different (more efficient) algorithms for enforcing arc
consistency.
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Introduction Solving CSP

Arc Consistency

Lemma

» Enforcing arc consistency yields an arc consistent CSP.

» Enforcing arc consistency is solution invariant, i. e. it does not change
the set of solutions.

~+ Arc consistent CSPs need not be consistent, and vice versa.
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Introduction Solving CSP

Arc Consistency — Example

Dy = {1,2,3}
D, = {2,3}
Dy = {2}

Rj = "#" fori#]

1. Dy:=Din{x : ye D3N (x,y) € Riz} ={1,3}
2. Dy:=Drn{x:yeD3sN(x,y) € Rz} ={3}
3. D1 =DinN{x:yeDyA(x,y) € Ria} ={1}
4. CSP is now arc consistent

» Since all unary constraints are singletons, this defines a solution of the
CSP.

» Since enforcing arc consistency does not change the set of solutions,
this is a unique solution of the original CSP.
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Introduction Solving CSP

Local Consistency (2): Path Consistency

Definition
A binary CSP (V, D, C) is said to be path consistent (or 3-consistent) if
for all nodes 1 </, j, k < n,

x € Dj,y € Dj,(x,y) € Rj =
Jz € Dy s.t. (x,z) € Ry and (y, z) € Ry

~» When a CSP is path consistent, each two variable assignment {v;,v;} — D
satisfying all constraints in v; and v; can be extended to any three variable
assignment {vj, v;, vk} — D such that all constraints in these variables are
satisfied.
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Introduction Solving CSP

Path Consistency

EnforcePathConsistency (C):
Input: a (binary) CSP C = (V, D, C) of size n
Output: an equivalent, but path consistent CSP C’

repeat
forall 1 <i,j,k<n
R,'j = RU N
{(x,y) 1 ex. z€ Dy s.t. (x,z) € Rix and (y,z) € R}
endfor

until no binary constraint is changed

~~ Terminates in time O(n® - k%) if we have finite domains (where k is
the number of values)

~» Enforcing path consistency is solution invariant.
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Introduction Solving CSP

Local Consistency (3):
k-Consistency and Strong k-Consistency

Definition
» A binary CSP (V, D, C) is k-consistent if, given variables xi, ..., xk
and an assignment a : {x1,...,xx—1} — D that satisfies all
constraint in these variables, a can be extended to an assignment
a : {x1,...,xx} — D that satisfies all constraints in these k
variables.

» A binary CSP (V, D, C) is strongly k-consistent if it is k’-consistent
for each k' < k.

» A binary CSP (V, D, C) is globally consistent if it is strongly
n-consistent where n is the size of V.
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Introduction Solving CSP

Local Consistency (3)

» k-consistency: The computation costs grow exponentially with k.

» If a CSP is globally consistent, then
> a solution can be constructed in polynomial time,
» its constraints are minimal,

> and it has a solution iff there is no empty constraint.

» k-consistent A k — 1-consistent
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Introduction Qualitative CSP

Qualitative Reasoning with CSP

If we want to use CSPs for qualitative reasoning, we have
» infinite domains
» mostly only finitely many relations (basic relations and their unions)
» arc consistent CSPs (usually)
Questions:
» How do we achieve k-consistency (for some fixed k)?

» Is k-consistency (for some fixed k) enough to guarantee global
consistency?
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Introduction Qualitative CSP

Operations on Binary Relations

Composition:
RioRy={(x,y) € D?:3zeDs.t. (x,z) € Ry and (z,y) € Ry}
Converse:
R~ = {(x,y) e D? : (y,x) € R}

Intersection:
RiNRy={(x,y) € D* : (x,y) € Ry and (x,y) € R»}

Union:
RIURy, = {(X,y) e D? . (x,y) € Ryor (x,y) € Rz}

Complement:

R:{(X,y)ED2 : (X,y)QR}
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Introduction Qualitative CSP

Conditions on Vocabulary for Qualitative Reasoning

> Let B be a finite set of (binary) base relations.

~» The relations in B should be JEPD, i.e., jointly exhaustive and
pairwise disjoint.

» B should be closed under converse.

» Let A be the set of relations that can be built by taking the unions of
relations from B (~ 2/Bl different relations).

~> A is closed under converse, complement, intersection and union.

» A should be closed under composition of base relations, i.e., for all

B,B'"€B, BoB € A.

A is closed under composition of arbitrary relations.

$

$

This condition does not hold necessarily.
Example: B = {<,=, >} interpreted over the integers is not closed
under composition (and has no finite closure):

<o<=<\{(ij) 1 i=j-1} &<
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Introduction Qualitative CSP

Computing Operations on Relations
Let A be a relation system over the set of base relations B that satisfies
the conditions spelled out above.

~> We may write relations as sets of base relations:
BiU---UB, ~{Bi,..., By}

Then the operations on the relations can be computed as follows:
Composition:
{B1,...Ba} o {Bi,....B} = J|J(BioB))
i=1j=1
Converse:
{Bi,...,B.} ' ={B*,....B '}

Complement:

{Bi,....,Bp} ={B€B : B#B;, foreach1 <i<n}

Intersection and union are defined set-theoretically.
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Introduction Qualitative CSP

Reasoning Problems

Given a qualitative CSP:
CSP-Satisfiability (CSAT):
» Is the CSP satisfiable/solvable?

CSP-Entailment (CENT):
» Given in addition xRy: Is xRy satisfied in each solution of the CSP?

Computation of an equivalent minimal CSPs (CMIN):

» Compute for each pair x, y the strongest constrained (minimal)
relation entailed by the CSP.

~~ These problems are equivalent under Turing reductions
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Introduction Qualitative CSP

Reductions between CSP Problems

Theorem
CSAT, CENT and CMIN are equivalent under polynomial Turing
reductions.

Proof.

CSAT <+ CENT and CENT <+ CMIN are obvious.

CENT <1 CSAT: We solve CENT (CSP |= xRy?) by testing satisfiability
of the CSP extended by x{B}y where B ranges over all base relations.
Let By, ..., Bix be the relations for which we get a positive answer. Then
x{Bi,...,Bx}y is entailed by the CSP.

CMIN <7 CENT: We use entailment for computing the minimal
constraint for each pair. Starting with the universal relation, we remove
one base relation until we have a minimal relation that is still entailed. [J
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Introduction Qualitative CSP

Path Consistency for Qualitative CSPs

Given a qualitative CSP with Rj; = Rﬁl. Then path consistency can be
enforced by doing the following:

R,'j = R,J N (R,‘k e} Rkj)-

Path consistency guarantees . ..
» sometimes minimality
» sometimes satisfiability

» however sometimes the CSP is not satisfiable, even if the CSP
contains only base relations

~> All this depends on the vocabulary.
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Introduction Qualitative CSP

Example: Point Relations

Composition table:

| < [=] >
< < <|<,=>
= < = >
> | <, =>|> >

Figure: Composition table for the point algebra. For example: {<} o {=} = {<}

{<=tef<t={<}
{<>tof<t ={<,=>}
{<=}"1={>=}
{(<=tn{>=r={=}

vV V. v Y
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Introduction Qualitative CSP

Some Properties of the Point Relations

Theorem
A path consistent CSP over the point relations is consistent.

Corollary
CSAT, CENT and CMIN are polynomial problems for the point relations.

Theorem
A path consistent CSP over all point relations without {<,>} is minimal.

Proofs later ...
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Introduction Outlook

Outlook

v

Qualitative representation and reasoning usually starts with a finite
vocabulary (a finite set of relations).

» Qualitative descriptions are usually simply logical theories consisting
of sets of atomic formulae (and some background theory).

» Reasoning problems are (as usual) satisfiability, model finding, and
deduction.

» Can be addressed with CSP methods (but note: infinite domains).

» Path consistency is the basic reasoning step ...sometimes this is
enough.

» Usually, path-consistent atomic CSPs are satisfiable. However, there
exist some pathological relation systems.

» Can be taken further ~~ relation algebra

Nebel, Helmert, Walfl (Uni Freiburg) KRR June 17, 2008 33 /35

Literature

Literature |

@ Alan K. Mackworth.
Constraint satisfaction.
In S. C. Shapiro, editor, Encyclopedia of Artificial Intelligence, pages 205-211.
Wiley, Chichester, England, 1987.

@ Alan K. Mackworth.
Consistency in networks of relations.
Artificial Intelligence, 8:99-118, 1977.

@ Peter B. Ladkin and Roger Maddux.
On binary constraint networks.
Journal of the ACM, 41:435—-469, 1994.

@ Ugo Montanari.
Networks of constraints: fundamental properties and applications to picture
processing.
Information Science, 7:95-132, 1974.

Nebel, Helmert, Walfl (Uni Freiburg) KRR June 17, 2008

34/35

Literature

Literature Il

[3 R. Hirsch.
Tractable approximations for temporal constraint handling.
Artificial Intelligence, 116: 287-295, 2000.
(Contains a pathological set of relations.)

Nebel, Helmert, Walfl (Uni Freiburg) KRR June 17, 2008 35 /35




	Introduction
	Motivation
	Constraint Satisfaction Problems
	Constraint Solving Methods
	Qualitative Constraint Satisfaction Problems
	Outlook

	Literature

