

Minimal Model Reasoning Motivation

Minimal Model Reasoning

- Conflicts between defaults in default logic lead to multiple extensions
- ▶ Each extension corresponds to a maximal set of non-violated defaults
- Reasoning with defaults can also be achieved by a simpler mechanism: predicate or propositional logic + minimize the number of cases where a default (expressed as a conventional formula) is violated
 minimal models

KRR

▶ Notion of minimality: cardinality vs. set-inclusion

Principles of Knowledge Representation and Reasoning

May 20 & 23, 2008 — Nonmonotonic Reasoning II: Minimal Models and Nonmonotonic Logic Programs

Minimal Model Reasoning Motivation Definition Example Embedding in DL			
Nonmonotonic Logic Programs Motivation Answer Sets Complexity Stratification Applications Literature			
lebel, Helmert, Wölfl (Uni Freiburg)	KRR	May 20 & 23, 2008	2 / 18

Minimal Model Reasoning Definition

Entailment with respect to Minimal Models

Definition

Let A be a set of atomic propositions. Let Φ be a set of propositional formulae on A, and $B \subseteq A$ a set (called abnormalities). Then $\Phi \models_B \psi$ (ψ B-minimally follows from Φ) if $\mathcal{I} \models \psi$ for all interpretations \mathcal{I} such that $\mathcal{I} \models \Phi$ and there is no \mathcal{I}' such that $\mathcal{I}' \models \Phi$ and $\{b \in B | \mathcal{I}' \models b\} \subsetneq \{b \in B | \mathcal{I} \models b\}$.

3 / 18

KRR

15 / 18

KRR

May 20 & 23, 2008 16 / 18

