
KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Principles of Knowledge Representation and
Reasoning

Complexity Theory

Bernhard Nebel, Malte Helmert and Stefan Wölfl

Albert-Ludwigs-Universität Freiburg

April 29, 2008



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Motivation for Using Complexity Theory

Complexity theory can answer questions on how easy or
hard a problem is

Gives hints on what algorithms could be appropriate, e.g.:

algorithms for polynomial-time problems are usually easy
to design
for NP-complete problems, backtracking and local search
work well

Gives hints on what type of algorithm will (most probably)
not work

for problems that are believed to be harder than
NP-complete ones, simple backtracking will not work

Gives hint on what sub-problems might be interesting



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Motivation for Using Complexity Theory

Complexity theory can answer questions on how easy or
hard a problem is

Gives hints on what algorithms could be appropriate, e.g.:

algorithms for polynomial-time problems are usually easy
to design
for NP-complete problems, backtracking and local search
work well

Gives hints on what type of algorithm will (most probably)
not work

for problems that are believed to be harder than
NP-complete ones, simple backtracking will not work

Gives hint on what sub-problems might be interesting



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Motivation for Using Complexity Theory

Complexity theory can answer questions on how easy or
hard a problem is

Gives hints on what algorithms could be appropriate, e.g.:

algorithms for polynomial-time problems are usually easy
to design
for NP-complete problems, backtracking and local search
work well

Gives hints on what type of algorithm will (most probably)
not work

for problems that are believed to be harder than
NP-complete ones, simple backtracking will not work

Gives hint on what sub-problems might be interesting



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Motivation for Using Complexity Theory

Complexity theory can answer questions on how easy or
hard a problem is

Gives hints on what algorithms could be appropriate, e.g.:

algorithms for polynomial-time problems are usually easy
to design
for NP-complete problems, backtracking and local search
work well

Gives hints on what type of algorithm will (most probably)
not work

for problems that are believed to be harder than
NP-complete ones, simple backtracking will not work

Gives hint on what sub-problems might be interesting



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Motivation for Using Complexity Theory

Complexity theory can answer questions on how easy or
hard a problem is

Gives hints on what algorithms could be appropriate, e.g.:

algorithms for polynomial-time problems are usually easy
to design
for NP-complete problems, backtracking and local search
work well

Gives hints on what type of algorithm will (most probably)
not work

for problems that are believed to be harder than
NP-complete ones, simple backtracking will not work

Gives hint on what sub-problems might be interesting



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Motivation for Using Complexity Theory

Complexity theory can answer questions on how easy or
hard a problem is

Gives hints on what algorithms could be appropriate, e.g.:

algorithms for polynomial-time problems are usually easy
to design
for NP-complete problems, backtracking and local search
work well

Gives hints on what type of algorithm will (most probably)
not work

for problems that are believed to be harder than
NP-complete ones, simple backtracking will not work

Gives hint on what sub-problems might be interesting



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Motivation for Using Complexity Theory

Complexity theory can answer questions on how easy or
hard a problem is

Gives hints on what algorithms could be appropriate, e.g.:

algorithms for polynomial-time problems are usually easy
to design
for NP-complete problems, backtracking and local search
work well

Gives hints on what type of algorithm will (most probably)
not work

for problems that are believed to be harder than
NP-complete ones, simple backtracking will not work

Gives hint on what sub-problems might be interesting



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Algorithms and
Turing Machines

Problems,
Solutions, and
Complexity

Complexity
Classes P and
NP

Upper and
Lower Bounds

Polynomial
Reductions

NP-
Completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Algorithms and Turing Machines

We use Turing machines as formal models of algorithms

This is justified, because:

we assume that Turing machines can compute all
computable functions
the resource requirements (in term of time and memory) of
a Turing machine are only polynomially worse than other
models

The regular type of Turing machine is the deterministic
one: DTM (or simply TM)

Often, however, we use the notion of nondeterministic
TMs: NDTM



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Algorithms and
Turing Machines

Problems,
Solutions, and
Complexity

Complexity
Classes P and
NP

Upper and
Lower Bounds

Polynomial
Reductions

NP-
Completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Algorithms and Turing Machines

We use Turing machines as formal models of algorithms

This is justified, because:

we assume that Turing machines can compute all
computable functions
the resource requirements (in term of time and memory) of
a Turing machine are only polynomially worse than other
models

The regular type of Turing machine is the deterministic
one: DTM (or simply TM)

Often, however, we use the notion of nondeterministic
TMs: NDTM



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Algorithms and
Turing Machines

Problems,
Solutions, and
Complexity

Complexity
Classes P and
NP

Upper and
Lower Bounds

Polynomial
Reductions

NP-
Completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Algorithms and Turing Machines

We use Turing machines as formal models of algorithms

This is justified, because:

we assume that Turing machines can compute all
computable functions
the resource requirements (in term of time and memory) of
a Turing machine are only polynomially worse than other
models

The regular type of Turing machine is the deterministic
one: DTM (or simply TM)

Often, however, we use the notion of nondeterministic
TMs: NDTM



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Algorithms and
Turing Machines

Problems,
Solutions, and
Complexity

Complexity
Classes P and
NP

Upper and
Lower Bounds

Polynomial
Reductions

NP-
Completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Algorithms and Turing Machines

We use Turing machines as formal models of algorithms

This is justified, because:

we assume that Turing machines can compute all
computable functions
the resource requirements (in term of time and memory) of
a Turing machine are only polynomially worse than other
models

The regular type of Turing machine is the deterministic
one: DTM (or simply TM)

Often, however, we use the notion of nondeterministic
TMs: NDTM



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Algorithms and
Turing Machines

Problems,
Solutions, and
Complexity

Complexity
Classes P and
NP

Upper and
Lower Bounds

Polynomial
Reductions

NP-
Completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Algorithms and Turing Machines

We use Turing machines as formal models of algorithms

This is justified, because:

we assume that Turing machines can compute all
computable functions
the resource requirements (in term of time and memory) of
a Turing machine are only polynomially worse than other
models

The regular type of Turing machine is the deterministic
one: DTM (or simply TM)

Often, however, we use the notion of nondeterministic
TMs: NDTM



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Algorithms and
Turing Machines

Problems,
Solutions, and
Complexity

Complexity
Classes P and
NP

Upper and
Lower Bounds

Polynomial
Reductions

NP-
Completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Algorithms and Turing Machines

We use Turing machines as formal models of algorithms

This is justified, because:

we assume that Turing machines can compute all
computable functions
the resource requirements (in term of time and memory) of
a Turing machine are only polynomially worse than other
models

The regular type of Turing machine is the deterministic
one: DTM (or simply TM)

Often, however, we use the notion of nondeterministic
TMs: NDTM



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Algorithms and
Turing Machines

Problems,
Solutions, and
Complexity

Complexity
Classes P and
NP

Upper and
Lower Bounds

Polynomial
Reductions

NP-
Completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Problems, Solutions, and Complexity

A problem is a set of pairs (I, A) of strings in {0, 1}∗.
I: Instance; A: Answer.
If A ∈ {0, 1}: decision problem
A decision problem is the same as a formal language:
namely the set of strings formed by the instances with
answer 1
An algorithm decides (or solves) a problem if it computes
the right answer for all instances.
The complexity of an algorithm is a function

T : N→ N,

measuring the number of basic steps (or memory
requirement) the algorithm needs to compute an answer
depending on the size of the instance.
The complexity of a problem is the complexity of the most
efficient algorithm that solves this problem.



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Algorithms and
Turing Machines

Problems,
Solutions, and
Complexity

Complexity
Classes P and
NP

Upper and
Lower Bounds

Polynomial
Reductions

NP-
Completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Problems, Solutions, and Complexity

A problem is a set of pairs (I, A) of strings in {0, 1}∗.
I: Instance; A: Answer.
If A ∈ {0, 1}: decision problem
A decision problem is the same as a formal language:
namely the set of strings formed by the instances with
answer 1
An algorithm decides (or solves) a problem if it computes
the right answer for all instances.
The complexity of an algorithm is a function

T : N→ N,

measuring the number of basic steps (or memory
requirement) the algorithm needs to compute an answer
depending on the size of the instance.
The complexity of a problem is the complexity of the most
efficient algorithm that solves this problem.



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Algorithms and
Turing Machines

Problems,
Solutions, and
Complexity

Complexity
Classes P and
NP

Upper and
Lower Bounds

Polynomial
Reductions

NP-
Completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Problems, Solutions, and Complexity

A problem is a set of pairs (I, A) of strings in {0, 1}∗.
I: Instance; A: Answer.
If A ∈ {0, 1}: decision problem
A decision problem is the same as a formal language:
namely the set of strings formed by the instances with
answer 1
An algorithm decides (or solves) a problem if it computes
the right answer for all instances.
The complexity of an algorithm is a function

T : N→ N,

measuring the number of basic steps (or memory
requirement) the algorithm needs to compute an answer
depending on the size of the instance.
The complexity of a problem is the complexity of the most
efficient algorithm that solves this problem.



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Algorithms and
Turing Machines

Problems,
Solutions, and
Complexity

Complexity
Classes P and
NP

Upper and
Lower Bounds

Polynomial
Reductions

NP-
Completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Problems, Solutions, and Complexity

A problem is a set of pairs (I, A) of strings in {0, 1}∗.
I: Instance; A: Answer.
If A ∈ {0, 1}: decision problem
A decision problem is the same as a formal language:
namely the set of strings formed by the instances with
answer 1
An algorithm decides (or solves) a problem if it computes
the right answer for all instances.
The complexity of an algorithm is a function

T : N→ N,

measuring the number of basic steps (or memory
requirement) the algorithm needs to compute an answer
depending on the size of the instance.
The complexity of a problem is the complexity of the most
efficient algorithm that solves this problem.



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Algorithms and
Turing Machines

Problems,
Solutions, and
Complexity

Complexity
Classes P and
NP

Upper and
Lower Bounds

Polynomial
Reductions

NP-
Completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Problems, Solutions, and Complexity

A problem is a set of pairs (I, A) of strings in {0, 1}∗.
I: Instance; A: Answer.
If A ∈ {0, 1}: decision problem
A decision problem is the same as a formal language:
namely the set of strings formed by the instances with
answer 1
An algorithm decides (or solves) a problem if it computes
the right answer for all instances.
The complexity of an algorithm is a function

T : N→ N,

measuring the number of basic steps (or memory
requirement) the algorithm needs to compute an answer
depending on the size of the instance.
The complexity of a problem is the complexity of the most
efficient algorithm that solves this problem.



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Algorithms and
Turing Machines

Problems,
Solutions, and
Complexity

Complexity
Classes P and
NP

Upper and
Lower Bounds

Polynomial
Reductions

NP-
Completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Complexity Classes P and NP

Problems are categorized into complexity classes according to
the requirements of computational resources:

The class of problems decidable on deterministic Turing
machines in polynomial time: P

Problems in P are assumed to be efficiently solvable
(although this might not be true if the exponent is very
large)

In practice, this notion appears to be more often
reasonable than not

The class of problems decidable on non-deterministic
Turing machines in polynomial time: NP

More classes are definable using other resource bounds on
time and memory



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Algorithms and
Turing Machines

Problems,
Solutions, and
Complexity

Complexity
Classes P and
NP

Upper and
Lower Bounds

Polynomial
Reductions

NP-
Completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Complexity Classes P and NP

Problems are categorized into complexity classes according to
the requirements of computational resources:

The class of problems decidable on deterministic Turing
machines in polynomial time: P

Problems in P are assumed to be efficiently solvable
(although this might not be true if the exponent is very
large)

In practice, this notion appears to be more often
reasonable than not

The class of problems decidable on non-deterministic
Turing machines in polynomial time: NP

More classes are definable using other resource bounds on
time and memory



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Algorithms and
Turing Machines

Problems,
Solutions, and
Complexity

Complexity
Classes P and
NP

Upper and
Lower Bounds

Polynomial
Reductions

NP-
Completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Complexity Classes P and NP

Problems are categorized into complexity classes according to
the requirements of computational resources:

The class of problems decidable on deterministic Turing
machines in polynomial time: P

Problems in P are assumed to be efficiently solvable
(although this might not be true if the exponent is very
large)

In practice, this notion appears to be more often
reasonable than not

The class of problems decidable on non-deterministic
Turing machines in polynomial time: NP

More classes are definable using other resource bounds on
time and memory



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Algorithms and
Turing Machines

Problems,
Solutions, and
Complexity

Complexity
Classes P and
NP

Upper and
Lower Bounds

Polynomial
Reductions

NP-
Completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Complexity Classes P and NP

Problems are categorized into complexity classes according to
the requirements of computational resources:

The class of problems decidable on deterministic Turing
machines in polynomial time: P

Problems in P are assumed to be efficiently solvable
(although this might not be true if the exponent is very
large)

In practice, this notion appears to be more often
reasonable than not

The class of problems decidable on non-deterministic
Turing machines in polynomial time: NP

More classes are definable using other resource bounds on
time and memory



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Algorithms and
Turing Machines

Problems,
Solutions, and
Complexity

Complexity
Classes P and
NP

Upper and
Lower Bounds

Polynomial
Reductions

NP-
Completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Complexity Classes P and NP

Problems are categorized into complexity classes according to
the requirements of computational resources:

The class of problems decidable on deterministic Turing
machines in polynomial time: P

Problems in P are assumed to be efficiently solvable
(although this might not be true if the exponent is very
large)

In practice, this notion appears to be more often
reasonable than not

The class of problems decidable on non-deterministic
Turing machines in polynomial time: NP

More classes are definable using other resource bounds on
time and memory



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Algorithms and
Turing Machines

Problems,
Solutions, and
Complexity

Complexity
Classes P and
NP

Upper and
Lower Bounds

Polynomial
Reductions

NP-
Completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Upper and Lower Bounds

Upper bounds (membership in a class) are usually easy to
prove:

provide an algorithm
show that the resource bounds are respected

Lower bounds (hardness for a class) are usually difficult to
show:

the technical tool here is the polynomial reduction (or any
other appropriate reduction)
show that some hard problem can be reduced to the
problem at hand



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Algorithms and
Turing Machines

Problems,
Solutions, and
Complexity

Complexity
Classes P and
NP

Upper and
Lower Bounds

Polynomial
Reductions

NP-
Completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Upper and Lower Bounds

Upper bounds (membership in a class) are usually easy to
prove:

provide an algorithm
show that the resource bounds are respected

Lower bounds (hardness for a class) are usually difficult to
show:

the technical tool here is the polynomial reduction (or any
other appropriate reduction)
show that some hard problem can be reduced to the
problem at hand



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Algorithms and
Turing Machines

Problems,
Solutions, and
Complexity

Complexity
Classes P and
NP

Upper and
Lower Bounds

Polynomial
Reductions

NP-
Completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Upper and Lower Bounds

Upper bounds (membership in a class) are usually easy to
prove:

provide an algorithm
show that the resource bounds are respected

Lower bounds (hardness for a class) are usually difficult to
show:

the technical tool here is the polynomial reduction (or any
other appropriate reduction)
show that some hard problem can be reduced to the
problem at hand



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Algorithms and
Turing Machines

Problems,
Solutions, and
Complexity

Complexity
Classes P and
NP

Upper and
Lower Bounds

Polynomial
Reductions

NP-
Completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Upper and Lower Bounds

Upper bounds (membership in a class) are usually easy to
prove:

provide an algorithm
show that the resource bounds are respected

Lower bounds (hardness for a class) are usually difficult to
show:

the technical tool here is the polynomial reduction (or any
other appropriate reduction)
show that some hard problem can be reduced to the
problem at hand



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Algorithms and
Turing Machines

Problems,
Solutions, and
Complexity

Complexity
Classes P and
NP

Upper and
Lower Bounds

Polynomial
Reductions

NP-
Completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Upper and Lower Bounds

Upper bounds (membership in a class) are usually easy to
prove:

provide an algorithm
show that the resource bounds are respected

Lower bounds (hardness for a class) are usually difficult to
show:

the technical tool here is the polynomial reduction (or any
other appropriate reduction)
show that some hard problem can be reduced to the
problem at hand



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Algorithms and
Turing Machines

Problems,
Solutions, and
Complexity

Complexity
Classes P and
NP

Upper and
Lower Bounds

Polynomial
Reductions

NP-
Completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Upper and Lower Bounds

Upper bounds (membership in a class) are usually easy to
prove:

provide an algorithm
show that the resource bounds are respected

Lower bounds (hardness for a class) are usually difficult to
show:

the technical tool here is the polynomial reduction (or any
other appropriate reduction)
show that some hard problem can be reduced to the
problem at hand



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Algorithms and
Turing Machines

Problems,
Solutions, and
Complexity

Complexity
Classes P and
NP

Upper and
Lower Bounds

Polynomial
Reductions

NP-
Completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Polynomial Reductions

Given two languages L1 and L2, L1 can be polynomially
reduced to L2, written L1 ≤p L2, iff there exists a
polynomially computable function f such that

x ∈ L1 iff f(x) ∈ L2

It cannot be harder to decide L1 than L2

L is hard for a class C (C-hard) iff all languages of this
class can be reduced to L.

L is complete for C (C-complete) iff L is C-hard and
L ∈ C.



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Algorithms and
Turing Machines

Problems,
Solutions, and
Complexity

Complexity
Classes P and
NP

Upper and
Lower Bounds

Polynomial
Reductions

NP-
Completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Polynomial Reductions

Given two languages L1 and L2, L1 can be polynomially
reduced to L2, written L1 ≤p L2, iff there exists a
polynomially computable function f such that

x ∈ L1 iff f(x) ∈ L2

It cannot be harder to decide L1 than L2

L is hard for a class C (C-hard) iff all languages of this
class can be reduced to L.

L is complete for C (C-complete) iff L is C-hard and
L ∈ C.



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Algorithms and
Turing Machines

Problems,
Solutions, and
Complexity

Complexity
Classes P and
NP

Upper and
Lower Bounds

Polynomial
Reductions

NP-
Completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Polynomial Reductions

Given two languages L1 and L2, L1 can be polynomially
reduced to L2, written L1 ≤p L2, iff there exists a
polynomially computable function f such that

x ∈ L1 iff f(x) ∈ L2

It cannot be harder to decide L1 than L2

L is hard for a class C (C-hard) iff all languages of this
class can be reduced to L.

L is complete for C (C-complete) iff L is C-hard and
L ∈ C.



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Algorithms and
Turing Machines

Problems,
Solutions, and
Complexity

Complexity
Classes P and
NP

Upper and
Lower Bounds

Polynomial
Reductions

NP-
Completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Polynomial Reductions

Given two languages L1 and L2, L1 can be polynomially
reduced to L2, written L1 ≤p L2, iff there exists a
polynomially computable function f such that

x ∈ L1 iff f(x) ∈ L2

It cannot be harder to decide L1 than L2

L is hard for a class C (C-hard) iff all languages of this
class can be reduced to L.

L is complete for C (C-complete) iff L is C-hard and
L ∈ C.



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Algorithms and
Turing Machines

Problems,
Solutions, and
Complexity

Complexity
Classes P and
NP

Upper and
Lower Bounds

Polynomial
Reductions

NP-
Completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

NP-complete Problems

A problem is NP-complete iff it is NP-hard and in NP.

Example: SAT – the satisfiability problem for propositional
logic – is NP-complete (Cook/Karp)

Membership is obvious, hardness follows because
computations on a NDTM correspond to satisfying
truth-assignments of certain formulae

NP

P

NP−hard

NP−complete

all problems



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Algorithms and
Turing Machines

Problems,
Solutions, and
Complexity

Complexity
Classes P and
NP

Upper and
Lower Bounds

Polynomial
Reductions

NP-
Completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

NP-complete Problems

A problem is NP-complete iff it is NP-hard and in NP.

Example: SAT – the satisfiability problem for propositional
logic – is NP-complete (Cook/Karp)

Membership is obvious, hardness follows because
computations on a NDTM correspond to satisfying
truth-assignments of certain formulae

NP

P

NP−hard

NP−complete

all problems



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Algorithms and
Turing Machines

Problems,
Solutions, and
Complexity

Complexity
Classes P and
NP

Upper and
Lower Bounds

Polynomial
Reductions

NP-
Completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

NP-complete Problems

A problem is NP-complete iff it is NP-hard and in NP.

Example: SAT – the satisfiability problem for propositional
logic – is NP-complete (Cook/Karp)

Membership is obvious, hardness follows because
computations on a NDTM correspond to satisfying
truth-assignments of certain formulae

NP

P

NP−hard

NP−complete

all problems



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Algorithms and
Turing Machines

Problems,
Solutions, and
Complexity

Complexity
Classes P and
NP

Upper and
Lower Bounds

Polynomial
Reductions

NP-
Completeness

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

NP-complete Problems

A problem is NP-complete iff it is NP-hard and in NP.

Example: SAT – the satisfiability problem for propositional
logic – is NP-complete (Cook/Karp)

Membership is obvious, hardness follows because
computations on a NDTM correspond to satisfying
truth-assignments of certain formulae

NP

P

NP−hard

NP−complete

all problems



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

The Class co-NP

The Class
PSPACE

Other Classes

Oracle TMs
and the
Polynomial
Hierarchy

Literature

The Complexity Class co-NP

Note that there is some asymmetry in the definition of
NP:

It is clear that we can decide SAT by using a NDTM with
polynomially bounded computation
There exists an accepting computation of polynomial
length iff the formula is satisfiable
What if we want to solve UNSAT, the complementary
problem?
It seems necessary to check all possible truth-assignments!

Define co-C = {L|Σ∗ − L ∈ C}, provided Σ is our
alphabet

co-NP = {L|Σ∗ − L ∈ NP}
For example UNSAT, TAUT ∈ co-NP!

Note: P is closed under complement, i.e.,

P ⊆ NP ∩ co-NP



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

The Class co-NP

The Class
PSPACE

Other Classes

Oracle TMs
and the
Polynomial
Hierarchy

Literature

PSPACE

There are problems even more difficult than NP and co-NP.

Definition ((N)PSPACE)

PSPACE (NPSPACE) is the class of decision problems that can
be decided on deterministic (non-deterministic) Turing
machines using only polynomially many tape cells.

Some facts about PSPACE:

PSPACE is closed under complements (as all other
deterministic classes)
PSPACE is identical to NPSPACE (because
non-deterministic Turing machines can be simulated on
deterministic TMs using only quadratic space)
NP⊆PSPACE (because in polynomial time one can “visit”
only polynomial space, i.e., NP⊆NPSPACE)
It is unknown whether NP6=PSPACE, but it is believed
that this is true.



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

The Class co-NP

The Class
PSPACE

Other Classes

Oracle TMs
and the
Polynomial
Hierarchy

Literature

PSPACE

There are problems even more difficult than NP and co-NP.

Definition ((N)PSPACE)

PSPACE (NPSPACE) is the class of decision problems that can
be decided on deterministic (non-deterministic) Turing
machines using only polynomially many tape cells.

Some facts about PSPACE:

PSPACE is closed under complements (as all other
deterministic classes)
PSPACE is identical to NPSPACE (because
non-deterministic Turing machines can be simulated on
deterministic TMs using only quadratic space)
NP⊆PSPACE (because in polynomial time one can “visit”
only polynomial space, i.e., NP⊆NPSPACE)
It is unknown whether NP6=PSPACE, but it is believed
that this is true.



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

The Class co-NP

The Class
PSPACE

Other Classes

Oracle TMs
and the
Polynomial
Hierarchy

Literature

PSPACE

There are problems even more difficult than NP and co-NP.

Definition ((N)PSPACE)

PSPACE (NPSPACE) is the class of decision problems that can
be decided on deterministic (non-deterministic) Turing
machines using only polynomially many tape cells.

Some facts about PSPACE:

PSPACE is closed under complements (as all other
deterministic classes)
PSPACE is identical to NPSPACE (because
non-deterministic Turing machines can be simulated on
deterministic TMs using only quadratic space)
NP⊆PSPACE (because in polynomial time one can “visit”
only polynomial space, i.e., NP⊆NPSPACE)
It is unknown whether NP6=PSPACE, but it is believed
that this is true.



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

The Class co-NP

The Class
PSPACE

Other Classes

Oracle TMs
and the
Polynomial
Hierarchy

Literature

PSPACE-completeness

Definition (PSPACE-completeness)

A decision problem (or language) is PSPACE-complete, if it is
in PSPACE and all other problems in PSPACE can be
polynomially reduced to it.

Intuitively, PSPACE-complete problems are the “hardest”
problems in PSPACE (similar to NP-completeness). They
appear to be “harder” than NP-complete problems from a
practical point of view.

An example for a PSPACE-complete problem is the
NDFA equivalence problem:

Instance: Two non-deterministic finite state
automata A1 and A2.
Question: Are the languages accepted by A1 and A2

identical?



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

The Class co-NP

The Class
PSPACE

Other Classes

Oracle TMs
and the
Polynomial
Hierarchy

Literature

PSPACE-completeness

Definition (PSPACE-completeness)

A decision problem (or language) is PSPACE-complete, if it is
in PSPACE and all other problems in PSPACE can be
polynomially reduced to it.

Intuitively, PSPACE-complete problems are the “hardest”
problems in PSPACE (similar to NP-completeness). They
appear to be “harder” than NP-complete problems from a
practical point of view.

An example for a PSPACE-complete problem is the
NDFA equivalence problem:

Instance: Two non-deterministic finite state
automata A1 and A2.
Question: Are the languages accepted by A1 and A2

identical?



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

The Class co-NP

The Class
PSPACE

Other Classes

Oracle TMs
and the
Polynomial
Hierarchy

Literature

PSPACE-completeness

Definition (PSPACE-completeness)

A decision problem (or language) is PSPACE-complete, if it is
in PSPACE and all other problems in PSPACE can be
polynomially reduced to it.

Intuitively, PSPACE-complete problems are the “hardest”
problems in PSPACE (similar to NP-completeness). They
appear to be “harder” than NP-complete problems from a
practical point of view.

An example for a PSPACE-complete problem is the
NDFA equivalence problem:

Instance: Two non-deterministic finite state
automata A1 and A2.
Question: Are the languages accepted by A1 and A2

identical?



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

The Class co-NP

The Class
PSPACE

Other Classes

Oracle TMs
and the
Polynomial
Hierarchy

Literature

PSPACE-completeness

Definition (PSPACE-completeness)

A decision problem (or language) is PSPACE-complete, if it is
in PSPACE and all other problems in PSPACE can be
polynomially reduced to it.

Intuitively, PSPACE-complete problems are the “hardest”
problems in PSPACE (similar to NP-completeness). They
appear to be “harder” than NP-complete problems from a
practical point of view.

An example for a PSPACE-complete problem is the
NDFA equivalence problem:

Instance: Two non-deterministic finite state
automata A1 and A2.
Question: Are the languages accepted by A1 and A2

identical?



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

The Class co-NP

The Class
PSPACE

Other Classes

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Other Complexity Classes . . .

There are complexity classes above PSPACE (EXPTIME,
EXPSPACE, NEXPTIME, DEXPTIME . . . )

there are (infinitely many) classes between NP and
PSPACE (the polynomial hierarchy defined by oracle
machines)

there are (infinitely many) classes inside P (circuit classes
with different depths)

and for most of the classes we do not know whether the
containment relationships are strict



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

The Class co-NP

The Class
PSPACE

Other Classes

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Other Complexity Classes . . .

There are complexity classes above PSPACE (EXPTIME,
EXPSPACE, NEXPTIME, DEXPTIME . . . )

there are (infinitely many) classes between NP and
PSPACE (the polynomial hierarchy defined by oracle
machines)

there are (infinitely many) classes inside P (circuit classes
with different depths)

and for most of the classes we do not know whether the
containment relationships are strict



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

The Class co-NP

The Class
PSPACE

Other Classes

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Other Complexity Classes . . .

There are complexity classes above PSPACE (EXPTIME,
EXPSPACE, NEXPTIME, DEXPTIME . . . )

there are (infinitely many) classes between NP and
PSPACE (the polynomial hierarchy defined by oracle
machines)

there are (infinitely many) classes inside P (circuit classes
with different depths)

and for most of the classes we do not know whether the
containment relationships are strict



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

The Class co-NP

The Class
PSPACE

Other Classes

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Other Complexity Classes . . .

There are complexity classes above PSPACE (EXPTIME,
EXPSPACE, NEXPTIME, DEXPTIME . . . )

there are (infinitely many) classes between NP and
PSPACE (the polynomial hierarchy defined by oracle
machines)

there are (infinitely many) classes inside P (circuit classes
with different depths)

and for most of the classes we do not know whether the
containment relationships are strict



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Oracle
Turing-Machines

Turing
Reduction

Complexity
Classes Based on
OTMs

QBF

Literature

Oracle Turing Machines

An Oracle Turing machine ((N)OTM) is a Turing machine
(DTM, NDTM) with the possibility to query an oracle
(i. e., a different Turing machine without resource
restrictions) whether it accepts or rejects a given string.

Computation by the oracle does not cost anything!

Formalization:

a tape onto which strings for the oracle are written,
a yes/no answer from the oracle depending on whether it
accepts or rejects the input string.

Usage of OTMs answers what-if questions: What if we
could solve the oracle-problem efficiently?



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Oracle
Turing-Machines

Turing
Reduction

Complexity
Classes Based on
OTMs

QBF

Literature

Oracle Turing Machines

An Oracle Turing machine ((N)OTM) is a Turing machine
(DTM, NDTM) with the possibility to query an oracle
(i. e., a different Turing machine without resource
restrictions) whether it accepts or rejects a given string.

Computation by the oracle does not cost anything!

Formalization:

a tape onto which strings for the oracle are written,
a yes/no answer from the oracle depending on whether it
accepts or rejects the input string.

Usage of OTMs answers what-if questions: What if we
could solve the oracle-problem efficiently?



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Oracle
Turing-Machines

Turing
Reduction

Complexity
Classes Based on
OTMs

QBF

Literature

Oracle Turing Machines

An Oracle Turing machine ((N)OTM) is a Turing machine
(DTM, NDTM) with the possibility to query an oracle
(i. e., a different Turing machine without resource
restrictions) whether it accepts or rejects a given string.

Computation by the oracle does not cost anything!

Formalization:

a tape onto which strings for the oracle are written,
a yes/no answer from the oracle depending on whether it
accepts or rejects the input string.

Usage of OTMs answers what-if questions: What if we
could solve the oracle-problem efficiently?



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Oracle
Turing-Machines

Turing
Reduction

Complexity
Classes Based on
OTMs

QBF

Literature

Oracle Turing Machines

An Oracle Turing machine ((N)OTM) is a Turing machine
(DTM, NDTM) with the possibility to query an oracle
(i. e., a different Turing machine without resource
restrictions) whether it accepts or rejects a given string.

Computation by the oracle does not cost anything!

Formalization:

a tape onto which strings for the oracle are written,
a yes/no answer from the oracle depending on whether it
accepts or rejects the input string.

Usage of OTMs answers what-if questions: What if we
could solve the oracle-problem efficiently?



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Oracle
Turing-Machines

Turing
Reduction

Complexity
Classes Based on
OTMs

QBF

Literature

Oracle Turing Machines

An Oracle Turing machine ((N)OTM) is a Turing machine
(DTM, NDTM) with the possibility to query an oracle
(i. e., a different Turing machine without resource
restrictions) whether it accepts or rejects a given string.

Computation by the oracle does not cost anything!

Formalization:

a tape onto which strings for the oracle are written,
a yes/no answer from the oracle depending on whether it
accepts or rejects the input string.

Usage of OTMs answers what-if questions: What if we
could solve the oracle-problem efficiently?



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Oracle
Turing-Machines

Turing
Reduction

Complexity
Classes Based on
OTMs

QBF

Literature

Oracle Turing Machines

An Oracle Turing machine ((N)OTM) is a Turing machine
(DTM, NDTM) with the possibility to query an oracle
(i. e., a different Turing machine without resource
restrictions) whether it accepts or rejects a given string.

Computation by the oracle does not cost anything!

Formalization:

a tape onto which strings for the oracle are written,
a yes/no answer from the oracle depending on whether it
accepts or rejects the input string.

Usage of OTMs answers what-if questions: What if we
could solve the oracle-problem efficiently?



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Oracle
Turing-Machines

Turing
Reduction

Complexity
Classes Based on
OTMs

QBF

Literature

Turing Reductions

OTMs allow us to define a more general type of reduction

Idea: The “classical” reduction can be seen as calling a
subroutine once.

L1 is Turing-reducible to L2, symbolically L1 ≤T L2, if
there exists a poly-time OTM that decides L1 by using an
oracle for L2.

Polynomial reducibility implies Turing reducibility, but not
vice versa!

NP-hardness and co-NP-hardness with respect to Turing
reducibility are equivalent!

Turing reducibility can also be applied to general search
problems!



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Oracle
Turing-Machines

Turing
Reduction

Complexity
Classes Based on
OTMs

QBF

Literature

Turing Reductions

OTMs allow us to define a more general type of reduction

Idea: The “classical” reduction can be seen as calling a
subroutine once.

L1 is Turing-reducible to L2, symbolically L1 ≤T L2, if
there exists a poly-time OTM that decides L1 by using an
oracle for L2.

Polynomial reducibility implies Turing reducibility, but not
vice versa!

NP-hardness and co-NP-hardness with respect to Turing
reducibility are equivalent!

Turing reducibility can also be applied to general search
problems!



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Oracle
Turing-Machines

Turing
Reduction

Complexity
Classes Based on
OTMs

QBF

Literature

Turing Reductions

OTMs allow us to define a more general type of reduction

Idea: The “classical” reduction can be seen as calling a
subroutine once.

L1 is Turing-reducible to L2, symbolically L1 ≤T L2, if
there exists a poly-time OTM that decides L1 by using an
oracle for L2.

Polynomial reducibility implies Turing reducibility, but not
vice versa!

NP-hardness and co-NP-hardness with respect to Turing
reducibility are equivalent!

Turing reducibility can also be applied to general search
problems!



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Oracle
Turing-Machines

Turing
Reduction

Complexity
Classes Based on
OTMs

QBF

Literature

Turing Reductions

OTMs allow us to define a more general type of reduction

Idea: The “classical” reduction can be seen as calling a
subroutine once.

L1 is Turing-reducible to L2, symbolically L1 ≤T L2, if
there exists a poly-time OTM that decides L1 by using an
oracle for L2.

Polynomial reducibility implies Turing reducibility, but not
vice versa!

NP-hardness and co-NP-hardness with respect to Turing
reducibility are equivalent!

Turing reducibility can also be applied to general search
problems!



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Oracle
Turing-Machines

Turing
Reduction

Complexity
Classes Based on
OTMs

QBF

Literature

Turing Reductions

OTMs allow us to define a more general type of reduction

Idea: The “classical” reduction can be seen as calling a
subroutine once.

L1 is Turing-reducible to L2, symbolically L1 ≤T L2, if
there exists a poly-time OTM that decides L1 by using an
oracle for L2.

Polynomial reducibility implies Turing reducibility, but not
vice versa!

NP-hardness and co-NP-hardness with respect to Turing
reducibility are equivalent!

Turing reducibility can also be applied to general search
problems!



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Oracle
Turing-Machines

Turing
Reduction

Complexity
Classes Based on
OTMs

QBF

Literature

Turing Reductions

OTMs allow us to define a more general type of reduction

Idea: The “classical” reduction can be seen as calling a
subroutine once.

L1 is Turing-reducible to L2, symbolically L1 ≤T L2, if
there exists a poly-time OTM that decides L1 by using an
oracle for L2.

Polynomial reducibility implies Turing reducibility, but not
vice versa!

NP-hardness and co-NP-hardness with respect to Turing
reducibility are equivalent!

Turing reducibility can also be applied to general search
problems!



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Oracle
Turing-Machines

Turing
Reduction

Complexity
Classes Based on
OTMs

QBF

Literature

Complexity Classes Based on Oracle TMs

1 PNP = decision problems solved by poly-time DTMs with
an oracle for a decision problem in NP.

2 NPNP = decision problems solved by poly-time NDTMs
with an oracle for a decision problem in NP.

3 co-NPNP = complements of decision problems solved by
poly-time NDTMs with an oracle for a decision problem in
NP.

4 NPNPNP
= ...

. . . and so on



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Oracle
Turing-Machines

Turing
Reduction

Complexity
Classes Based on
OTMs

QBF

Literature

Complexity Classes Based on Oracle TMs

1 PNP = decision problems solved by poly-time DTMs with
an oracle for a decision problem in NP.

2 NPNP = decision problems solved by poly-time NDTMs
with an oracle for a decision problem in NP.

3 co-NPNP = complements of decision problems solved by
poly-time NDTMs with an oracle for a decision problem in
NP.

4 NPNPNP
= ...

. . . and so on



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Oracle
Turing-Machines

Turing
Reduction

Complexity
Classes Based on
OTMs

QBF

Literature

Complexity Classes Based on Oracle TMs

1 PNP = decision problems solved by poly-time DTMs with
an oracle for a decision problem in NP.

2 NPNP = decision problems solved by poly-time NDTMs
with an oracle for a decision problem in NP.

3 co-NPNP = complements of decision problems solved by
poly-time NDTMs with an oracle for a decision problem in
NP.

4 NPNPNP
= ...

. . . and so on



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Oracle
Turing-Machines

Turing
Reduction

Complexity
Classes Based on
OTMs

QBF

Literature

Complexity Classes Based on Oracle TMs

1 PNP = decision problems solved by poly-time DTMs with
an oracle for a decision problem in NP.

2 NPNP = decision problems solved by poly-time NDTMs
with an oracle for a decision problem in NP.

3 co-NPNP = complements of decision problems solved by
poly-time NDTMs with an oracle for a decision problem in
NP.

4 NPNPNP
= ...

. . . and so on



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Oracle
Turing-Machines

Turing
Reduction

Complexity
Classes Based on
OTMs

QBF

Literature

Example

Consider the Minimum Equivalent Expression (MEE)
problem:

Instance: A well-formed Boolean formula φ
using the standard connectives (not ↔) and a
nonnegative integer K.
Question: Is there a well-formed Boolean
formula φ′ that contains K or fewer literal
occurrences and that is logical equivalent to φ?

This problem is NP-hard (wrt. to Turing reductions).

It does not appear to be NP-complete

We could guess a formula and then use a SAT-oracle

MEE ∈ NPNP.



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Oracle
Turing-Machines

Turing
Reduction

Complexity
Classes Based on
OTMs

QBF

Literature

Example

Consider the Minimum Equivalent Expression (MEE)
problem:

Instance: A well-formed Boolean formula φ
using the standard connectives (not ↔) and a
nonnegative integer K.
Question: Is there a well-formed Boolean
formula φ′ that contains K or fewer literal
occurrences and that is logical equivalent to φ?

This problem is NP-hard (wrt. to Turing reductions).

It does not appear to be NP-complete

We could guess a formula and then use a SAT-oracle

MEE ∈ NPNP.



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Oracle
Turing-Machines

Turing
Reduction

Complexity
Classes Based on
OTMs

QBF

Literature

Example

Consider the Minimum Equivalent Expression (MEE)
problem:

Instance: A well-formed Boolean formula φ
using the standard connectives (not ↔) and a
nonnegative integer K.
Question: Is there a well-formed Boolean
formula φ′ that contains K or fewer literal
occurrences and that is logical equivalent to φ?

This problem is NP-hard (wrt. to Turing reductions).

It does not appear to be NP-complete

We could guess a formula and then use a SAT-oracle

MEE ∈ NPNP.



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Oracle
Turing-Machines

Turing
Reduction

Complexity
Classes Based on
OTMs

QBF

Literature

Example

Consider the Minimum Equivalent Expression (MEE)
problem:

Instance: A well-formed Boolean formula φ
using the standard connectives (not ↔) and a
nonnegative integer K.
Question: Is there a well-formed Boolean
formula φ′ that contains K or fewer literal
occurrences and that is logical equivalent to φ?

This problem is NP-hard (wrt. to Turing reductions).

It does not appear to be NP-complete

We could guess a formula and then use a SAT-oracle

MEE ∈ NPNP.



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Oracle
Turing-Machines

Turing
Reduction

Complexity
Classes Based on
OTMs

QBF

Literature

Example

Consider the Minimum Equivalent Expression (MEE)
problem:

Instance: A well-formed Boolean formula φ
using the standard connectives (not ↔) and a
nonnegative integer K.
Question: Is there a well-formed Boolean
formula φ′ that contains K or fewer literal
occurrences and that is logical equivalent to φ?

This problem is NP-hard (wrt. to Turing reductions).

It does not appear to be NP-complete

We could guess a formula and then use a SAT-oracle

MEE ∈ NPNP.



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Oracle
Turing-Machines

Turing
Reduction

Complexity
Classes Based on
OTMs

QBF

Literature

Example

Consider the Minimum Equivalent Expression (MEE)
problem:

Instance: A well-formed Boolean formula φ
using the standard connectives (not ↔) and a
nonnegative integer K.
Question: Is there a well-formed Boolean
formula φ′ that contains K or fewer literal
occurrences and that is logical equivalent to φ?

This problem is NP-hard (wrt. to Turing reductions).

It does not appear to be NP-complete

We could guess a formula and then use a SAT-oracle

MEE ∈ NPNP.



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Oracle
Turing-Machines

Turing
Reduction

Complexity
Classes Based on
OTMs

QBF

Literature

The Polynomial Hierarchy

The complexity classes based on OTMs form an infinite
hierarchy.

The polynomial hierarchy PH

Σp
0 = P Πp

0 = P ∆p
0 = P

Σp
i+1 = NPΣp

i Πp
i+1 = co-Σp

i+1 ∆p
i+1 = PΣp

i

PH =
⋃

i≥0(Σp
i ∪Πp

i ∪∆p
i ) ⊆PSPACE

NP = Σp
1

co-NP = Πp
1



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Oracle
Turing-Machines

Turing
Reduction

Complexity
Classes Based on
OTMs

QBF

Literature

The Polynomial Hierarchy

The complexity classes based on OTMs form an infinite
hierarchy.

The polynomial hierarchy PH

Σp
0 = P Πp

0 = P ∆p
0 = P

Σp
i+1 = NPΣp

i Πp
i+1 = co-Σp

i+1 ∆p
i+1 = PΣp

i

PH =
⋃

i≥0(Σp
i ∪Πp

i ∪∆p
i ) ⊆PSPACE

NP = Σp
1

co-NP = Πp
1



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Oracle
Turing-Machines

Turing
Reduction

Complexity
Classes Based on
OTMs

QBF

Literature

The Polynomial Hierarchy

The complexity classes based on OTMs form an infinite
hierarchy.

The polynomial hierarchy PH

Σp
0 = P Πp

0 = P ∆p
0 = P

Σp
i+1 = NPΣp

i Πp
i+1 = co-Σp

i+1 ∆p
i+1 = PΣp

i

PH =
⋃

i≥0(Σp
i ∪Πp

i ∪∆p
i ) ⊆PSPACE

NP = Σp
1

co-NP = Πp
1



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Oracle
Turing-Machines

Turing
Reduction

Complexity
Classes Based on
OTMs

QBF

Literature

Quantified Boolean Formulae: Definition

If φ is a propositional formula, P is the set of Boolean
variables used in φ and σ is a sequence of ∃p and ∀p, one
for every p ∈ P , then σφ is a QBF.

A formula ∃xφ is true if and only if φ[>/x] ∨ φ[⊥/x] is
true. (Equivalently, φ[>/x] is true or φ[⊥/x] is true.)

A formula ∀xφ is true if and only if φ[>/x] ∧ φ[⊥/x] is
true. (Equivalently, φ[>/x] is true and φ[⊥/x] is true.)

This definition directly leads to an AND/OR tree traversal
algorithm for evaluating QBF.



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Oracle
Turing-Machines

Turing
Reduction

Complexity
Classes Based on
OTMs

QBF

Literature

Quantified Boolean Formulae: Definition

If φ is a propositional formula, P is the set of Boolean
variables used in φ and σ is a sequence of ∃p and ∀p, one
for every p ∈ P , then σφ is a QBF.

A formula ∃xφ is true if and only if φ[>/x] ∨ φ[⊥/x] is
true. (Equivalently, φ[>/x] is true or φ[⊥/x] is true.)

A formula ∀xφ is true if and only if φ[>/x] ∧ φ[⊥/x] is
true. (Equivalently, φ[>/x] is true and φ[⊥/x] is true.)

This definition directly leads to an AND/OR tree traversal
algorithm for evaluating QBF.



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Oracle
Turing-Machines

Turing
Reduction

Complexity
Classes Based on
OTMs

QBF

Literature

Quantified Boolean Formulae: Definition

If φ is a propositional formula, P is the set of Boolean
variables used in φ and σ is a sequence of ∃p and ∀p, one
for every p ∈ P , then σφ is a QBF.

A formula ∃xφ is true if and only if φ[>/x] ∨ φ[⊥/x] is
true. (Equivalently, φ[>/x] is true or φ[⊥/x] is true.)

A formula ∀xφ is true if and only if φ[>/x] ∧ φ[⊥/x] is
true. (Equivalently, φ[>/x] is true and φ[⊥/x] is true.)

This definition directly leads to an AND/OR tree traversal
algorithm for evaluating QBF.



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Oracle
Turing-Machines

Turing
Reduction

Complexity
Classes Based on
OTMs

QBF

Literature

Quantified Boolean Formulae: Definition

If φ is a propositional formula, P is the set of Boolean
variables used in φ and σ is a sequence of ∃p and ∀p, one
for every p ∈ P , then σφ is a QBF.

A formula ∃xφ is true if and only if φ[>/x] ∨ φ[⊥/x] is
true. (Equivalently, φ[>/x] is true or φ[⊥/x] is true.)

A formula ∀xφ is true if and only if φ[>/x] ∧ φ[⊥/x] is
true. (Equivalently, φ[>/x] is true and φ[⊥/x] is true.)

This definition directly leads to an AND/OR tree traversal
algorithm for evaluating QBF.



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Oracle
Turing-Machines

Turing
Reduction

Complexity
Classes Based on
OTMs

QBF

Literature

Quantified Boolean Formulae: Definition

The evaluation problem of QBF generalizes both the
satisfiability and validity/tautology problems of propositional
logic.
The latter are respectively NP-complete and co-NP-complete
whereas the former is PSPACE-complete.

Example

The formulae ∀x∃y(x↔ y) and ∃x∃y(x ∧ y) are true.

Example

The formulae ∃x∀y(x↔ y) and ∀x∀y(x ∨ y) are false.



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Oracle
Turing-Machines

Turing
Reduction

Complexity
Classes Based on
OTMs

QBF

Literature

Quantified Boolean Formulae: Definition

The evaluation problem of QBF generalizes both the
satisfiability and validity/tautology problems of propositional
logic.
The latter are respectively NP-complete and co-NP-complete
whereas the former is PSPACE-complete.

Example

The formulae ∀x∃y(x↔ y) and ∃x∃y(x ∧ y) are true.

Example

The formulae ∃x∀y(x↔ y) and ∀x∀y(x ∨ y) are false.



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Oracle
Turing-Machines

Turing
Reduction

Complexity
Classes Based on
OTMs

QBF

Literature

Quantified Boolean Formulae: Definition

The evaluation problem of QBF generalizes both the
satisfiability and validity/tautology problems of propositional
logic.
The latter are respectively NP-complete and co-NP-complete
whereas the former is PSPACE-complete.

Example

The formulae ∀x∃y(x↔ y) and ∃x∃y(x ∧ y) are true.

Example

The formulae ∃x∀y(x↔ y) and ∀x∀y(x ∨ y) are false.



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Oracle
Turing-Machines

Turing
Reduction

Complexity
Classes Based on
OTMs

QBF

Literature

Quantified Boolean Formulae: Definition

The evaluation problem of QBF generalizes both the
satisfiability and validity/tautology problems of propositional
logic.
The latter are respectively NP-complete and co-NP-complete
whereas the former is PSPACE-complete.

Example

The formulae ∀x∃y(x↔ y) and ∃x∃y(x ∧ y) are true.

Example

The formulae ∃x∀y(x↔ y) and ∀x∀y(x ∨ y) are false.



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Oracle
Turing-Machines

Turing
Reduction

Complexity
Classes Based on
OTMs

QBF

Literature

The Polynomial Hierarchy: Connection to QBF

Truth of QBFs with prefix

i︷ ︸︸ ︷
∀∃∀ . . . is Πp

i -complete.

Truth of QBFs with prefix

i︷ ︸︸ ︷
∃∀∃ . . . is Σp

i -complete.

Special cases corresponding to SAT and TAUT:
The truth of QBFs with prefix ∃x1

1 . . . x
1
n is NP= Σp

1-complete.
The truth of QBFs with prefix ∀x1

1 . . . x
1
n is

co-NP= Πp
1-complete.



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Oracle
Turing-Machines

Turing
Reduction

Complexity
Classes Based on
OTMs

QBF

Literature

The Polynomial Hierarchy: Connection to QBF

Truth of QBFs with prefix

i︷ ︸︸ ︷
∀∃∀ . . . is Πp

i -complete.

Truth of QBFs with prefix

i︷ ︸︸ ︷
∃∀∃ . . . is Σp

i -complete.

Special cases corresponding to SAT and TAUT:
The truth of QBFs with prefix ∃x1

1 . . . x
1
n is NP= Σp

1-complete.
The truth of QBFs with prefix ∀x1

1 . . . x
1
n is

co-NP= Πp
1-complete.



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Oracle
Turing-Machines

Turing
Reduction

Complexity
Classes Based on
OTMs

QBF

Literature

The Polynomial Hierarchy: Connection to QBF

Truth of QBFs with prefix

i︷ ︸︸ ︷
∀∃∀ . . . is Πp

i -complete.

Truth of QBFs with prefix

i︷ ︸︸ ︷
∃∀∃ . . . is Σp

i -complete.

Special cases corresponding to SAT and TAUT:
The truth of QBFs with prefix ∃x1

1 . . . x
1
n is NP= Σp

1-complete.
The truth of QBFs with prefix ∀x1

1 . . . x
1
n is

co-NP= Πp
1-complete.



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Oracle
Turing-Machines

Turing
Reduction

Complexity
Classes Based on
OTMs

QBF

Literature

The Polynomial Hierarchy: Connection to QBF

Truth of QBFs with prefix

i︷ ︸︸ ︷
∀∃∀ . . . is Πp

i -complete.

Truth of QBFs with prefix

i︷ ︸︸ ︷
∃∀∃ . . . is Σp

i -complete.

Special cases corresponding to SAT and TAUT:
The truth of QBFs with prefix ∃x1

1 . . . x
1
n is NP= Σp

1-complete.
The truth of QBFs with prefix ∀x1

1 . . . x
1
n is

co-NP= Πp
1-complete.



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Oracle
Turing-Machines

Turing
Reduction

Complexity
Classes Based on
OTMs

QBF

Literature

The Polynomial Hierarchy: Connection to QBF

Truth of QBFs with prefix

i︷ ︸︸ ︷
∀∃∀ . . . is Πp

i -complete.

Truth of QBFs with prefix

i︷ ︸︸ ︷
∃∀∃ . . . is Σp

i -complete.

Special cases corresponding to SAT and TAUT:
The truth of QBFs with prefix ∃x1

1 . . . x
1
n is NP= Σp

1-complete.
The truth of QBFs with prefix ∀x1

1 . . . x
1
n is

co-NP= Πp
1-complete.



KRR

Nebel,
Helmert,

Wölfl

Motivation

Reminder:
Basic Notions

Beyond NP

Oracle TMs
and the
Polynomial
Hierarchy

Literature

Literature

M. R. Garey and D. S. Johnson.
Computers and Intractability – A Guide to the Theory of
NP-Completeness.
Freeman and Company, San Francisco, 1979.

C. H. Papadimitriou.
Computational Complexity.
Addison-Wesley,Reading, MA, 1994.


	Motivation
	Reminder: Basic Notions
	Algorithms and Turing Machines
	Problems, Solutions, and Complexity
	Complexity Classes P and NP
	Upper and Lower Bounds
	Polynomial Reductions
	NP-Completeness

	Beyond NP
	The Class co-NP
	The Class PSPACE
	Other Classes

	Oracle TMs and the Polynomial Hierarchy
	Oracle Turing-Machines
	Turing Reduction
	Complexity Classes Based on OTMs
	QBF

	Literature

