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Introduction Motivation

Quantitative vs. Qualitative

Spatio-temporal configurations can be described quantitatively by
specifying the coordinates of the relevant objects:

Example: At time point 10.0 object A is at position
(11.0, 1.0, 23.7), at time point 11.0 at position (15.2, 3.5, 23.7).
From time point 0.0 to 11.0, object B is at position
(15.2, 3.5, 23.7). Object C is at time point 11.0 at position
(300.9, 25.6, 200.0) and at time point 35.0 at (11.0, 1.0, 23.7).
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Introduction Motivation

Quantitative vs. Qualitative

Often, however, a qualitative description (using a finite vocabulary) is
more adequate:

Example: Object A hit object B. Afterwards, object C arrived.

Sometimes we want to reason with such descriptions, e.g.:

Object C was not close to object A when it hit object B.
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Introduction Motivation

Representation of Qualitative Knowledge

Intention: Description of configurations using a finite vocabulary and
reasoning about these descriptions

I Specification of a vocabulary: usually a finite set of relations (often
binary) that are pairwise disjoint and exhaustive

I Specification of a language: often sets of atomic formulae (constraint
networks), perhaps restricted disjunction

I Specification of a formal semantics

I Analysis of computational properties and design of reasoning methods
(often constraint propagation)

I Perhaps, specification of operational semantics for verifying whether a
relation holds in a given quantitative configuration
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Introduction Motivation

Applications in . . .

I Natural language processing

I Specification of abstract spatio-temporal configurations

I Query languages for spatio-temporal information systems

I Layout descriptions of documents (and learning of such layouts)

I Action planning

I . . .
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Introduction Motivation

Qualitative Temporal Relations: Point Calculus
We want to talk about time instants (points) and binary relations over
them.

I Vocabulary:
I X equals Y : X = Y
I X before Y : X < Y
I X after Y : X > Y

I Language:
I Allow for disjunctions of basic relations to express indefinite

information. Use set of relations to express that. For instance, {<, =}
expresses ≤.

I 23 different relations (including the impossible and the universal
relation)

I Use sets of atomic formulae with these relations to describe
configurations. For example:{

x{=}y , y{<, >}z
}

I Semantics: Interpret the time point symbols and relation symbols
over the rational (or real) numbers.
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Introduction Motivation

Some Reasoning Problems

{
x{<, =}y , y{<, =}z , v{<, =}y , w{>}y , z{<, =}x

}
I Satisfiability: Are there values for all time points such that all

formulae are satisfied?

I Satisfiability with v{=}w?

I Finding a satisfying instantiation of all time points

I Deduction: Does x{=}y logically follow?
Does v{<, =}w follow?

I Finding a minimal description: What are the most constrained
relations that describe the same set of instantiations?
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Introduction CSP

From a Logical Point of View . . .

In general, qualitatively described configurations are simple logical theories:

I Only sets of atomic formulae to describe the configuration

I Only existentially quantified variables (or constants)

I A fixed background theory that describes the semantics of the
relations (e.g., dense linear orders)

I We are interested in satisfiability, model finding, and deduction

I Constraint Satisfaction Problems
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Introduction CSP

CSP – Definition

Definition
A constraint satisfaction problem (CSP) is given by

I a set V of n variables {v1, . . . , vn},
I for each vi , a value domain Di

I constraints (relations over subsets of the variables)

Tasks:
Find one (or all) solution(s), i. e., tuples

(d1, . . . , dn) ∈ D1 × · · · × Dn

such that the assignment vi 7→ di (1 ≤ i ≤ n) satisfies all constraints.
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Introduction CSP

CSP – Example

k-colorability: Can we color the nodes of a graph with k colors in a way
such that all nodes connected by an edge have different colors?

I The node set is the set of variables

I The domain of each variable is {1, . . . , k}
I The constraints are that nodes connected by an edge must have a

different value

Note: This CSP has a particular restricted form:

I Only binary constraints

I The domains are finite

Other examples: Many problems (e.g. cross-word puzzle, n-queens
problem, configuration, . . . ) can be cast as a CSP (and solved this way)
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Introduction CSP

Our Example: Point relations

I Our point relation CSP is a binary CSP with infinite domains.

I It can be represented as a constraint graph:

< = >

wv

y

< =< =

< =
zx
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Introduction CSP

Computational Complexity

Theorem
It is NP-hard to decide solvability of CSPs, even binary CSPs.

Proof.
Since k-colorability is NP-complete (even for fixed k ≥ 3), solvability of
CSPs in general must be NP-hard.

Question: Is CSP solvability in NP?
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Introduction Solving CSP

Solving CSP

I Enumeration of all assignments and testing

 . . . too costly

I Backtracking search

 1001 different strategies, often “dead” search paths are explored
extensively

I Constraint propagation: elimination of obviously impossible values
followed by backtracking search

I Many other search methods, e.g., local search, stochastic search, etc.

 How do we solve CSP with infinite domains?

Nebel, Helmert, Wölfl (Uni Freiburg) KRR June 17, 2008 14 / 35

Introduction Solving CSP

General Assumptions

I Only at most binary constraints (i.e., we can use constraint graph)

I Uniform domain D for all variables

I Unary constraints Di and binary constraints Rij are sets of values or
sets of pairs of values, resp.

I We assume that for all nodes i , j :

(x , y) ∈ Rij ⇒ (y , x) ∈ Rji
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Introduction Solving CSP

Local Consistency

I A CSP is locally consistent if for particular subsets of the variables,
solutions of the restricted CSP can be extended to solutions of a
larger set of variables.

 Methods to transform a CSP into a tighter, but “equivalent” problem.

Definition
A binary CSP 〈V , D, C 〉 is arc consistent (or 2-consistent) if for all nodes
1 ≤ i , j ≤ n,

x ∈ Di ⇒ ∃y ∈ Dj s. t. (x , y) ∈ Rij

 When a CSP is arc consistent, each one variable assignment {vi} → D that
satisfies all (unary) constraints in vi , i. e., Di , can be extended to a two
variable assignment {vi , vj} → D that satisfies all unary/binary constraints
in these variables, i. e., Di , Dj , and Rij .
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Introduction Solving CSP

Arc Consistency

EnforceArcConsistency (C):
Input: a (binary) CSP C = 〈V , D, C 〉
Output: an equivalent, but arc consistent CSP C′

repeat
for each arc (vi , vj) with Rij ∈ C

Di := Di ∩ {x ∈ D : ex. y ∈ Dj s. t. (x , y) ∈ Rij}
endfor

until no domain is changed

I Terminates in time O(n3 · k3) if we have finite domains (where k is
the number of values)

 There exist different (more efficient) algorithms for enforcing arc
consistency.
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Introduction Solving CSP

Arc Consistency

Lemma

I Enforcing arc consistency yields an arc consistent CSP.

I Enforcing arc consistency is solution invariant, i. e. it does not change
the set of solutions.

 Arc consistent CSPs need not be consistent, and vice versa.
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Introduction Solving CSP

Arc Consistency – Example

D1 = {1, 2, 3}
D2 = {2, 3}
D3 = {2}
Rij = ′′ 6=′′ for i 6= j

1. D1 := D1 ∩ {x : y ∈ D3 ∧ (x , y) ∈ R13} = {1, 3}
2. D2 := D2 ∩ {x : y ∈ D3 ∧ (x , y) ∈ R23} = {3}
3. D1 := D1 ∩ {x : y ∈ D2 ∧ (x , y) ∈ R12} = {1}
4. CSP is now arc consistent

I Since all unary constraints are singletons, this defines a solution of the
CSP.

I Since enforcing arc consistency does not change the set of solutions,
this is a unique solution of the original CSP.
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Introduction Solving CSP

Local Consistency (2): Path Consistency

Definition
A binary CSP 〈V , D, C 〉 is said to be path consistent (or 3-consistent) if
for all nodes 1 ≤ i , j , k ≤ n,

x ∈ Di , y ∈ Dj , (x , y) ∈ Rij ⇒
∃z ∈ Dk s. t. (x , z) ∈ Rik and (y , z) ∈ Rjk

 When a CSP is path consistent, each two variable assignment {vi , vj} → D
satisfying all constraints in vi and vj can be extended to any three variable
assignment {vi , vj , vk} → D such that all constraints in these variables are
satisfied.
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Introduction Solving CSP

Path Consistency

EnforcePathConsistency (C):
Input: a (binary) CSP C = 〈V , D, C 〉 of size n
Output: an equivalent, but path consistent CSP C′

repeat
for all 1 ≤ i , j , k ≤ n

Rij := Rij ∩
{(x , y) : ex. z ∈ Dk s. t. (x , z) ∈ Rik and (y , z) ∈ Rjk}

endfor
until no binary constraint is changed

 Terminates in time O(n5 · k5) if we have finite domains (where k is
the number of values)

 Enforcing path consistency is solution invariant.
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Introduction Solving CSP

Local Consistency (3):
k-Consistency and Strong k-Consistency

Definition

I A binary CSP 〈V , D, C 〉 is k-consistent if, given variables x1, . . . , xk

and an assignment a : {x1, . . . , xk−1} → D that satisfies all
constraint in these variables, a can be extended to an assignment
a′ : {x1, . . . , xk} → D that satisfies all constraints in these k
variables.

I A binary CSP 〈V , D, C 〉 is strongly k-consistent if it is k ′-consistent
for each k ′ ≤ k .

I A binary CSP 〈V , D, C 〉 is globally consistent if it is strongly
n-consistent where n is the size of V .
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Introduction Solving CSP

Local Consistency (3)

I k-consistency: The computation costs grow exponentially with k .

I If a CSP is globally consistent, then
I a solution can be constructed in polynomial time,

I its constraints are minimal,

I and it has a solution iff there is no empty constraint.

I k-consistent 6⇒ k − 1-consistent
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Introduction Qualitative CSP

Qualitative Reasoning with CSP

If we want to use CSPs for qualitative reasoning, we have

I infinite domains

I mostly only finitely many relations (basic relations and their unions)

I arc consistent CSPs (usually)

Questions:

I How do we achieve k-consistency (for some fixed k)?

I Is k-consistency (for some fixed k) enough to guarantee global
consistency?
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Introduction Qualitative CSP

Operations on Binary Relations

Composition:

R1 ◦ R2 =
{

(x , y) ∈ D2 : ∃z ∈ D s. t. (x , z) ∈ R1 and (z , y) ∈ R2

}
Converse:

R−1 =
{

(x , y) ∈ D2 : (y , x) ∈ R
}

Intersection:
R1 ∩ R2 =

{
(x , y) ∈ D2 : (x , y) ∈ R1 and (x , y) ∈ R2

}
Union:

R1 ∪ R2 =
{

(x , y) ∈ D2 : (x , y) ∈ R1 or (x , y) ∈ R2

}
Complement:

R =
{

(x , y) ∈ D2 : (x , y) 6∈ R
}
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Introduction Qualitative CSP

Conditions on Vocabulary for Qualitative Reasoning

I Let B be a finite set of (binary) base relations.

 The relations in B should be JEPD, i. e., jointly exhaustive and
pairwise disjoint.

I B should be closed under converse.

I Let A be the set of relations that can be built by taking the unions of
relations from B ( 2|B| different relations).

 A is closed under converse, complement, intersection and union.

I A should be closed under composition of base relations, i. e., for all
B, B ′ ∈ B, B ◦ B ′ ∈ A.

 A is closed under composition of arbitrary relations.

 This condition does not hold necessarily.
Example: B = {<, =, >} interpreted over the integers is not closed
under composition (and has no finite closure):

< ◦< = < \ {(i , j) : i = j − 1} ( <
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Introduction Qualitative CSP

Computing Operations on Relations
Let A be a relation system over the set of base relations B that satisfies
the conditions spelled out above.

 We may write relations as sets of base relations:

B1 ∪ · · · ∪ Bn ∼ {B1, . . . ,Bn}

Then the operations on the relations can be computed as follows:

Composition:

{B1, . . . Bn} ◦ {B ′1, . . . ,B ′m} =
n⋃

i=1

m⋃
j=1

(Bi ◦ B ′j )

Converse:
{B1, . . . ,Bn}−1 = {B−1

1 , . . . ,B−1
n }

Complement:
{B1, . . . ,Bn} = {B ∈ B : B 6= Bi , for each 1 ≤ i ≤ n}

Intersection and union are defined set-theoretically.

Nebel, Helmert, Wölfl (Uni Freiburg) KRR June 17, 2008 27 / 35

Introduction Qualitative CSP

Reasoning Problems

Given a qualitative CSP:

CSP-Satisfiability (CSAT):

I Is the CSP satisfiable/solvable?

CSP-Entailment (CENT):

I Given in addition xRy : Is xRy satisfied in each solution of the CSP?

Computation of an equivalent minimal CSPs (CMIN):

I Compute for each pair x , y the strongest constrained (minimal)
relation entailed by the CSP.

 These problems are equivalent under Turing reductions
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Introduction Qualitative CSP

Reductions between CSP Problems

Theorem
CSAT, CENT and CMIN are equivalent under polynomial Turing
reductions.

Proof.
CSAT ≤T CENT and CENT ≤T CMIN are obvious.

CENT ≤T CSAT: We solve CENT (CSP |= xRy?) by testing satisfiability
of the CSP extended by x{B}y where B ranges over all base relations.
Let B1, . . . ,Bk be the relations for which we get a positive answer. Then
x{B1, . . . ,Bk}y is entailed by the CSP.

CMIN ≤T CENT: We use entailment for computing the minimal
constraint for each pair. Starting with the universal relation, we remove
one base relation until we have a minimal relation that is still entailed.
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Introduction Qualitative CSP

Path Consistency for Qualitative CSPs

Given a qualitative CSP with Rij = R−1
ji . Then path consistency can be

enforced by doing the following:

Rij := Rij ∩ (Rik ◦ Rkj).

Path consistency guarantees . . .

I sometimes minimality

I sometimes satisfiability

I however sometimes the CSP is not satisfiable, even if the CSP
contains only base relations

 All this depends on the vocabulary.
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Introduction Qualitative CSP

Example: Point Relations

Composition table:

< = >

< < < <, =, >

= < = >

> <, =, > > >

Figure: Composition table for the point algebra. For example: {<} ◦ {=} = {<}

I {<, =} ◦ {<} = {<}
I {<, >} ◦ {<} = {<, =, >}
I {<, =}−1 = {>, =}
I {<, =} ∩ {>, =} = {=}
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Introduction Qualitative CSP

Some Properties of the Point Relations

Theorem
A path consistent CSP over the point relations is consistent.

Corollary

CSAT, CENT and CMIN are polynomial problems for the point relations.

Theorem
A path consistent CSP over all point relations without {<, >} is minimal.

Proofs later . . .
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Introduction Outlook

Outlook

I Qualitative representation and reasoning usually starts with a finite
vocabulary (a finite set of relations).

I Qualitative descriptions are usually simply logical theories consisting
of sets of atomic formulae (and some background theory).

I Reasoning problems are (as usual) satisfiability, model finding, and
deduction.

I Can be addressed with CSP methods (but note: infinite domains).

I Path consistency is the basic reasoning step . . . sometimes this is
enough.

I Usually, path-consistent atomic CSPs are satisfiable. However, there
exist some pathological relation systems.

I Can be taken further  relation algebra
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