Principles of Knowledge Representation and Reasoning

Nonmonotonic Reasoning II:
Minimal Models and Nonmonotonic Logic Programs

Bernhard Nebel, Malte Helmert and Stefan Wölfl

Albert-Ludwigs-Universität Freiburg
May 20 \& 23, 2008

Minimal Model Reasoning

- Conflicts between defaults in default logic lead to multiple extensions
- Each extension corresponds to a maximal set of non-violated defaults
- Reasoning with defaults can also be achieved by a simpler mechanism: predicate or propositional logic + minimize the number of cases where a default (expressed as a conventional formula) is violated
\Longrightarrow minimal models
- Notion of minimality: cardinality vs. set-inclusion

Entailment with respect to Minimal Models

Definition

Let A be a set of atomic propositions. Let Φ be a set of propositional formulae on A, and $B \subseteq A$ a set (called abnormalities).
Then $\Phi \models_{B} \psi(\psi B$-minimally follows from $\Phi)$ if $\mathcal{I} \models \psi$ for all interpretations \mathcal{I} such that $\mathcal{I} \models \Phi$ and there is no \mathcal{I}^{\prime} such that $\mathcal{I}^{\prime} \models \Phi$ and $\left\{b \in B \mid \mathcal{I}^{\prime} \models b\right\} \subsetneq\{b \in B \mid \mathcal{I} \models b\}$.

Minimal models: example

$\Phi=\left\{\begin{array}{ll}\text { student } \wedge \neg \text { ABstudent } \rightarrow \neg \text { earnsmoney, } & \text { student }, \\ \text { adult } \wedge \neg \text { ABadult } \rightarrow \text { earnsmoney, } & \text { student } \rightarrow \text { adult }\end{array}\right\}$

Minimal
Model
Reasoning
Motivation
Definition
Example
Embedding in
NMLP
$\mathcal{I}_{1} \models$ student \wedge adult \wedge earnsmoney \wedge ABstudent \wedge ABadult $\mathcal{I}_{2} \models$ student \wedge adult $\wedge \neg$ earnsmoney \wedge ABstudent \wedge ABadult $\mathcal{I}_{3} \models$ student \wedge adult \wedge earnsmoney \wedge ABstudent $\wedge \neg$ ABadult $\mathcal{I}_{4} \models$ student \wedge adult $\wedge \neg$ earnsmoney $\wedge \neg$ ABstudent \wedge ABadult

Relation to Default Logic

We can embed propositional minimal model reasoning in the propositional default logic.

Minimal
Model
Reasoning
Motivation
Definition
Example
Embedding in

NMLP

$$
D=\left\{\left.\frac{: \neg b}{\neg b} \right\rvert\, b \in B\right\} \text { and } W=\Phi
$$

Relation to Default Logic: Proof

Proof sketch.

" \Rightarrow ": Assume there is extension E of $\langle D, W\rangle$ such that $\psi \notin E$. Hence there is an interpretation \mathcal{I} such that $\mathcal{I} \models E$ and $\mathcal{I} \models \neg \psi$.

Now $\mathcal{I} \models E$ and because $\mathcal{I} \not \vDash \psi, \psi \notin E$
We can show that E is an extension of $\langle D, W\rangle$
Because there is an extension E such that $\psi \notin E, \psi$ does not skeptically follow from $\langle D, W\rangle$.

Relation to Default Logic: Proof

Proof sketch.

$" \Rightarrow$ ": Assume there is extension E of $\langle D, W\rangle$ such that $\psi \notin E$. Hence there is an interpretation \mathcal{I} such that $\mathcal{I} \models E$ and $\mathcal{I} \models \neg \psi$. By the fact that there is no extension F such that $E \subset F, \mathcal{I}$ is a B-minimal model of Φ. Hence ψ does not B-minimally follow from Φ.

" \Leftarrow ": Assume ψ does not B-minimally follow from Φ. Hence there is

Relation to Default Logic: Proof

Proof sketch.

" \Rightarrow " : Assume there is extension E of $\langle D, W\rangle$ such that $\psi \notin E$. Hence there is an interpretation \mathcal{I} such that $\mathcal{I} \models E$ and $\mathcal{I} \models \neg \psi$. By the fact that there is no extension F such that $E \subset F, \mathcal{I}$ is a B-minimal model of Φ. Hence ψ does not B-minimally follow from Φ.
" \Leftarrow ": Assume ψ does not B-minimally follow from Φ. Hence there is

$$
E=\operatorname{Th}(\Phi \cup\{\neg b \mid b \in B, \mathcal{I} \models \neg b\}) .
$$

Now $\mathcal{I} \models E$ and because $\mathcal{I} \not \models \psi, \psi \notin E$.
We can show that E is an extension of $\langle D, W\rangle$
Because there is an extension E such that $\psi \notin E, \psi$ does not skeptically follow from

Relation to Default Logic: Proof

Proof sketch.

" \Rightarrow " : Assume there is extension E of $\langle D, W\rangle$ such that $\psi \notin E$. Hence there is an interpretation \mathcal{I} such that $\mathcal{I} \models E$ and $\mathcal{I} \models \neg \psi$. By the fact that there is no extension F such that $E \subset F, \mathcal{I}$ is a B-minimal model of Φ. Hence ψ does not B-minimally follow from Φ.
" \Leftarrow ": Assume ψ does not B-minimally follow from Φ. Hence there is

$$
E=\operatorname{Th}(\Phi \cup\{\neg b \mid b \in B, \mathcal{I} \models \neg b\}) .
$$

Now $\mathcal{I} \models E$ and because $\mathcal{I} \not \vDash \psi, \psi \notin E$. We can show that E is an extension of $\langle D, W\rangle$.
Because there is an extension E such that $\psi \notin E, \psi$ does not skeptically follow from

Relation to Default Logic: Proof

Proof sketch.

" \Rightarrow " : Assume there is extension E of $\langle D, W\rangle$ such that $\psi \notin E$. Hence there is an interpretation \mathcal{I} such that $\mathcal{I} \models E$ and $\mathcal{I} \models \neg \psi$. By the fact that there is no extension F such that $E \subset F, \mathcal{I}$ is a B-minimal model of Φ. Hence ψ does not B-minimally follow from Φ.
" \Leftarrow ": Assume ψ does not B-minimally follow from Φ. Hence there is

$$
E=\operatorname{Th}(\Phi \cup\{\neg b \mid b \in B, \mathcal{I} \models \neg b\})
$$

Now $\mathcal{I} \models E$ and because $\mathcal{I} \not \models \psi, \psi \notin E$. We can show that E is an extension of $\langle D, W\rangle$.
Because there is an extension E such that $\psi \notin E, \psi$ does not skeptically follow from $\langle D, W\rangle$.

Nonmonotonic Logic Programs: Background

- Answer set semantics: a formalization of negation-as-failure in logic programming (Prolog)
- Other formalizations: well-founded semantics, perfect-model semantics, inflationary semantics,
- Can be viemed as a simpler variant of default Ingic.
- A better alternative to the propositional logic in some applications.

Nonmonotonic Logic Programs: Background

- Answer set semantics: a formalization of negation-as-failure in logic programming (Prolog)
- Other formalizations: well-founded semantics, perfect-model semantics, inflationary semantics, ...
- Can be viewed as a simpler variant of default logic.

Minimal
Model
Reasoning
NMLP
Motivation
Answer Sets
Complexity
Stratification
Applications
Literature

Nonmonotonic Logic Programs: Background

- Answer set semantics: a formalization of negation-as-failure in logic programming (Prolog)
- Other formalizations: well-founded semantics, perfect-model semantics, inflationary semantics, ...
- Can be viewed as a simpler variant of default logic.

Minimal
Model
Reasoning
NMLP
Motivation
Answer Sets
Complexity
Stratification
Applications
Literature

- A better alternative to the propositional logic in some applications.

Nonmonotonic Logic Programs

- Rules $c \leftarrow b_{1}, \ldots, b_{m}$, not d_{1}, \ldots, not d_{k} where $\left\{c, b_{1}, \ldots, b_{m}, d_{1}, \ldots, d_{k}\right\} \subseteq A$ for a set $A=\left\{a_{1}, \ldots, a_{n}\right\}$ of propositions.
- Meaning similar to default logic: If (1) we have derived b_{1}, \ldots, b_{m} and
(2) cannot derive any of d_{1}, \ldots, d_{k} then derive c
- Rules without right-hand side:
- Rules without left-hand side: $\leftarrow b_{1}, \ldots, b_{m}$, not $d_{1}, \ldots, \operatorname{not} d_{k}$

Nonmonotonic Logic Programs

- Rules $c \leftarrow b_{1}, \ldots, b_{m}$, not d_{1}, \ldots, not d_{k} where $\left\{c, b_{1}, \ldots, b_{m}, d_{1}, \ldots, d_{k}\right\} \subseteq A$ for a set $A=\left\{a_{1}, \ldots, a_{n}\right\}$ of propositions.
- Meaning similar to default logic: If
(1) we have derived b_{1}, \ldots, b_{m} and
(2) cannot derive any of d_{1}, \ldots, d_{k}, then derive c.

Minimal
Model
Reasoning
NMLP
Motivation
Answer Sets
Complexity
Stratification
Applications
Literature

Nonmonotonic Logic Programs

- Rules $c \leftarrow b_{1}, \ldots, b_{m}$, not d_{1}, \ldots, not d_{k} where $\left\{c, b_{1}, \ldots, b_{m}, d_{1}, \ldots, d_{k}\right\} \subseteq A$ for a set $A=\left\{a_{1}, \ldots, a_{n}\right\}$ of propositions.
- Meaning similar to default logic: If
(1) we have derived b_{1}, \ldots, b_{m} and
(2) cannot derive any of d_{1}, \ldots, d_{k}, then derive c.

Minimal
Model
Reasoning
NMLP
Motivation
Answer Sets
Complexity
Stratification
Applications
Literature

- Rules without right-hand side: $c \leftarrow$
- Rules without left-hand side: $\leftarrow b_{1}, \ldots, b_{m}, \operatorname{not} d_{1}, \ldots, \operatorname{not} d_{k}$

Nonmonotonic Logic Programs

- Rules $c \leftarrow b_{1}, \ldots, b_{m}$, not d_{1}, \ldots, not d_{k} where $\left\{c, b_{1}, \ldots, b_{m}, d_{1}, \ldots, d_{k}\right\} \subseteq A$ for a set $A=\left\{a_{1}, \ldots, a_{n}\right\}$ of propositions.
- Meaning similar to default logic: If
(1) we have derived b_{1}, \ldots, b_{m} and
(2) cannot derive any of d_{1}, \ldots, d_{k}, then derive c.

Minimal
Model
Reasoning
NMLP
Motivation
Answer Sets
Complexity
Stratification
Applications
Literature

- Rules without right-hand side: $c \leftarrow$
- Rules without left-hand side:
$\leftarrow b_{1}, \ldots, b_{m}$, not d_{1}, \ldots, not d_{k}

Answer Sets - Formal Definition

- Reduct of a program P with respect to a set of atoms $\Delta \subseteq A$:

$$
\begin{aligned}
P^{\Delta}:= & \left\{c \leftarrow b_{1}, \ldots, b_{m} \mid\right. \\
& \left(c \leftarrow b_{1}, \ldots, b_{m}, \text { not } d_{1}, \ldots, \operatorname{not} d_{k}\right) \in P, \\
& \left\{d_{1}, \ldots, d_{k}\right\} \cap \Delta=\emptyset
\end{aligned}
$$

- The closure $\operatorname{dcl}(P) \subseteq A$ of a set P of rules without not is defined by iterative application of the rules in the obvious way.
- A set of propositions $\Delta \subseteq A$ is an answer set of P iff $\Delta=\operatorname{dcl}\left(P^{\Delta}\right)$.

Answer Sets - Formal Definition

- Reduct of a program P with respect to a set of atoms $\Delta \subseteq A$:

$$
\begin{aligned}
P^{\Delta}:= & \left\{c \leftarrow b_{1}, \ldots, b_{m} \mid\right. \\
& \left(c \leftarrow b_{1}, \ldots, b_{m}, \text { not } d_{1}, \ldots, \text { not } d_{k}\right) \in P, \\
& \left\{d_{1}, \ldots, d_{k}\right\} \cap \Delta=\emptyset
\end{aligned}
$$

- The closure $\operatorname{dcl}(P) \subseteq A$ of a set P of rules without not is defined by iterative application of the rules in the obvious way.
- A set of propositions $\Delta \subseteq A$ is an answer set of P iff $\Delta=\operatorname{dcl}\left(P^{\Delta}\right)$.

Examples

- $P_{1}=\{a \leftarrow, \quad b \leftarrow a, \quad c \leftarrow b\}$
- $P_{2}=\{a \leftarrow b, \quad b \leftarrow a\}$
- $P_{3}=\{p \leftarrow \operatorname{not} p\}$
- $P_{4}=\{p \leftarrow \operatorname{not} q, \quad q \leftarrow \operatorname{not} p\}$

Minimal
Model
Reasoning
NMLP
Motivation
Answer Sets
Complexity
Stratification
Applications
Literature

Examples

Nebel, Helmert WölfI

Minimal

- $P_{1}=\{a \leftarrow, \quad b \leftarrow a, \quad c \leftarrow b\}$
- $P_{2}=\{a \leftarrow b, \quad b \leftarrow a\}$
- $P_{3}=\{p \leftarrow \operatorname{not} p\}$
- $P_{4}=\{p \leftarrow \operatorname{not} q, \quad q \leftarrow \operatorname{not} p\}$
- $P_{5}=\{p \leftarrow \operatorname{not} q$,

Examples

Nebel, Helmert Wölfı

Minimal

- $P_{1}=\{a \leftarrow, \quad b \leftarrow a, \quad c \leftarrow b\}$
- $P_{2}=\{a \leftarrow b, \quad b \leftarrow a\}$
- $P_{3}=\{p \leftarrow \operatorname{not} p\}$
- $P_{4}=\{p \leftarrow \operatorname{not} q, \quad q \leftarrow \operatorname{not} p\}$
- $P_{5}=\{p \leftarrow \operatorname{not} q$,

Examples

Nebel, Helmert WölfI

- $P_{1}=\{a \leftarrow, \quad b \leftarrow a, \quad c \leftarrow b\}$
- $P_{2}=\{a \leftarrow b, \quad b \leftarrow a\}$
- $P_{3}=\{p \leftarrow \operatorname{not} p\}$
- $P_{4}=\{p \leftarrow \operatorname{not} q, \quad q \leftarrow \operatorname{not} p\}$

Examples

- $P_{1}=\{a \leftarrow, \quad b \leftarrow a, \quad c \leftarrow b\}$
- $P_{2}=\{a \leftarrow b, \quad b \leftarrow a\}$
- $P_{3}=\{p \leftarrow \operatorname{not} p\}$
- $P_{4}=\{p \leftarrow \operatorname{not} q, \quad q \leftarrow \operatorname{not} p\}$
- $P_{5}=\{p \leftarrow \operatorname{not} q, \quad q \leftarrow \operatorname{not} p, \quad \leftarrow p\}$

Minimal
Model
Reasoning
NMLP
Motivation
Answer Sets
Complexity
Stratification
Applications
Literature

Complexity: existence of answer sets is NP-complete

(1) Membership in NP: Guess $\Delta \subseteq A$ (nondet. polytime), compute P^{Δ}, compute its closure, compare to Δ (everything det. polytime).

Minimal
Model
Reasoning
NMLP
Motivation
Answer Sets
Complexity
Stratification
Applications
Literature
for every proposition p occurring in the clauses, and
for every clause $l_{1} \vee l_{2} \vee l_{3}$, where $l_{i}^{l}=p$ if $l_{i}=p$ and $l_{i}^{\prime}=\hat{p}$ if $l_{i}=\neg p$.

Complexity: existence of answer sets is NP-complete

(1) Membership in NP: Guess $\Delta \subseteq A$ (nondet. polytime), compute P^{Δ}, compute its closure, compare to Δ (everything det. polytime).
(2) NP-hardness: Reduction from 3SAT: an answer set exists iff clauses are satisfiable:
for every proposition p occurring in the clauses, and
for every clause $l_{1} \vee l_{2} \vee l_{3}$, where $l_{i}^{\prime}=p$ if $l_{i}=p$ and
\square

Complexity: existence of answer sets is NP-complete

(1) Membership in NP: Guess $\Delta \subseteq A$ (nondet. polytime), compute P^{Δ}, compute its closure, compare to Δ (everything det. polytime).
(2) NP-hardness: Reduction from 3SAT: an answer set exists iff clauses are satisfiable:

$$
\begin{aligned}
& p \leftarrow \operatorname{not} \hat{p} \\
& \hat{p} \leftarrow \operatorname{not} p
\end{aligned}
$$

for every proposition p occurring in the clauses

Complexity: existence of answer sets is NP-complete

(1) Membership in NP: Guess $\Delta \subseteq A$ (nondet. polytime), compute P^{Δ}, compute its closure, compare to Δ (everything det. polytime).
(2) NP-hardness: Reduction from 3SAT: an answer set exists iff clauses are satisfiable:

$$
\begin{aligned}
& p \leftarrow \operatorname{not} \hat{p} \\
& \hat{p} \leftarrow \operatorname{not} p
\end{aligned}
$$

Minimal
Model
Reasoning
NMLP
Motivation
Answer Sets
Complexity
Stratification
Applications
Literature
for every proposition p occurring in the clauses, and

$$
\leftarrow \operatorname{not} l_{1}^{\prime}, \operatorname{not} l_{2}^{\prime}, \operatorname{not} l_{3}^{\prime}
$$

for every clause $l_{1} \vee l_{2} \vee l_{3}$, where $l_{i}^{\prime}=p$ if $l_{i}=p$ and $l_{i}^{\prime}=\hat{p}$ if $l_{i}=\neg p$.

Programs for Reasoning with Answer Sets

- smodels (Niemelä \& Simons), dlv (Eiter et al.), ...
- Schematic input:

Minimal
Model
Reasoning

```
```

p(X) :- not q(X).

```
```

```
p(X) :- not q(X).
```

```
q(X) :- not p(X).
```

q(X) :- not p(X).
r(a)
r(a)
r(b)
r(b)
r(c).

```
r(c).
```

```
anc(X,Y) :- par(X,Y).
anc(X,Y) :- par(X,Z), anc(Z,Y).
par(a,b). par(a,c). par(b,d).
female(a).
male(X) :- not(female(X)).
forefather(X,Y) :-
    anc(X,Y), male(X).
```

NMLP
Motivation
Answer Sets
Complexity
Stratification
Applications
Literature

Difference to the Propositional Logic

- The ancestor relation is the transitive closure of the parent relation.
- Transitive closure cannot be (concisely) represented in propositional/predicate logic.

$$
\begin{aligned}
& \operatorname{par}(X, Y) \rightarrow \operatorname{anc}(X, Y) \\
& \operatorname{par}(X, Z) \wedge \operatorname{anc}(Z, Y) \rightarrow \operatorname{anc}(X, Y)
\end{aligned}
$$

Minimal
Model
Reasoning
NMLP
Motivation
Answer Sets
Complexity
Stratification
Applications
Literature

The above formulae only guarantee that anc is a superset of the transitive closure of par.

- For transitive closure one needs the minimality condition in some form: nonmonotonic logics, fixpoint logics, ...

Stratification

The reason for multiple answer sets is the fact that a may depend on b and simultaneously b may depend on a. The lack of this kind of circular dependencies makes reasoning easier.

Definition

A logic program P is stratified if P can be partitioned to $P=P_{1} \cup \cdots \cup P_{n}$ so that for all $i \in\{1, \ldots, n\}$ and

Minimal
Model
Reasoning
NMLP
Motivation
Answer Sets
Complexity
Stratification
Applications
Literature $\left(c \leftarrow b_{1}, \ldots, b_{m}, \operatorname{not} d_{1}, \ldots, \operatorname{not} d_{k}\right) \in P_{i}$,
(1) there is no not c in P_{i} and
(2) there are no occurrences of c anywhere in $P_{1} \cup \cdots \cup P_{i-1}$.

Stratification

Theorem

A stratified program P has exactly one answer set. The unique answer set can be computed in polynomial time.

Example
Our earlier examples with more than one or no answer sets:

Stratification

Theorem

A stratified program P has exactly one answer set. The unique answer set can be computed in polynomial time.

Example

Our earlier examples with more than one or no answer sets:

$$
\begin{aligned}
& P_{3}=\{p \leftarrow \operatorname{not} p\} \\
& P_{4}=\{p \leftarrow \operatorname{not} q, \quad q \leftarrow \operatorname{not} p\}
\end{aligned}
$$

Applications of Logic Programs

(1) Simple forms of default reasoning (inheritance networks)
(2) A solution to the frame problem: instead of using frame axioms, use defaults

By default, truth-values of facts stay the same.
(3) deductive databases (Datalog \urcorner)
(4) et cetera: Everything that can be done with propositional logic can also be done with propositional nonmotononic logic programs.

Minimal
Model
Reasoning
NMLP
Motivation
Answer Sets
Complexity
Stratification
Applications
Literature

Applications of Logic Programs

(1) Simple forms of default reasoning (inheritance networks)
(2) A solution to the frame problem: instead of using frame axioms, use defaults

$$
a_{t+1} \leftarrow a_{t}, \text { not } \neg a_{t+1}
$$

By default, truth-values of facts stay the same.
© deductive databases (Datalog ${ }^{\urcorner}$)
4 et cetera: Everything that can be done with propositional logic can also be done with propositional nonmotononic logic programs.

Applications of Logic Programs

(1) Simple forms of default reasoning (inheritance networks)
(2) A solution to the frame problem: instead of using frame axioms, use defaults

$$
a_{t+1} \leftarrow a_{t}, \operatorname{not} \neg a_{t+1}
$$

By default, truth-values of facts stay the same.

Minimal
Model
Reasoning
NMLP
Motivation
Answer Sets
Complexity
Stratification
Applications
Literature
(3) deductive databases (Datalog \urcorner)
(a) et cetera: Everything that can be done with propositional logic can also be done with propositional nonmotononic logic programs.

Applications of Logic Programs

(1) Simple forms of default reasoning (inheritance networks)
(2) A solution to the frame problem: instead of using frame axioms, use defaults

$$
a_{t+1} \leftarrow a_{t}, \operatorname{not} \neg a_{t+1}
$$

By default, truth-values of facts stay the same.
(3) deductive databases (Datalog \urcorner)
(9) et cetera: Everything that can be done with propositional logic can also be done with propositional nonmotononic logic programs.

Literature

- M. Gelfond and V. Lifschitz.

The stable model semantics for logic programming.
Proceedings of the Fifth International Conference on Logic
Programming, The MIT Press, 1988.
盏 I. Niemelä and P. Simons.
Smodels - an implementation of the stable model and well-founded semantics for normal logic programs.
Proceedings of the 4th International Conference on Logic Programming and Non-monotonic Reasoning, 1997.
T- Eiter, W. Faber, N. Leone, and G. Pfeifer.
Declarative problem solving using the dlv system.
In J Minker, editor, Logic Based AI, Kluwer Academic Publishers, 2000.

