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System C Motivation

Motivation

I Conventional NM logics are based on (ad hoc) modifications of the
logical machinery (proofs/models).

I Nonmonotonicity is only a negative characterization: If we have
Θ |∼ ϕ, we do not necessarily have Θ ∪ {ψ} |∼ ϕ.

I Could we have a constructive positive characterization of default
reasoning?
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System C Motivation

Plausible Consequences

I In conventional logic, we have the logical consequence relation
α |= β: If α is true, then also β is true.

I Instead, we will study the relation of plausible consequence α |∼ β: if
α is all we know, can we conclude β?

I α |∼ β does not imply α ∧ α′ |∼ β!
Compare to conditional probability: P(β|α) 6= P(β|α, α′)!

I Find rules characterizing |∼: for example, if α |∼ β and α |∼ γ, then
α |∼ β ∧ γ.

I Write down all such rules!

I Perhaps we find a semantic characterization of |∼.

Nebel, Helmert, Wölfl (Uni Freiburg) KRR June 3, 2008 4 / 59



System C Properties

Desirable Properties 1: Reflexivity

I Reflexivity:

α |∼ α

I Rationale: If α holds, this normally implies α.
I Example: Tom goes to a party normally implies that Tom goes to

a party.
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System C Properties

Reflexivity in Default Logic

Plausible consequence as Reasoning in Default Logic

Let us consider relations |∼∆ that are defined in terms of Default Logic.
α |∼〈D,W 〉 β means that β is a skeptical conclusion of 〈D,W ∪ {α}〉.

Proposition

Default Logic satisfies Reflexivity.

Proof.
The question is: does α skeptically follow from ∆ = 〈D,W ∪ {α}〉?
For all extensions E of ∆, W ∪ {α} ⊆ E by definition. Hence α ∈ E and
α belongs to all extensions of ∆.
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System C Properties

Desirable Properties 2: Left Logical Equivalence

I Left Logical Equivalence:

|= α↔ β, α |∼ γ
β |∼ γ

I Rationale: It is not the syntactic form, but the logical content that is
responsible for what we conclude normally.

I Example: Assume that
Tom goes or Peter goes normally implies Mary goes.
Then we would expect that
Peter goes or Tom goes normally implies Mary goes.
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System C Properties

Left Logical Equivalence in Default Logic

Proposition

Default Logic satisfies Left Logical Equivalence.

Proof.
Assume that |= α↔ β and γ is in all extensions of 〈D,W ∪ {α}〉. The
definition of extensions is invariant under replacing any formula by an
equivalent formula. Hence 〈D,W ∪ {β}〉 has exactly the same extensions,
and γ is in every one of them.
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System C Properties

Desirable Properties 3: Right Weakening

I Right Weakening:
|= α→ β, γ |∼ α

γ |∼ β

I Rationale: If something can be concluded normally, then everything
classically implied should also be concluded normally.

I Example: Assume that
Mary goes normally implies Clive goes and John goes.
Then we would expect that
Mary goes normally implies Clive goes.

I From 1 & 3 supraclassicality follows:

α |∼ α + |=α→β, α|∼α
α|∼β ⇒ α|=β

α|∼β
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System C Properties

Right Weakening in Default Logic

Proposition

Default Logic satisfies Right Weakening.

Proof.
Assume α is in all extensions of a default theory 〈D,W ∪ {γ}〉 and
|= α→ β. Extensions are closed under logical consequence. Hence also β
is in all extensions.
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System C Properties

Desirable Properties 4: Cut

I Cut:
α |∼ β, α ∧ β |∼ γ

α |∼ γ

I Rationale: If part of the premise is plausibly implied by another part of
the premise, then the latter is enough for the plausible conclusion.

I Example: Assume that
John goes normally implies Mary goes.
Assume further that
John goes and Mary goes normally implies Clive goes.
Then we would expect that
John goes normally implies Clive goes.
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System C Properties

Cut in Default Logic

Proposition

Default Logic satisfies Cut.

Proof idea.
Show that every extension E of ∆ = 〈D,W ∪ {α}〉 is also an extension of
∆′ = 〈D,W ∪ {α ∧ β}〉.
Consistency of justifications of defaults is tested against E both in the
W ∪ {α} case and in the W ∪ {α ∧ β} case.
The preconditions that are derivable when starting from W ∪ {α} are also
derivable when starting from W ∪ {α ∧ β}.
W ∪ {α ∧ β} does not allow deriving further preconditions because also
with W ∪ {α} at some point β is derived.
Hence E is also an extension of ∆′.
Hence, because γ belongs to all extensions of ∆′, it also belongs to all
extensions of ∆.
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System C Properties

Desirable Properties 5: Cautious Monotonicity

I Cautious Monotonicity:

α |∼ β, α |∼ γ
α ∧ β |∼ γ

I Rationale: In general, adding new premises may cancel some
conclusions. However, existing conclusions may be added to the
premises without canceling any conclusions!

I Example: Assume that
Mary goes normally implies Clive goes and
Mary goes normally implies John goes.
Mary goes and Jack goes might not normally imply that John goes.
However, Mary goes and Clive goes should normally imply that
John goes.
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System C Properties

Cautious Monotonicity in Default Logic

Proposition

Default Logic does not satisfy Cautious Monotonicity.

Proof.
Consider the default theory 〈D,W 〉 with

D =

{
a : g

g
,

g : b

b
,

b : ¬g

¬g

}
and W = {a}.

E = Th({a, b, g}) is the only extension of 〈D,W 〉 and g follows
skeptically.
For 〈D,W ∪ {b}〉 also Th({a, b,¬g}) is an extension, and g does not
follow skeptically.
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System C Properties

Cumulativity

Lemma
Rules 4 & 5 can be equivalently stated as follows.

If α |∼ β, then the sets of plausible conclusions from α and α∧ β
are identical.

The above property is also called cumulativity.

Proof.
⇒: Assume that 4 & 5 hold and α |∼ β. Assume further that α |∼ γ. With rule 5
(CM), we have α ∧ β |∼ γ. Similarly, from α ∧ β |∼ γ by rule 4 (Cut) we get
α |∼ γ.
Hence the plausible conclusions from α and α ∧ β are the same.

⇐. Assume Cumulativity and α |∼ β. Now we can derive rules 4 and 5.
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System C Properties

The System C

1. Reflexivity

α |∼ α
2. Left Logical Equivalence

|= α↔ β, α |∼ γ
β |∼ γ

3. Right Weakening
|= α→ β, γ |∼ α

γ |∼ β
4. Cut

α |∼ β, α ∧ β |∼ γ
α |∼ γ

5. Cautious Monotonicity
α |∼ β, α |∼ γ
α ∧ β |∼ γ
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System C Derived Rules in C

Derived Rules in C

I Equivalence:
α |∼ β, β |∼ α, α |∼ γ

β |∼ γ
I And:

α |∼ β, α |∼ γ
α |∼ β ∧ γ

I MPC:
α |∼ β → γ, α |∼ β

α |∼ γ
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System C Derived Rules in C

Proofs

Equivalence
Assumption: α |∼ β, β |∼ α, α |∼ γ

Cautious Monotonicity: α ∧ β |∼ γ
Left L Equivalence: β ∧ α |∼ γ

Cut: β |∼ γ

And
Assumption: α |∼ β, α |∼ γ

Cautious Monotonicity: α ∧ β |∼ γ
propositional logic: α ∧ β ∧ γ |= β ∧ γ

Supraclassicality: α ∧ β ∧ γ |∼ β ∧ γ
Cut: α ∧ β |∼ β ∧ γ
Cut: α |∼ β ∧ γ

MPC is an Exercise.
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System C Undesirable Properties

Undesirable Properties 1: Monotonicity and Contraposition

I Monotonicity:
|= α→ β, β |∼ γ

α |∼ γ

I Example: Let us assume that
John goes normally implies Mary goes.
Now we will probably not expect that
John goes and Joan (who is not in talking terms with Mary) goes
normally implies Mary goes.

I Contraposition:
α |∼ β
¬β |∼ ¬α

I Example: Let us assume that
John goes normally implies Mary goes.
Would we expect that
Mary does not go normally implies John does not go?
What if John goes always?
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System C Undesirable Properties

Undesirable Properties 1: Monotonicity

α |= β, β |∼ γ but not α |∼ γ pictorially:

γ

α

β
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System C Undesirable Properties

Undesirable Properties 1: Contraposition

α |∼ β but not ¬β |∼ ¬α pictorially:

α

β
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System C Undesirable Properties

Undesirable Properties 2: Transitivity & EHD

I Transitivity:
α |∼ β, β |∼ γ

α |∼ γ

I Example: Let us assume that
John goes normally implies Mary goes and
Mary goes normally implies Jack goes.
Now, should John goes normally imply that Jack goes? If John
goes very seldom?

I Easy Half of Deduction Theorem (EHD):

α |∼ β → γ

α ∧ β |∼ γ
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System C Undesirable Properties

Undesirable Properties 2: Transitivity

α |∼ β, β |∼ γ but not α |∼ γ pictorially:

γ

α

β
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System C Undesirable Properties

Undesirable Properties 2: EHD

α |∼ β → γ but not α ∧ β |∼ γ pictorially:

α

β

γ
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System C Undesirable Properties

Undesirable Properties 3

Theorem
In the presence of the rules in system C, monotonicity and EHD are
equivalent.

Proof.

Monotonicity ⇒ EHD:

I α |∼ β → γ (assumption)

I α ∧ β |∼ β → γ (monotonicity)

I α ∧ β |∼ α ∧ β (reflexivity)

I α ∧ β |∼ β (right weakening)

I α ∧ β |∼ γ (MPC)

Monotonicity ⇐ EHD:

I |= α→ β, β |∼ γ (assumption)

I β |∼ α→ γ (right weakening)

I β ∧ α |∼ γ (EHD)

I α |∼ γ (left logical equivalence)
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System C Undesirable Properties

Undesirable Properties 4

Theorem
In the presence of the rules in system C, monotonicity and transitivity are
equivalent.

Proof.

Monotonicity ⇒ transitivity:

I α |∼ β, β |∼ γ (assumption)

I α ∧ β |∼ γ (monotonicity)

I α |∼ γ (cut)

Monotonicity ⇐ transitivity:

I |= α→ β, β |∼ γ (assumption)

I α |= β (deduction theorem)

I α |∼ β (supraclassicality)

I α |∼ γ (transitivity)
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System C Undesirable Properties

Undesirable Properties 5

Theorem
In the presence of right weakening, contraposition implies monotonicity.

Proof.

1. |= α→ β, β |∼ γ (assumption)

2. ¬γ |∼ ¬β (contraposition)

3. |= ¬β → ¬α (classical contraposition)

4. ¬γ |∼ ¬α (right weakening)

5. α |∼ γ (contraposition)

Note: Monotonicity does not imply contraposition, even in the presence of
all rules of system C!
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Reasoning Cumulative Closure

Cumulative Closure 1

I How do we reason with |∼ from ϕ to ψ?

I Assumption: We have a set K of conditional statements of the form
α |∼ β.
The question is: Assuming the statements in K, is it plausible to
conclude ψ given ϕ?

I Idea: We consider all cumulative consequence relations that contain
K.

I Remark: It suffices to consider only the minimal cumulative
consequence relations containing K.
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Reasoning Cumulative Closure

Cumulative Closure 2

Lemma
The set of cumulative consequence relations is closed under intersection.

Proof.
Let |∼1 and |∼2 be cumulative consequence relations. We have to show that
|∼1 ∩ |∼2 is a cumulative consequence relation, that is, it satisfies the rules 1–5.

Take any instance of the any of the rules. If the preconditions are satisfied by |∼1

and |∼2, then the consequence is trivially also satisfied by both.

Nebel, Helmert, Wölfl (Uni Freiburg) KRR June 3, 2008 29 / 59

Reasoning Cumulative Closure

Cumulative Closure 3

Theorem
For each finite set of conditional statements K, there exists a unique
smallest cumulative consequence relation containing K.

Proof.
Assume the contrary, i.e., there are incomparable minimal sets K1, . . . ,Km. Then

K = K1 ∩ · · · ∩Km is a unique smallest cumulative consequence relation

containing K: contradiction.

This relation is the cumulative closure KC of K.
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Semantics Cumulative Models

Cumulative Models – informally

I We will now try to characterize cumulative reasoning
model-theoretically.

I Idea: Cumulative models consist of states ordered by a preference
relation.

I States characterize beliefs.

I The preference relation expresses the normality of the beliefs.

I We say: α |∼ β is accepted in a model if in all most preferred states
in which α is true, also β is true.
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Semantics Cumulative Models

Preference Relation

I Let ≺ be a binary relation on a set U.
≺ is asymmetric iff

s ≺ t implies t 6≺ s for all s, t ∈ U.

I Let V ⊆ U and ≺ be a binary relation on U.
I t ∈ V is minimal in V iff s 6≺ t for all s ∈ V .
I t ∈ V is a minimum of V (a smallest element in V ) iff t ≺ s for all

s ∈ V such that s 6= t.

I Let P ⊆ U and ≺ be a binary relation on U.
P is smooth iff for all t ∈ P, either t is minimal in P or there is s ∈ P
such that s is minimal in P and s ≺ t.

I Note: ≺ is not a partial order but an arbitrary relation!
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Semantics Cumulative Models

Cumulative Models – formally

I Let U be the set of all possible worlds (propositional interpretations).
I A cumulative model W is a triple 〈S , l ,≺〉 such that

1. S is a set of states,
2. l is a mapping l : S → 2U , and
3. ≺ is an arbitrary binary relation

such that the smoothness condition is satisfied (see below).

I A state s ∈ S satisfies a formula α (s |≡ α) iff m |= α for all
propositional interpretations m ∈ l(s).
The set of states satisfying α is denoted by α̂.

I Smoothness condition: A cumulative model satisfies this condition iff
for all formulae α, α̂ is smooth.
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Semantics Consequence Relations

Consequence Relation Induced by a Cumulative Model

A cumulative model W induces a consequence relation |∼W as follows:

α |∼W β iff s |≡ β for every minimal s in α̂.

Example

Model W = 〈{s1, s2, s3}, l ,≺〉 with s1 ≺ s2, s2 ≺ s3, s1 ≺ s3

l(s1) =
{
{¬p, b, f }

}
l(s2) =

{
{p, b,¬f }

}
l(s3) =

{
{¬p,¬b, f }, {¬p,¬b,¬f }

}
Does W satisfy the smoothness condition?
¬p ∧ ¬b |∼ f ? N Also: ¬p ∧ ¬b 6|∼ ¬f !
p |∼ ¬f ? Y
¬p |∼ f ? Y
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Semantics Consequence Relations

Soundness 1

Theorem
If W is a cumulative model, then |∼W is a cumulative consequence
relation.

Proof.

I Reflexivity: satisfied
√

.

I Left logical equivalence: satisfied
√

.

I Right weakening: satisfied
√

.

I Cut: α |∼ β, α ∧ β |∼ γ ⇒ α |∼ γ. Assume that all minimal elements

of α̂ satisfy β, and all minimal elements of α̂ ∧ β satisfy γ. Every

minimal element of α̂ satisfies α ∧ β. Since α̂ ∧ β ⊆ α̂, all minimal

elements of α̂ are also minimal elements of α̂ ∧ β. Hence α |∼W γ.
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Semantics Consequence Relations

Soundness 2

Proof continues...

I Cautious Monotonicity: To show: α |∼ β, α |∼ γ ⇒ α ∧ β |∼ γ.

Assume α |∼W β and α |∼W γ. We have to show: α ∧ β |∼W γ, i.e., s |≡ γ
for all minimal s ∈ α̂ ∧ β.

Clearly, every minimal s ∈ α̂ ∧ β is in α̂.

We show that every minimal s ∈ α̂ ∧ β is minimal in α̂.

Assumption: There is s that is minimal in α̂ ∧ β but not minimal in α̂.
Because of smoothness there is minimal s ′ ∈ α̂ such that s ′ ≺ s. We know,
however, that s ′ |≡ β, which means that s ′ ∈ α̂ ∧ β. Hence s is not minimal

in α̂ ∧ β. Contradiction! Hence s must be minimal in α̂, and therefore

s |≡ γ. Because this is true for all minimal elements in α̂ ∧ β, we get
α ∧ β |∼W γ.
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Semantics Consequence Relations

Consequence: Counterexamples

Now we have a method for showing that a principle does not hold for
cumulative consequence relations.  Simply construct a cumulative
model that falsifies the principle.
Contraposition: α |∼ β ⇒ ¬β |∼ ¬α

W = 〈S , l ,≺〉
S = {s1, s2}, si 6≺ sj ∀si , sj ∈ S

l(s1) =
{
{a, b}

}
l(s2) =

{
{a,¬b}, {¬a,¬b}

}
W is a cumulative model with a |∼W b but ¬b 6|∼W ¬a.
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Semantics Consequence Relations

Completeness?

I Each cumulative model W induces a cumulative consequence relation
|∼W .

I Problem: Can we generate all cumulative consequence relations in
this way?

I We can! There is a representation theorem: For each cumulative
consequence relation, there is a cumulative model and vice versa.

I Advantage: We have a characterization of the cumulative
consequence independently from the set of inference rules.
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Semantics Consequence Relations

Transitivity of the Preference Relation?

I Could we strengthen the preference relation to transitive relations
without sacrificing anything?
No!

I In such models, the following additional principle called Loop is valid:

α0 |∼ α1, α1 |∼ α2, . . . , αk |∼ α0

α0 |∼ αk

I For the system CL = C + Loop and cumulative models with transitive
preference relations, we could prove another representation theorem.
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Semantics Consequence Relations

The Or Rule

Or rule:
α |∼ γ, β |∼ γ
α ∨ β |∼ γ

Not true in C. Counterexample:

W = 〈S , l ,≺〉
S = {s1, s2, s3}, si 6≺ sj ∀si , sj ∈ S

l(s1) =
{
{a, b, c}, {a,¬b, c}

}
l(s2) =

{
{a, b, c}, {¬a, b, c}

}
l(s3) =

{
{a, b,¬c}, {a,¬b,¬c}, {¬a, b,¬c}

}
a |∼W c , b |∼W c but a ∨ b 6|∼W c .
Note: Or is not valid in DL.
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Preferential Reasoning Preferential Relations

System P

I System P contains all rules of C and the Or rule.

I A consequence relation that satisfies P is called preferential.
I Derived rules in P:

I Hard half of deduction theorem (S):

α ∧ β |∼ γ
α |∼ β → γ

I Proof by case analysis (D):

α ∧ ¬β |∼ γ, α ∧ β |∼ γ
α |∼ γ

I D and Or are equivalent in the presence of the rules in C.
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Preferential Reasoning Preferential Relations

Preferential Models

Definition
A cumulative model W = 〈S , l ,≺〉 such that ≺ is a strict partial order
(irreflexive and transitive) and |l(s)| = 1 for all s ∈ S is a preferential
model.
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Preferential Reasoning Preferential Relations

Preferential Models

Theorem (Soundness)

The consequence relation |∼W induced by a preferential model is
preferential.

Proof.
Since W is cumulative, we only have to verify that Or holds. Note that in

preferential models we have α̂ ∨ β = α̂ ∪ β̂. Suppose α |∼W γ and β |∼W γ.

Because of the above equation, each minimal state of α̂ ∨ β is minimal in α̂ ∪ β̂.
Since γ is satisfied in all minimal states in α̂ ∪ β̂, γ is also satisfied in all minimal

states of α̂ ∨ β. Hence α ∨ β |∼W γ.
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Preferential Reasoning Preferential Relations

Preferential Models

Theorem (Representation)

A consequence relation is preferential iff it is induced by a preferential
model.

Proof.
Similar to the one for C.
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Preferential Reasoning Preferential Relations

Summary of Consequence Relations

System Models
C
Reflexivity States: sets of worlds
Left Logical Equivalence Preference relation: arbitrary
Right Weakening Models must be smooth
Cut
Cautious Monotonicity

CL
+ Loop Preference relation: strict partial order
P
+ Or States: singletons
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Preferential Reasoning Preferential Relations

Strengthening the Consequence Relation

I System C and System P do not produce many of the inferences one
would hope for:

Given K = {Bird |∼ Flies} one cannot conclude
Red ∧ Bird |∼ Flies!

I In general, adding information that is irrelevant cancels the plausible
conclusions. =⇒ Cumulative and Preferential consequence relations
are too nonmonotonic.

I The plausible conclusions have to be strengthened!
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Preferential Reasoning Preferential Relations

Strengthening the Consequence Relations

I The rules so far seem to be reasonable and one cannot think of rules
of the same form (if we have some plausible implications, other
plausible implications should hold) that could be added.

I However, there are other types of rules one might want add.

I Disjunctive Rationality:

α 6|∼ γ , β 6|∼ γ
α ∨ β 6|∼ γ

I Rational Monotonicity:

α |∼ γ , α 6|∼ ¬β
α ∧ β |∼ γ

I Note: Consequence relations obeying these rules are not closed under
intersection, which is a problem.
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Probabilistic Semantics ε-Semantics

Probabilistic View of Plausible Consequences

I Consider probability distributions P on the set M of all propositional
interpretations m ∈M of our language.

I P(m) is the probability of the possible world m.

I Extend this to probability of formulae:

P(α) =
∑
{P(m)|m ∈M,m |= α}

I Conditional probability is defined in the standard way.

P(β|α) =
P(α ∧ β)

P(α)
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Probabilistic Semantics ε-Semantics

ε-Entailment

Definition
α |∼ β is ε-entailed by a set K iff for all ε > 0 there is δ > 0 such that
P(β|α) ≥ 1− ε for all probability distributions P such that
P(β′|α′) ≥ 1− δ for all α′ |∼ β′ ∈ K .
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Probabilistic Semantics ε-Semantics

ε-Entailment: Example

One probability distribution P such that P(f |b) ≥ 0.9, P(¬f |p) ≥ 0.9 and
P(b|p) ≥ 0.9 is the following.

p b f P
w1 0 0 0 0.00
w2 0 0 1 0.00
w3 0 1 0 0.00
w4 0 1 1 0.99
w5 1 0 0 0.00
w6 1 0 1 0.00
w7 1 1 0 0.01
w8 1 1 1 0.00

P(f |b) = P(w4)+P(w8)
P(w3)+P(w4)+P(w7)+P(w8)

= 0.99
1.00

P(¬f |p) = P(w5)+P(w7)
P(w5)+P(w6)+P(w7)+P(w8)

= 0.01
0.01

P(b|p) = P(w7)+P(w8)
P(w5)+P(w6)+P(w7)+P(w8)

= 0.01
0.01
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Properties of ε-Entailment

Theorem
α |∼ β is in all preferential consequence relations that include K if and
only if α |∼ β is ε-entailed by K .

So, System P provides a proof system that exactly corresponds to
ε-entailment.
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Weakness of ε-Entailment

I Question: Why is Eagle |∼ Flies not an ε-consequence of
K = {Eagle |∼ Bird,Bird |∼ Flies}?

I Answer: Because there are probability distributions that
simultaneously assign very high probabilities to P(Bird|Eagle) and
P(Flies|Bird) and a low probability to P(Flies|Eagle).

I K does not justify the low probability of P(Flies|Eagle): there are
exactly as many worlds satisfying Bird ∧ Eagle ∧ Flies and
Bird ∧ Eagle ∧ ¬Flies, and the worlds satisfying Bird ∧ Flies have a
much higher probability that those satisfying Bird ∧ ¬Flies.
Why should the probabilities for eagles be the other way round?

I We would like to restrict to probability distributions that are not
biased toward non-flying eagles without a reason.
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Entropy of a Probability Distribution

Definition
The entropy of a probability distribution P is

H(P) = −
∑

m∈M
P(m) log P(m)

The probability distribution with the highest entropy is the one that
assigns the same probability to every world.
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ME-Entailment

Definition
α |∼ β is ME-entailed by a set K iff for all ε > 0 there is δ > 0 such that
P(β|α) ≥ 1− ε for the distribution P that has the maximum entropy
among distributions satisfying P(β′|α′) ≥ 1− δ for all α′ |∼ β′ ∈ K .
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Entropy of a Probability Distribution: Example

The distribution P that has the maximum entropy among distributions
such that P(b|e) ≥ 0.9 and P(f |b) ≥ 0.9 is the following.

e b f P
w1 0 0 0 0.1875
w2 0 0 1 0.1875
w3 0 1 0 0.0292
w4 0 1 1 0.1875
w5 1 0 0 0.0204
w6 1 0 1 0.0204
w7 1 1 0 0.0292
w8 1 1 1 0.3380

P(f |b) = P(w4)+P(w8)
P(w3)+P(w4)+P(w7)+P(w8)

= 0.5255
0.5839 = 0.9000

P(b|e) = P(w7)+P(w8)
P(w5)+P(w6)+P(w7)+P(w8)

= 0.3672
0.4080 = 0.9000

P(f |e) = P(w6)+P(w8)
P(w5)+P(w6)+P(w7)+P(w8)

= 0.3584
0.4080 = 0.8784
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ME-Entailment: Examples

1. {Eagle |∼ Bird,Bird |∼ Flies} ME-entails Eagle |∼ Flies

2. {Penguin |∼ Bird,Bird |∼ Flies,Penguin |∼ ¬Flies} ME-entails
Bird ∧ Penguin |∼ ¬Flies

3. {Eagle |∼ Bird} ME-entails ¬Bird |∼ ¬Eagle
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Summary

I Instead of ad hoc extensions of the logical machinery, analyze the
properties of nonmonotonic consequence relations.

I Correspondence between rule system and models for System C, and
for System P also wrt a probabilistic semantics.

I Irrelevant information poses a problem. Solution approaches: rational
monotonicity, maximum entropy.
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