Principles of Knowledge Representation and Reasoning

Nonmonotonic Reasoning

Bernhard Nebel, Malte Helmert and Stefan Wölfl

Albert-Ludwigs-Universität Freiburg
May 20 \& 23, 2008

A Motivating Example: Defaults in Knowledge Bases

(1) employee(anne)
(2) employee(bert)
(3) employee(carla)
(3) employee(detlef)
(0) employee(thomas)
(0) onUnpaidMPaternityLeave(thomas)
(C) employee(X)

A Motivating Example: Defaults in Knowledge Bases

(1) employee(anne)
(2) employee(bert)
(3) employee(carla)
(4) employee(detlef)
(5) employee(thomas)
(6) onUnpaidMPaternityLeave(thomas)
(7) employee $(X) \wedge \neg$ onUnpaidMPaternityLeave $(X) \rightarrow$ gettingSalary(X)

A Motivating Example: Defaults in Knowledge Bases

(1) employee(anne)
(2) employee(bert)
(3) employee(carla)
(4) employee(detlef)
(5) employee(thomas)
(6) onUnpaidMPaternityLeave(thomas)
(7) employee $(X) \wedge \neg$ onUnpaidMPaternityLeave $(X) \rightarrow$ gettingSalary (X)
(8) typically: employee $(X) \rightarrow \neg$ onUnpaidMPaternityLeave (X)

A Motivating Example: Common Sense Reasoning

(1) Tweety is a bird like other birds.
(2) During the summer he stays in Northern Europe, in the winter he stays in Africa.

- Would you expect Tweety to be able to fly?
- How does Tweety get from Northern Europe to Africa?

How would you formalize this in formal logic so that you get the expected answers?

A Motivating Example: Common Sense Reasoning

(1) Tweety is a bird like other birds.
(2) During the summer he stays in Northern Europe, in the winter he stays in Africa.

- Would you expect Tweety to be able to fly?
- How does Tweety get from Northern Europe to Africa?

How would you formalize this in formal logic so that you get the expected answers?

A Motivating Example: Common Sense Reasoning

(1) Tweety is a bird like other birds.
(2) During the summer he stays in Northern Europe, in the winter he stays in Africa.

- Would you expect Tweety to be able to fly?
- How does Tweety get from Northern Europe to Africa?

How would you formalize this in formal logic so that you get the expected answers?

A Formalization ...

(1) bird(tweety)
(2) spend-summer(tweety,northern-europe) \wedge spend-winter(tweety,africa)
(3) $\forall x(\operatorname{bird}(x) \rightarrow$ can-fly $(x))$
(9) far-away(northern-europe,africa)
(6) $\forall x y z($ can-fly $(x) \wedge \operatorname{far-away}(y, z) \wedge \operatorname{spend-summer}(x, y) \wedge$ spend-winter $(x, z) \rightarrow$ flies $(x, y, z))$

- The implication (3) is just a reasonable assumption
- What if Tweety is an emu?

A Formalization ...

(1) bird(tweety)
(2) spend-summer(tweety,northern-europe) \wedge spend-winter(tweety,africa)
(3) $\forall x(\operatorname{bird}(x) \rightarrow$ can-fly $(x))$
(9) far-away(northern-europe,africa)
(6) $\forall x y z($ can-fly $(x) \wedge \operatorname{far-away}(y, z) \wedge \operatorname{spend}-\operatorname{summer}(x, y) \wedge$ spend-winter $(x, z) \rightarrow$ flies $(x, y, z))$

- The implication (3) is just a reasonable assumption
- What if Tweety is an emu?

Examples of Such Reasoning Patterns

Closed world assumption: Data-base of ground atoms. All

Reasoning about actions: When reasoning about actions, it is usually assumed that a property changes only if it has to change, i.e., properties by default do not change.

Default, Defeasible, and Non-monotonic Reasoning

Default Reasoning: Jump to a conclusion if there is no information that contradicts the conclusion.
Defeasible Reasoning: Reasoning based on assumptions that can turn out to be wrong, - i.e., conclusions are defeasible. In particular, default reasoning is defeasible.

Non-monotonic Reasoning: In classical logic, the set of consequence grows monotonically with the set of premises. If reasoning is defeasible, then reasoning becomes non-monotonic.

Approaches to Non-Monotonic Reasoning

- Consistency-based: Extend classical theory by rules that test whether an assumption is consistent with existing beliefs
\Rightarrow non-monotonic logics like DL (default logic), NMLP (non-monotonic logic programming)
- Entailment-based on normal models: Models are ordered

Approaches to Non-Monotonic Reasoning

- Consistency-based: Extend classical theory by rules that test whether an assumption is consistent with existing beliefs
\Rightarrow non-monotonic logics like DL (default logic), NMLP (non-monotonic logic programming)
- Entailment-based on normal models: Models are ordered by normality. Entailment is determined by considering the most normal models only.
\Rightarrow Circumscription, Preferential and Cumulative Logics

NM Logic - Consistency-Based

If φ typically implies ψ, φ is given, and it is consistent to assume ψ, then conclude ψ.
(1) Typically bird (x) implies can-fly (x)

(3) $\forall x(\mathrm{emu}(x) \rightarrow$ ᄀcan-fly $(x))$
© - bird(tweety)
\Rightarrow can-fly (tweety)+ emu(tweety) \Rightarrow can-fly(tweety)

NM Logic - Consistency-Based

If φ typically implies ψ, φ is given, and it is consistent to assume ψ, then conclude ψ.
(1) Typically $\operatorname{bird}(x)$ implies can-fly (x)
(2) $\forall x(\mathrm{emu}(x) \rightarrow \operatorname{bird}(x))$
(3) $\forall x(\mathrm{emu}(x) \rightarrow \neg \mathrm{can}$-fly $(x))$
(9) bird(tweety)

Introduction
Motivation
Different Forms of Reasoning
Different
Formalizations
Default Logic
Complexity
Literature

NM Logic - Consistency-Based

If φ typically implies ψ, φ is given, and it is consistent to assume ψ, then conclude ψ.
(1) Typically $\operatorname{bird}(x)$ implies can-fly (x)
(2) $\forall x(\mathrm{emu}(x) \rightarrow \operatorname{bird}(x))$
(3) $\forall x(\mathrm{emu}(x) \rightarrow \neg \mathrm{can}$-fly $(x))$
(9) bird(tweety)
\Rightarrow can-fly(tweety)

Introduction
Motivation
Different Forms
of Reasoning
Different
Formalizations
Default Logic
Complexity
Literature

NM Logic - Consistency-Based

If φ typically implies ψ, φ is given, and it is consistent to assume ψ, then conclude ψ.
(1) Typically $\operatorname{bird}(x)$ implies can-fly (x)
(2) $\forall x(\mathrm{emu}(x) \rightarrow \operatorname{bird}(x))$
(3) $\forall x(\mathrm{emu}(x) \rightarrow \neg \mathrm{can}$-fly $(x))$
(9) bird(tweety)
\Rightarrow can-fly(tweety)
(6) $\ldots+$ emu(tweety)
\Rightarrow \neg can-fly(tweety)

NM Logic - Normal Models

If φ typically implies ψ, then the models satisfying $\varphi \wedge \psi$ should be more normal than those satisfying $\varphi \wedge \neg \psi$. Similarly, try to minimize the interpretation of "Abnormality" predicates.
(4) $\forall x(\operatorname{bird}(x) \wedge \neg \operatorname{Ab}(x) \rightarrow \operatorname{can-fly}(x))$

Nebel, Helmert, Wölfl

Motivation
Different Forms of Reasoning
Different
Formalizations
Default Logic
Complexity
Literature

Minimize interpretation of Ab . \Rightarrow can-fly(tweety)+ emu(tweety)

NM Logic - Normal Models

If φ typically implies ψ, then the models satisfying $\varphi \wedge \psi$ should be more normal than those satisfying $\varphi \wedge \neg \psi$.
Similarly, try to minimize the interpretation of "Abnormality" predicates.
(1) $\forall x(\operatorname{bird}(x) \wedge \neg \mathrm{Ab}(x) \rightarrow$ can-fly $(x))$
(2) $\forall x(\mathrm{emu}(x) \rightarrow \operatorname{bird}(x))$
(3) $\forall x(\mathrm{emu}(x) \rightarrow \neg$ can-fly $(x))$
(9) bird(tweety)

Nebel,
Helmert,
Wölfl

Introduction
Motivation
Different Forms
of Reasoning
Different
Formalizations
Default Logic
Complexity

Minimize interpretation of Ab \Rightarrow can-fly(tweety)+ emu(tweety)

NM Logic - Normal Models

If φ typically implies ψ, then the models satisfying $\varphi \wedge \psi$ should be more normal than those satisfying $\varphi \wedge \neg \psi$.
Similarly, try to minimize the interpretation of "Abnormality" predicates.
(1) $\forall x(\operatorname{bird}(x) \wedge \neg \mathrm{Ab}(x) \rightarrow$ can-fly $(x))$
(2) $\forall x(\mathrm{emu}(x) \rightarrow \operatorname{bird}(x))$
(3) $\forall x(\mathrm{emu}(x) \rightarrow \neg$ can-fly $(x))$
(3) bird(tweety)

Nebel,
Helmert,
Wölfl

Introduction
Motivation
Different Forms
of Reasoning
Different
Formalizations
Default Logic
Complexity
Literature

Minimize interpretation of $A b$.
\Rightarrow can-fly(tweety)+ emu(tweety)

NM Logic - Normal Models

If φ typically implies ψ, then the models satisfying $\varphi \wedge \psi$ should be more normal than those satisfying $\varphi \wedge \neg \psi$.
Similarly, try to minimize the interpretation of "Abnormality" predicates.
(1) $\forall x(\operatorname{bird}(x) \wedge \neg \mathrm{Ab}(x) \rightarrow$ can-fly $(x))$
(2) $\forall x(\mathrm{emu}(x) \rightarrow \operatorname{bird}(x))$
(3) $\forall x(\mathrm{emu}(x) \rightarrow \neg$ can-fly $(x))$
(3) bird(tweety)

Nebel,
Helmert
Wölfl

Introduction
Motivation
Different Forms
of Reasoning
Different
Formalizations
Default Logic
Complexity
Literature

Minimize interpretation of $A b$.
\Rightarrow can-fly(tweety)
© $\ldots+$ emu(tweety)

NM Logic - Normal Models

If φ typically implies ψ, then the models satisfying $\varphi \wedge \psi$ should be more normal than those satisfying $\varphi \wedge \neg \psi$.
Similarly, try to minimize the interpretation of "Abnormality" predicates.
(1) $\forall x(\operatorname{bird}(x) \wedge \neg \mathrm{Ab}(x) \rightarrow$ can-fly $(x))$
(2) $\forall x(\mathrm{emu}(x) \rightarrow \operatorname{bird}(x))$
(3) $\forall x(\mathrm{emu}(x) \rightarrow \neg$ can-fly $(x))$
(3) bird(tweety)

Nebel,
Helmert
Wölfl

Introduction
Motivation
Different Forms
of Reasoning
Different
Formalizations
Default Logic
Complexity
Literature

Minimize interpretation of $A b$.
\Rightarrow can-fly(tweety)
(9 $\ldots+$ emu(tweety)
\Rightarrow Now in all models (incl. the normal ones): \neg can-fly(tweety)

Default Logic - Outline

(1) Introduction
(2) Default Logic

- Basics
- Extensions
- Properties of Extensions
- Normal Defaults
- Default Proofs
- Decidability
- Propositional DL
(3) Complexity of Default Logic
(4) Literature

Motivation: Reiter's Default Logic

- We want to express something like "typically birds fly".
- Add non-logical inference rule

$$
\frac{\operatorname{bird}(x): \text { can- }-\operatorname{ly}(x)}{\operatorname{can}-\mathrm{fly}(x)}
$$

with the intended meaning:
If x is a bird and if it is consistent to assume that x can
fly, then conclude that x can fly.

- Exceptions can be represented as formulae:

Motivation: Reiter's Default Logic

- We want to express something like "typically birds fly".
- Add non-logical inference rule

$$
\frac{\operatorname{bird}(x): \text { can- }-\operatorname{ly}(x)}{\operatorname{can}-\mathrm{fly}(x)}
$$

with the intended meaning:
If x is a bird and if it is consistent to assume that x can fly, then conclude that x can fly.

- Exceptions can be represented as formulae:

$$
\begin{aligned}
\forall x(\text { penguin }(x) & \rightarrow \neg \text { can-fly }(x)) \\
\forall x(\text { emu }(x) & \rightarrow \neg \text { can-fly }(x)) \\
\forall x(\operatorname{kiwi}(x) & \rightarrow \neg \operatorname{can}-\mathrm{fly}(x))
\end{aligned}
$$

Formal Framework

- FOL with classical provability relation \vdash and deductive closure: $\operatorname{Th}(\Phi):=\{\phi \mid \Phi \models \phi\}$

Prerequisite: must have been derived before rule can be applied.
Consistency condition: the negation may not be derivable. Consequence: will be concluded.

- A default rule is closed if it does not contain free variables.

Default Logic
Basics
Extensions
Properties of
Extensions
Normal Defaults
Default Proofs
Decidability
Propositional DL
Complexity
Literature

- (Closed) default theory: A pair (D, W), where D is a countable set of (closed) default rules and W is a countable set of FOL formulae.

Formal Framework

- FOL with classical provability relation \vdash and deductive closure: $\operatorname{Th}(\Phi):=\{\phi \mid \Phi \models \phi\}$
- Default rules: $\frac{\alpha: \beta}{\gamma}$
α : Prerequisite: must have been derived before rule can be applied.
β : Consistency condition: the negation may not be derivable.
γ : Consequence: will be concluded.
- A default rule is closed if it does not contain free variables.
- (Closed) default theory: A pair (D, W), where D is a countable set of (closed) default rules and W is a countable set of FOL formulae.

Extensions of Default Theories

Default theories extend the theories given by W using the default rules D (\rightsquigarrow extensions). There may be zero, one, or

Default Logic
Basics
Extensions
Properties of
Extensions
Normal Defaults
Default Proofs
Decidability
Propositional DL
Complexity
Literature

Intuitively: an extension is a set of beliefs resulting from W and D

Extensions of Default Theories

Default theories extend the theories given by W using the default rules D (\rightsquigarrow extensions). There may be zero, one, or many extensions.

Example

$$
\begin{aligned}
W & =\{a, \neg b \vee \neg c\} \\
D & =\left\{\frac{a: b}{b}, \frac{a: c}{c}\right\}
\end{aligned}
$$

One extension contains b, the other contains c.

Intuitively: an extension is a set of beliefs resulting from W and D.

Extensions of Default Theories

Default theories extend the theories given by W using the default rules D (\rightsquigarrow extensions). There may be zero, one, or

Nebel,
Helmert
WölfI

Introduction
Default Logic
Basics
Extensions
Properties of
Extensions
Normal Defaults
Default Proofs
Decidability
Propositional DL
Complexity
Literature

One extension contains b, the other contains c.
Intuitively: an extension is a set of beliefs resulting from W and D.

Decision Problems about Extensions in Default Logic

Existence of extensions: Does a default theory have an extension?

> Credulous reasoning: If φ is in at least one extension, φ is a credulous default conclusion.

> Skeptical Reasoning: If φ is in all extensions, φ is a skeptical default conclusion.

Default Logic
Basics
Extensions
Properties of
Extensions
Normal Defaults
Default Proofs
Decidability
Propositional DL
Complexity
Literature

Decision Problems about Extensions in Default Logic

Existence of extensions: Does a default theory have an extension?

Credulous reasoning: If φ is in at least one extension, φ is a credulous default conclusion.

Skeptical Reasoning: If φ is in all extensions, φ is a skeptical default conclusion.

Extensions - Informally

Desirable properties of an extension E of (D, W) :
(1) Contains all facts $W \subseteq E$.
(2) Is deductively closed: $E=\operatorname{Th}(E)$.
(3) All applicable default rules have been applied: If
(1) $\left(\frac{\alpha: \beta}{\gamma}\right) \in D$,
(3) $\alpha \in E$,
(3) $\neg \beta \notin E$
then $\gamma \in E$.

Requirement: Application of default rules must follow in sequence (groundedness)

Extensions - Informally

Desirable properties of an extension E of (D, W) :
(1) Contains all facts $W \subseteq E$.
(2) Is deductively closed: $E=\operatorname{Th}(E)$.
(3) All applicable default rules have been applied:

If
(1) $\left(\frac{\alpha: \beta}{\gamma}\right) \in D$,
(2) $\alpha \in E$,
(3) $\neg \beta \notin E$
then $\gamma \in E$.
\Rightarrow Requirement: Application of default rules must follow in sequence (groundedness).

Groundedness

Example

Nebel,
Helmert Wölfl

Introduction

$$
\begin{aligned}
W & =\emptyset \\
D & =\left\{\frac{a: b}{b}, \frac{b: a}{a}\right\}
\end{aligned}
$$

Default Logic
Basics
Extensions
Properties of
Extensions
Normal Defaults
Default Proofs
Decidability
Propositional DL
Complexity
Literature
a can only be derived if we already have derived b. b can only be derived if we already have derived a.

Groundedness

Example

$$
\begin{aligned}
W & =\emptyset \\
D & =\left\{\frac{a: b}{b}, \frac{b: a}{a}\right\}
\end{aligned}
$$

Question: Should $\operatorname{Th}(\{a, b\})$ be an extension?
Answer: No!
a can only be derived if we already have derived b. b can only be derived if we already have derived a.

Extensions - Formally

Definition

Let $\Delta=(D, W)$ be a closed default theory and let E be a set of closed formulae.
Let

$$
\begin{aligned}
E_{0} & =W \\
E_{i} & =\operatorname{Th}\left(E_{i-1}\right) \cup\left\{\gamma \left\lvert\, \frac{\alpha: \beta}{\gamma} \in D\right., \alpha \in E_{i-1}, \neg \beta \notin E\right\}
\end{aligned}
$$

Then E is an extension of Δ iff

$$
E=\bigcup_{i=0}^{\infty} E_{i}
$$

How to Use This Definition?

- The definition does not tell us how to construct an extension.
- However, it tells us how to check whether a set is an extension.
- Guess a set E.
- Then construct sets E_{i} by starting with W.
- If $E=\bigcup_{i=0}^{\infty} E_{i}$, then E is an extension of (D, W).

Introduction
Default Logic
Basics
Extensions
Properties of
Extensions
Normal Defaults
Default Proofs
Decidability
Propositional DL
Complexity
Literature

Examples

$$
\begin{array}{ll}
D=\left\{\frac{a: b}{b}, \frac{b: a}{a}\right\} & W=\{a \vee b\} \\
D=\left\{\frac{a: b}{\neg b}\right\} & W=\emptyset \\
D=\left\{\frac{a: b}{\neg b}\right\} & W=\{a\} \\
D=\left\{\frac{: a}{a}, \frac{: b}{b}, \frac{: c}{c}\right\} & W=\{b \rightarrow \neg a \wedge \neg c\} \\
D=\left\{\frac{: c}{\neg d}, \frac{: d}{\neg e}, \frac{: e}{\neg f}\right\} & W=\emptyset \\
D=\left\{\frac{: c}{\neg d}, \frac{: d}{\neg c}\right\} & W=\emptyset \\
D=\left\{\frac{a: b}{c}, \frac{a: d}{e}\right\} & W=\{a, \neg b \vee \neg d\}
\end{array}
$$

Questions, Questions, Questions ...

- What can we say about the existence of extensions?
- How are the different extensions related to each other?
- Can one extension be a subset of another one?
- Are extensions pairwise incompatible (i.e. jointly inconsistent)?
- Can an extension be inconsistent?

Properties of Extensions

Theorem

(1) If W is inconsistent, there is only one extension.
(2) A closed default theory (D, W) has an inconsistent extension iff W is inconsistent.

Proof idea

(4) If W is inconsistent, no default rule is applicable and $\operatorname{Th}(W)$ is the only extension.Claim $1 \Longrightarrow$ the if-part. For only if: If W is consistent, there is a consistent E_{i} s.t. E_{i+1} is inconsistent. Let $\left\{\gamma_{1}, \ldots, \gamma_{n}\right\}=E_{i+1} \backslash \operatorname{Th}\left(E_{i}\right)$ (the conclusions of applied defaults). Now $\left\{\neg \beta_{1}, \ldots, \neg \beta_{n}\right\} \cap E=\emptyset$ because otherwise the defaults are not applicable. But this contradicts the inconsistency of E

Properties of Extensions

Theorem

(1) If W is inconsistent, there is only one extension.
(2) A closed default theory (D, W) has an inconsistent extension iff W is inconsistent.

Nebel,
Helmert,
Wölfl

Introduction
Default Logic
Basics
Extensions
Properties of
Extensions
Normal Defaults
Default Proofs
Decidability
Propositional DL
Complexity
Literature $\left\{\gamma_{1}, \ldots, \gamma_{n}\right\}=E_{i+1} \backslash \operatorname{Th}\left(E_{i}\right)$ (the conclusions of applied defaults). Now $\left\{\neg \beta_{1}, \ldots, \neg \beta_{n}\right\} \cap E=\emptyset$ because otherwise the defaults are not applicable.
But this contradicts the inconsistency of E.

Properties of Extensions

Theorem

If E and F are extensions of (D, W) such that $E \subseteq F$, then
$E=F$.

Nebel,
Helmert,
Wölfl

Introduction
Default Logic
Basics
Extensions
Properties of
Extensions
Normal Defaults
Default Proofs
Decidability
Propositional DL
Complexity
Literature therefore $\gamma \in E_{i+1}$.
(2) Otherwise $\frac{\alpha: \beta}{\gamma} \in D, \alpha \in F_{i}, \neg \beta \notin F$. However, then we have $\alpha \in E_{i}$ (because $F_{i} \subseteq E_{i}$) and $\neg \beta \notin E$ (because of $E \subseteq F$), i.e., $\gamma \in E_{i+1}$.

Normal Default Theories

All defaults in a normal default theory are normal:

$$
\frac{\alpha: \beta}{\beta} .
$$

where T_{i} is a maximal set s.t. (1) $E_{i} \cup T_{i}$ is consistent and (2) if $\beta \in T_{i}$ then there is $\frac{\alpha: \beta}{\beta} \in D$ and $\alpha \in E_{i}$.
Show: $T_{i}=\left\{\beta \left\lvert\, \frac{\alpha: \beta}{\beta} \in D\right., \alpha \in E_{i}, \neg \beta \notin E\right\}$ for all $i \geq 0$.

Normal Default Theories: Extensions are Orthogonal

Theorem (Orthogonality)
Let E and F be two extensions of a normal default theory. Then $E \cup F$ is inconsistent.

Proof.
Let $E=\bigcup E_{i}$ and $F=\bigcup F_{i}$ with
Basics
Extensions
Properties of
Extensions
Normal Defaults
Default Proofs
Decidability
Propositional DL
Complexity
Literature

Normal Default Theories: Extensions are Orthogonal

Theorem (Orthogonality)

Let E and F be two extensions of a normal default theory. Then $E \cup F$ is inconsistent.

Proof.

Let $E=\bigcup E_{i}$ and $F=\bigcup F_{i}$ with

$$
E_{i+1}=\operatorname{Th}\left(E_{i}\right) \cup\left\{\beta \left\lvert\, \frac{\alpha: \beta}{\beta} \in D\right., \alpha \in E_{i}, \neg \beta \notin E\right\}
$$

and the same for F. Since $E \neq F$, there exists a smallest i such that $E_{i+1} \neq F_{i+1}$.
but $\beta \in E_{i+1}$ and $\beta \notin F_{i+1}$. This is only possible if $\neg \beta \in F$. This
means $\beta \in E$ and $\neg \beta \in F$, i.e., $E \cup F$ is inconsistent.

Normal Default Theories: Extensions are Orthogonal

Theorem (Orthogonality)

Let E and F be two extensions of a normal default theory. Then $E \cup F$ is inconsistent.

Proof.

Let $E=\bigcup E_{i}$ and $F=\bigcup F_{i}$ with

$$
E_{i+1}=\operatorname{Th}\left(E_{i}\right) \cup\left\{\beta \left\lvert\, \frac{\alpha: \beta}{\beta} \in D\right., \alpha \in E_{i}, \neg \beta \notin E\right\}
$$

and the same for F. Since $E \neq F$, there exists a smallest i such that $E_{i+1} \neq F_{i+1}$.
but $\beta \in E_{i+1}$ and $\beta \notin F_{i+1}$. This is only possible if $\neg \beta \in F$. This
means $\beta \in E$ and $\neg \beta \in F$, i.e., $E \cup F$ is inconsistent.

Normal Default Theories: Extensions are Orthogonal

Theorem (Orthogonality)

Let E and F be two extensions of a normal default theory.
and the same for F. Since $E \neq F$, there exists a smallest i such that $E_{i+1} \neq F_{i+1}$. This means there exists $\frac{\alpha: \beta}{\beta} \in D$ with $\alpha \in E_{i}=F_{i}$ but $\beta \in E_{i+1}$ and $\beta \notin F_{i+1}$.
means $\beta \in E$ and $\neg \beta \in F$, i.e., $E \cup F$ is inconsistent.

Normal Default Theories: Extensions are Orthogonal

Theorem (Orthogonality)

Let E and F be two extensions of a normal default theory.

Nebel,
Helmert, Wölfi

Introduction
Default Logic
Basics
Extensions
Properties of
Extensions
Normal Defaults
Default Proofs
Decidability
Propositional DL
Complexity
Literature
and the same for F. Since $E \neq F$, there exists a smallest i such that $E_{i+1} \neq F_{i+1}$. This means there exists $\frac{\alpha: \beta}{\beta} \in D$ with $\alpha \in E_{i}=F_{i}$ but $\beta \in E_{i+1}$ and $\beta \notin F_{i+1}$. This is only possible if $\neg \beta \in F$. This means $\beta \in E$ and $\neg \beta \in F$, i.e., $E \cup F$ is inconsistent.

Default Proofs in Normal Default Theories

Definition

A default proof of γ in a normal default theory (D, W) is a
Nebel,
Helmert WölfI
finite sequence of defaults $\left(\delta_{i}=\frac{\alpha_{i}: \beta_{i}}{\beta_{i}}\right)_{i=1, \ldots, n}$ such that
(1) $W \cup\left\{\beta_{1}, \ldots, \beta_{n}\right\} \vdash \gamma$,
(2) $W \cup\left\{\beta_{1}, \ldots, \beta_{n}\right\}$ is consistent, and
(3) $W \cup\left\{\beta_{1}, \ldots, \beta_{k}\right\} \vdash \alpha_{k+1}$, for $0 \leq k \leq n-1$.

Theorem

Iet $\Delta=|I, W\rangle$ be a normal default theory so that W is consistent. Then γ has a default proof in Δ iff there exists an extension E of Δ such that $\gamma \in E$

Test 2 (consistency) in the proof procedure suggests that default provability is not even semi-decidable.

Introduction
Default Logic
Basics
Extensions
Properties of
Extensions
Normal Defaults
Default Proofs
Decidability
Propositional DL
Complexity
Literature

Default Proofs in Normal Default Theories

Definition

A default proof of γ in a normal default theory (D, W) is a
Nebel,
Helmert,
Wölfl finite sequence of defaults $\left(\delta_{i}=\frac{\alpha_{i}: \beta_{i}}{\beta_{i}}\right)_{i=1, \ldots, n}$ such that
(1) $W \cup\left\{\beta_{1}, \ldots, \beta_{n}\right\} \vdash \gamma$,
(2) $W \cup\left\{\beta_{1}, \ldots, \beta_{n}\right\}$ is consistent, and
(3) $W \cup\left\{\beta_{1}, \ldots, \beta_{k}\right\} \vdash \alpha_{k+1}$, for $0 \leq k \leq n-1$.

Theorem

Let $\Delta=\langle D, W\rangle$ be a normal default theory so that W is consistent. Then γ has a default proof in Δ iff there exists an extension E of Δ such that $\gamma \in E$.

Test 2 (consistency) in the proof procedure suggests that default provability is not even semi-decidable.

Decidability

Theorem

 that there is a semi-decision procedure for satisfiability in FOL. But this is not possible because FOL validity is semi-decidable and this together with semi-decidability of FOL satisfiability would imply decidability of FOL, which is not the case.
Propositional Default Logic

- Propositional DL is decidable.
- How difficult is reasoning in propositional DL?

Default Logic
Basics
Extensions
Properties of
Extensions
Normal Defaults
Default Proofs
Decidability
Propositional DL
Complexity
Literature

Propositional Default Logic

- Propositional DL is decidable.
- How difficult is reasoning in propositional DL?
- The skeptical default reasoning problem (does φ follow from Δ skeptically: $\Delta \downarrow \varphi$?) is called PDS, credulous reasoning is called LPDS.
- (L)PDS is co-NP-hard (let $D=\emptyset, W=\emptyset$) and NP-hard (let $W=\emptyset, D=\left\{\frac{: \beta}{\beta}\right\}$)

Propositional Default Logic

- Propositional DL is decidable.
- How difficult is reasoning in propositional DL?
- The skeptical default reasoning problem (does φ follow from Δ skeptically: $\Delta \sim \varphi$?) is called PDS, credulous reasoning is called LPDS.
- (L)PDS is co-NP-hard (let $D=\emptyset, W=\emptyset$) and NP-hard (let $W=\emptyset, D=\left\{\frac{; \beta}{\beta}\right\}$).

Compexity of DL - Outline

(1) Introduction
(2) Default Logic
(3) Complexity of Default Logic

- Complexity of DL
- Semi-Normal Defaults
- Open Defaults
- Outlook
(4) Literature

Skeptical Reasoning in Propositional DL

Lemma
 $P D S \in \Pi_{2}^{p}$.

Nebel,
Helmert, Wölfl

Introduction
Default Logic
Complexity
Complexity of
Semi-Normal
Defaults
Open Defaults
Outlook
Literature

Skeptical Reasoning in Propositional DL

Lemma

$P D S \in \Pi_{2}^{p}$.

Verify that defaults in T lead to E, using a SAT oracle and the guessed $E=\operatorname{Th}\left(\left\{\gamma \left\lvert\, \frac{\alpha: \beta}{\gamma} \in T\right.\right\} \cup W\right)$.
Verify that $\left\{\gamma \left\lvert\, \frac{\alpha: \beta}{\gamma} \in T\right.\right\} \cup W \nvdash \varphi$ (SAT oracle). \rightsquigarrow UNPDS $\in \Sigma_{2}^{p}$.

Note: LPDS $\in \Sigma_{2}^{p}$.

Π_{2}^{p}-Hardness

Lemma
 PDS is Π_{2}^{p}-hard.

Nebel,
Helmert, Wölfl

Proof.

Reduction from 2QBF to UNPDS For $\exists \vec{a} \forall \vec{b} \phi(\vec{a}, \vec{b})$ with $\vec{a}=a_{1}, \ldots, a_{n}$ and $\vec{b}=b_{1}, \ldots, b_{m}$ construct $\Delta=(D, W)$ with

No extension contains both a_{i} and $\neg a_{i}$
Now

Π_{2}^{p}-Hardness

Lemma

PDS is Π_{2}^{p}-hard.

Proof.

Reduction from 2QBF to UNPDS: For $\exists \vec{a} \forall \vec{b} \phi(\vec{a}, \vec{b})$ with $\vec{a}=a_{1}, \ldots, a_{n}$ and $\vec{b}=b_{1}, \ldots, b_{m}$ construct $\Delta=(D, W)$ with

$$
D=\left\{\frac{: a_{i}}{a_{i}}, \frac{: \neg a_{i}}{\neg a_{i}}, \frac{: \neg \phi(\vec{a}, \vec{b})}{\neg \phi(\vec{a}, \vec{b})}\right\}, \quad W=\emptyset
$$

No extension contains both a_{i} and $\neg a_{i}$.

Π_{2}^{p}-Hardness

Lemma

PDS is Π_{2}^{p}-hard.

Proof.

Reduction from 2QBF to UNPDS: For $\exists \vec{a} \forall \vec{b} \phi(\vec{a}, \vec{b})$ with $\vec{a}=a_{1}, \ldots, a_{n}$ and $\vec{b}=b_{1}, \ldots, b_{m}$ construct $\Delta=(D, W)$ with

$$
D=\left\{\frac{: a_{i}}{a_{i}}, \frac{: \neg a_{i}}{\neg a_{i}}, \frac{: \neg \phi(\vec{a}, \vec{b})}{\neg \phi(\vec{a}, \vec{b})}\right\}, \quad W=\emptyset
$$

Default Logic
Complexity
Complexity of
DL
Semi-Normal
Defaults
Open Defaults
Outlook
Literature

No extension contains both a_{i} and $\neg a_{i}$.
Now

Π_{2}^{p}-Hardness

Lemma

PDS is Π_{2}^{p}-hard.

Proof.

Reduction from 2QBF to UNPDS: For $\exists \vec{a} \forall \vec{b} \phi(\vec{a}, \vec{b})$ with $\vec{a}=a_{1}, \ldots, a_{n}$ and $\vec{b}=b_{1}, \ldots, b_{m}$ construct $\Delta=(D, W)$ with

$$
D=\left\{\frac{: a_{i}}{a_{i}}, \frac{\neg a_{i}}{\neg a_{i}}, \frac{\neg \phi(\vec{a}, \vec{b})}{\neg \phi(\vec{a}, \vec{b})}\right\}, \quad W=\emptyset
$$

No extension contains both a_{i} and $\neg a_{i}$.
Now
$\Delta \not \nsim \neg \phi(\vec{a}, \vec{b})$ iff there is extension E s.t. $\neg \phi(\vec{a}, \vec{b}) \notin E$

iff there is $A \subset\left\{a_{1}, \neg a_{1}, \ldots, a_{n}, \neg a_{n}\right\}$ s.t. $A=\phi(\vec{a}$, iff $\exists \vec{a} \forall \vec{b} \phi(\vec{a}, \vec{b})$ is true.

Π_{2}^{p}-Hardness

Lemma

PDS is Π_{2}^{p}-hard.

Proof.

Reduction from 2QBF to UNPDS: For $\exists \vec{a} \forall \vec{b} \phi(\vec{a}, \vec{b})$ with $\vec{a}=a_{1}, \ldots, a_{n}$ and $\vec{b}=b_{1}, \ldots, b_{m}$ construct $\Delta=(D, W)$ with

$$
D=\left\{\frac{: a_{i}}{a_{i}}, \frac{: \neg a_{i}}{\neg a_{i}}, \frac{: \neg \phi(\vec{a}, \vec{b})}{\neg \phi(\vec{a}, \vec{b})}\right\}, \quad W=\emptyset
$$

No extension contains both a_{i} and $\neg a_{i}$.
Now
, \vec{b}) iff there is extension E s.t. $\neg \phi(\vec{a}, \vec{b}) \notin E$
iff there is E s.t. $\phi(\vec{a}, \vec{b}) \in E\left(\right.$ by $\left.\frac{: \neg \phi(\vec{a}, \vec{b})}{\neg \phi(\vec{a}, \vec{b})} \in D\right)$
iff there is $A \subset\left\{a_{1}, \neg a_{1}\right.$
iff $\exists \vec{a} \forall \vec{b} \phi(\vec{a}, \vec{b})$ is true.

Π_{2}^{p}-Hardness

Lemma

PDS is Π_{2}^{p}-hard.

Proof.

Reduction from 2QBF to UNPDS: For $\exists \vec{a} \forall \vec{b} \phi(\vec{a}, \vec{b})$ with $\vec{a}=a_{1}, \ldots, a_{n}$ and $\vec{b}=b_{1}, \ldots, b_{m}$ construct $\Delta=(D, W)$ with

$$
D=\left\{\frac{: a_{i}}{a_{i}}, \frac{: \neg a_{i}}{\neg a_{i}}, \frac{: \neg \phi(\vec{a}, \vec{b})}{\neg \phi(\vec{a}, \vec{b})}\right\}, \quad W=\emptyset
$$

No extension contains both a_{i} and $\neg a_{i}$.
Now

iff there is E s.t. $\phi(\vec{a}, \vec{b}) \in E\left(\right.$ by $\left.\frac{: \neg \phi(\vec{a}, \vec{b})}{\neg \phi(\vec{a}, \vec{b})} \in D\right)$ iff there is $A \subset\left\{a_{1}, \neg a_{1}, \ldots, a_{n}, \neg a_{n}\right\}$ s.t. $A \models \phi(\vec{a}, \vec{b})$

Π_{2}^{p}-Hardness

Lemma

PDS is Π_{2}^{p}-hard.

Proof.

Reduction from 2QBF to UNPDS: For $\exists \vec{a} \forall \vec{b} \phi(\vec{a}, \vec{b})$ with $\vec{a}=a_{1}, \ldots, a_{n}$ and $\vec{b}=b_{1}, \ldots, b_{m}$ construct $\Delta=(D, W)$ with

$$
D=\left\{\frac{: a_{i}}{a_{i}}, \frac{\neg a_{i}}{\neg a_{i}}, \frac{\neg \phi(\vec{a}, \vec{b})}{\neg \phi(\vec{a}, \vec{b})}\right\}, \quad W=\emptyset
$$

No extension contains both a_{i} and $\neg a_{i}$.
Now
$\vec{b})$ iff there is extension E s.t. $\neg \phi(\vec{a}, \vec{b}) \notin E$
iff there is E s.t. $\phi(\vec{a}, \vec{b}) \in E\left(\right.$ by $\left.\frac{: \neg \phi(\vec{a}, \vec{b})}{\neg(\vec{b})} \in D\right)$
iff there is $A \subset\left\{a_{1}, \neg a_{1}, \ldots, a_{n}, \neg a_{n}\right\}$ s.t. $A \models \phi(\vec{a}, \vec{b})$ iff $\exists \vec{a} \forall \vec{b} \phi(\vec{a}, \vec{b})$ is true.

Π_{2}^{p}-Hardness

Lemma

PDS is Π_{2}^{p}-hard.

No extension contains both a_{i} and $\neg a_{i}$.
Now
$\Delta \not \nsim \neg \phi(\vec{a}, \vec{b})$ iff there is extension E s.t. $\neg \phi(\vec{a}, \vec{b}) \notin E$ iff there is E s.t. $\phi(\vec{a}, \vec{b}) \in E\left(\right.$ by $\left.\frac{: \neg \phi(\vec{a}, \vec{b})}{\neg \phi(\vec{a}, \vec{b})} \in D\right)$
iff there is $A \subset\left\{a_{1}, \neg a_{1}, \ldots, a_{n}, \neg a_{n}\right\}$ s.t. $A \models \phi(\vec{a}, \vec{b})$ iff $\exists \vec{a} \forall \vec{b} \phi(\vec{a}, \vec{b})$ is true.

Conclusions \& Remarks

Theorem

PDS is Π_{2}^{p}-complete, even for defaults of the form $\frac{: \alpha}{\alpha}$.

Nebel,
Helmert, Wölfl

Introduction
Default Logic
Complexity
Complexity of
DL
Semi-Normal
Defaults
Open Defaults
Outlook
Literature

- Polynomial special cases cannot be achieved by restricting, for example, to Horn clauses (satisfiability testing in polynomial time)
- It is necessary to restrict the underlying monotonic reasoning problem and the number of extensions
- Similar results hold for other non-monotonic logics.

Conclusions \& Remarks

Theorem

PDS is Π_{2}^{p}-complete, even for defaults of the form $\frac{\alpha}{\alpha}$.
Nebel,
Helmert, WölfI

- General and normal defaults have the same complexity.
- Polynomial special cases cannot be achieved by restricting, for example, to Horn clauses (satisfiability testing in polynomial time).
- It is necessary to restrict the underlying monotonic reasoning problem and the number of extensions.
- Similar results hold for other non-monotonic logics.

Semi-Normal Defaults (1)

Semi-normal defaults are sometimes useful:

$$
\frac{\alpha: \beta \wedge \gamma}{\beta}
$$

Important when one has interacting defaults:

Open Defaults

For Student (TOM) we get two extensions: one with
Employed (Tom) and the other one with \neg Employed (Tom) Since the third rule is "more specific", we may prefer it.

Semi-Normal Defaults (1)

Semi-normal defaults are sometimes useful:

$$
\frac{\alpha: \beta \wedge \gamma}{\beta}
$$

Important when one has interacting defaults:

For Student (TOM) we get two extensions: one with
Employed (Tom) and the other one with \neg Employed (Tom) Since the third rule is "more specific", we may prefer it.

Semi-Normal Defaults (1)

Semi-normal defaults are sometimes useful:

$$
\frac{\alpha: \beta \wedge \gamma}{\beta}
$$

Important when one has interacting defaults:

$$
\begin{aligned}
& \frac{\operatorname{Adult}(x): \text { Employed }(x)}{\text { Employed }(x)} \\
& \frac{\text { Student }(x): \text { Adult }(x)}{\operatorname{Adult}(x)}
\end{aligned}
$$

$$
\frac{\text { Student }(x): \quad \neg \operatorname{Employed}(x)}{\neg \operatorname{Employed}(x)}
$$

For Student (TOM) we get two extensions: one with
Employed (Tom) and the other one with \neg Employed (Tom) Since the third rule is "more specific", we may prefer it.

Complexity
Complexity of
DL
Semi-Normal
Defaults
Open Defaults
Outlook
Literature

Semi-Normal Defaults (1)

Semi-normal defaults are sometimes useful:

$$
\frac{\alpha: \beta \wedge \gamma}{\beta}
$$

Important when one has interacting defaults:

$$
\begin{gathered}
\frac{\text { Adult }(x): \text { Employed }(x)}{\text { Employed }(x)} \\
\frac{\text { Student }(x): \quad \text { Adult }(x)}{\text { Adult }(x)} \\
\frac{\text { Student }(x): \quad \neg \operatorname{Employed}(x)}{\neg \operatorname{Employed}(x)}
\end{gathered}
$$

For Student (TOM) we get two extensions: one with Employed(Tom) and the other one with \neg Employed(Tom).

Semi-Normal Defaults (1)

Semi-normal defaults are sometimes useful:

Important when one has interacting defaults:

$$
\begin{gathered}
\frac{\text { Adult }(x): \text { Employed }(x)}{\text { Employed }(x)} \\
\frac{\text { Student }(x): \quad \text { Adult }(x)}{\text { Adult }(x)} \\
\frac{\text { Student }(x): \quad \neg \operatorname{Employed}(x)}{\neg \operatorname{Employed}(x)}
\end{gathered}
$$

For Student (TOM) we get two extensions: one with Employed(Tom) and the other one with \neg Employed(Tom). Since the third rule is "more specific", we may prefer it.

Complexity
Complexity of
DL
Semi-Normal
Defaults
Open Defaults
Outlook
Literature

Semi-Normal Defaults (2)

- Since being a student is an exception, we could use a semi-normal default to exclude students from employed adults:

Open Defaults

- Representing conflict-resolution by semi-normal defaults becomes clumsy when the number of default rules becomes high
- A scheme for assigning priorities would be more elegant (there are indeed such schemes).

Semi-Normal Defaults (2)

- Since being a student is an exception, we could use a semi-normal default to exclude students from employed adults:

$$
\frac{\text { Student }(x): \quad \neg \operatorname{Employed}(x)}{\neg \operatorname{Employed}(x)}
$$

$\frac{\operatorname{Adult}(x): \quad \text { Employed }(x) \wedge \neg \operatorname{Student}(x)}{\operatorname{Employed}(x)}$

$$
\frac{\text { Student }(x): \operatorname{Adult}(x)}{\operatorname{Adult}(x)}
$$

- Representing conflict-resolution by semi-normal defaults becomes clumsy when the number of default rules becomes high.
- A scheme for assigning priorities would be more elegant (there are indeed such schemes)

Semi-Normal Defaults (2)

- Since being a student is an exception, we could use a semi-normal default to exclude students from employed adults:

$$
\frac{\text { Student }(x): \quad \neg \text { Employed }(x)}{\neg \operatorname{Employed}(x)}
$$

Student (x): Adult (x)

$$
\text { Adult }(x)
$$

- Representing conflict-resolution by semi-normal defaults becomes clumsy when the number of default rules becomes high.
- A scheme for assigning priorities would be more elegant (there are indeed such schemes)

Semi-Normal Defaults (2)

- Since being a student is an exception, we could use a semi-normal default to exclude students from employed adults:

$$
\frac{\text { Student }(x): \quad \neg \operatorname{Employed}(x)}{\neg \operatorname{Employed}(x)}
$$

$$
\begin{gathered}
\frac{\operatorname{Adult}(x): \quad \text { Employed }(x) \wedge \neg \operatorname{Student}(x)}{\text { Employed }(x)} \\
\frac{\operatorname{Student}(x): \quad \text { Adult }(x)}{\operatorname{Adult}(x)}
\end{gathered}
$$

- Representing conflict-resolution by semi-normal defaults becomes clumsy when the number of default rules becomes high.
- A scheme for assigning priorities would be more elegant (there are indeed such schemes).

Open Defaults (1)

- Our examples included open defaults, but the theory covers only closed defaults.
- If we have $\frac{\alpha(\vec{x}): \beta(\vec{x})}{\gamma(\vec{x})}$, then the variables should stand for all nameable objects.
- Problem: What about objects that have been introduced implicitly: $\exists x P(x)$.
- Solution by Reiter: Skolemization of all formulae in W and D.
- Interpretation: An open default stands for all the closed defaults resulting from substituting ground terms for the variables.

Open Defaults (2)

Skolemization can create problems because it preserves satisfiability, but it is not an equivalence transformation

Example

Default Logic
$\forall x(\operatorname{Man}(x) \leftrightarrow \neg W o m a n(x))$
Complexity
$\forall x(\operatorname{Man}(x) \rightarrow(\exists y(\operatorname{Spouse}(x, y) \wedge$ Woman $(y)) \vee$ Bachelor $(x)))$
Complexity of
Man(TOM)
Semi-Normal
Defaults
Open Defaults
Outlook
Literature

Skolemization of $\exists y: \ldots$ enables concluding Bachelor(TOM)!
The reason is that for $g(\mathrm{TOM})$ we get $\operatorname{Man}(g(\mathrm{TOM}))$ by default $(g$
is the Skolem function)

Open Defaults (2)

Skolemization can create problems because it preserves satisfiability, but it is not an equivalence transformation.
$\forall x(\operatorname{Man}(x) \leftrightarrow \neg \operatorname{Woman}(x))$
$\forall x(\operatorname{Man}(x) \rightarrow(\exists y(\operatorname{Spouse}(x, y) \wedge \operatorname{Woman}(y)) \vee$ Bachelor $(x)))$ Man(TOM)
Spouse(TOM, MARY)
Woman(MARY)
$\frac{: \operatorname{Man}(x)}{\operatorname{Man}(x)}$
Skolemization of $\exists y: \ldots$ enables concluding Bachelor(TOM)! The reason is that for $g($ TOM $)$ we get $\operatorname{Man}(g(T O M))$ by default $(g$ is the Skolem function).

Open Defaults (3)

It is even worse: Logically equivalent theories can have different extensions.

$$
\begin{aligned}
W_{1} & =\{\exists x(P(C, x) \vee Q(C, x))\} \\
W_{2} & =\{\exists x P(C, x) \vee \exists x Q(C, x)\} \\
D & =\left\{\frac{P(x, y) \vee Q(x, y): R}{R}\right\}
\end{aligned}
$$

W_{1} and W_{2} are logically equivalent. However, the Skolemization of W_{1}, symbolically $s\left(W_{1}\right)$, is not equivalent with

Open Defaults (3)

It is even worse: Logically equivalent theories can have different extensions.

$$
\begin{aligned}
W_{1} & =\{\exists x(P(C, x) \vee Q(C, x))\} \\
W_{2} & =\{\exists x P(C, x) \vee \exists x Q(C, x)\} \\
D & =\left\{\frac{P(x, y) \vee Q(x, y): R}{R}\right\}
\end{aligned}
$$

W_{1} and W_{2} are logically equivalent. However, the Skolemization of W_{1}, symbolically $s\left(W_{1}\right)$, is not equivalent with

Open Defaults (3)

It is even worse: Logically equivalent theories can have different extensions.

$$
\begin{aligned}
W_{1} & =\{\exists x(P(C, x) \vee Q(C, x))\} \\
W_{2} & =\{\exists x P(C, x) \vee \exists x Q(C, x)\} \\
D & =\left\{\frac{P(x, y) \vee Q(x, y): R}{R}\right\}
\end{aligned}
$$

W_{1} and W_{2} are logically equivalent. However, the Skolemization of W_{1}, symbolically $s\left(W_{1}\right)$, is not equivalent with $s\left(W_{2}\right)$.

Note: Skolemization is not the right method to deal with open defaults in the general case.

Open Defaults (3)

It is even worse: Logically equivalent theories can have different extensions.

$$
\begin{aligned}
W_{1} & =\{\exists x(P(C, x) \vee Q(C, x))\} \\
W_{2} & =\{\exists x P(C, x) \vee \exists x Q(C, x)\} \\
D & =\left\{\frac{P(x, y) \vee Q(x, y): R}{R}\right\}
\end{aligned}
$$

W_{1} and W_{2} are logically equivalent. However, the Skolemization of W_{1}, symbolically $s\left(W_{1}\right)$, is not equivalent with $s\left(W_{2}\right)$. The only extension of $\left(D, W_{1}\right)$ is $\operatorname{Th}\left(s\left(W_{1}\right) \cup R\right)$.

Note: Skolemization is not the right method to deal with open defaults in the general case.

Open Defaults (3)

It is even worse: Logically equivalent theories can have different extensions.

$$
\begin{aligned}
W_{1} & =\{\exists x(P(C, x) \vee Q(C, x))\} \\
W_{2} & =\{\exists x P(C, x) \vee \exists x Q(C, x)\} \\
D & =\left\{\frac{P(x, y) \vee Q(x, y): R}{R}\right\}
\end{aligned}
$$

W_{1} and W_{2} are logically equivalent. However, the Skolemization of W_{1}, symbolically $s\left(W_{1}\right)$, is not equivalent with $s\left(W_{2}\right)$. The only extension of $\left(D, W_{1}\right)$ is $\operatorname{Th}\left(s\left(W_{1}\right) \cup R\right)$. The only extension of $\left(D, W_{2}\right)$ is $\operatorname{Th}\left(s\left(W_{2}\right)\right)$.
Note: Skolemization is not the right method to deal with open defaults in the general case

Open Defaults (3)

It is even worse: Logically equivalent theories can have different extensions.

$$
\begin{aligned}
W_{1} & =\{\exists x(P(C, x) \vee Q(C, x))\} \\
W_{2} & =\{\exists x P(C, x) \vee \exists x Q(C, x)\} \\
D & =\left\{\frac{P(x, y) \vee Q(x, y): R}{R}\right\}
\end{aligned}
$$

W_{1} and W_{2} are logically equivalent. However, the Skolemization of W_{1}, symbolically $s\left(W_{1}\right)$, is not equivalent with $s\left(W_{2}\right)$. The only extension of $\left(D, W_{1}\right)$ is $\operatorname{Th}\left(s\left(W_{1}\right) \cup R\right)$. The only extension of $\left(D, W_{2}\right)$ is $\operatorname{Th}\left(s\left(W_{2}\right)\right)$.
Note: Skolemization is not the right method to deal with open defaults in the general case.

Outlook

Although Reiter's definition of DL makes sense, one can come up with a number of variations and extend the investigation...

- Extensions can be defined differently (e.g., by remembering consistency conditions).
- ... or by removing the groundedness condition.
- Open defaults can be handled differently (more model-theoretically).
- General proof methods for the finite, decidable case
- Applications of default logic:
- Diagnosis
- Reasoning about actions

Literature

Raymond Reiter.

A logic for default reasoning.
Artificial Intelligence, 13(1):81-132, April 1980.
Georg Gottlob.
Complexity Results for Nonmonotonic Logics.
Journal for Logic and Computation, 2(3), 1992.
Ti. Marco Cadoli and Marco Schaerf.
A Survey of Complexity Results for Non-monotonic Logics. The Journal of Logic Programming 17: 127-160, 1993.

- Gerhard Brewka.

Nonmonotonic Reasoning: Logical Foundations of Commonsense. Cambridge University Press, Cambridge, UK, 1991.
Franz Baader and Bernhard Hollunder.
Embedding defaults into terminological knowledge representation formalisms.
In B. Nebel, W. Swartout, and C. Rich, editors, Principles of Knowledge Representation and Reasoning: Proceedings of the 3rd International Conference, pages 306-317. Cambridge, MA. October

