Principles of Knowledge Representation and Reasoning Complexity Theory

Bernhard Nebel. Malte Helmert and Stefan Wölfl

Albert-Ludwigs-Universität Freiburg

April 29, 2008

Nebel, Helmert, Wölfl (Uni Freiburg)

April 29, 2008

Motivation

Motivation for Using Complexity Theory

- ► Complexity theory can answer questions on how easy or hard a problem is
- ▶ Gives hints on what algorithms could be appropriate, e.g.:
 - ▶ algorithms for polynomial-time problems are usually easy to design
 - ▶ for NP-complete problems, backtracking and local search work well
- ▶ Gives hints on what type of algorithm will (most probably) not work
 - for problems that are believed to be harder than NP-complete ones, simple backtracking will not work
- ▶ Gives hint on what sub-problems might be interesting

Principles of Knowledge Representation and Reasoning

April 29, 2008 — Complexity Theory Motivation

Reminder: Basic Notions

Algorithms and Turing Machines Problems, Solutions, and Complexity

Complexity Classes P and NP

Upper and Lower Bounds

Polynomial Reductions

NP-Completeness

Bevond NP

The Class co-NP

The Class PSPACE

Other Classes

Oracle TMs and the Polynomial Hierarchy

Oracle Turing-Machines

Turing Reduction

Complexity Classes Based on OTMs

Nebel. OFF, Wölfl (Uni Freiburg)

2 / 22

April 29, 2008

Algorithms and Turing Machines

- ▶ We use Turing machines as formal models of algorithms
- ► This is justified, because:
 - we assume that Turing machines can compute all computable functions
 - ▶ the resource requirements (in term of time and memory) of a Turing machine are only polynomially worse than other models
- ▶ The regular type of Turing machine is the deterministic one: DTM (or simply TM)
- ▶ Often, however, we use the notion of nondeterministic TMs: NDTM

Nebel, Helmert, Wölfl (Uni Freiburg) KRR April 29, 2008 Nebel, Helmert, Wölfl (Uni Freiburg) KRR April 29, 2008 3 / 22

Reminder: Basic Notions Complexity Classes P and NF

Problems, Solutions, and Complexity

- ▶ A problem is a set of pairs (I, A) of strings in $\{0, 1\}^*$.
 - *I*: Instance; *A*: Answer.
 - If $A \in \{0,1\}$: decision problem
- ▶ A decision problem is the same as a formal language: namely the set of strings formed by the instances with answer 1
- ▶ An algorithm decides (or solves) a problem if it computes the right answer for all instances.
- ► The complexity of an algorithm is a function

 $T: \mathbb{N} \to \mathbb{N}$.

measuring the number of basic steps (or memory requirement) the algorithm needs to compute an answer depending on the size of the instance.

▶ The complexity of a problem is the complexity of the most efficient algorithm that solves this problem.

Nebel, Helmert, Wölfl (Uni Freiburg)

April 29, 2008

Complexity Classes P and NP

Problems are categorized into complexity classes according to the requirements of computational resources:

- ▶ The class of problems decidable on deterministic Turing machines in polynomial time: P
- ▶ Problems in P are assumed to be efficiently solvable (although this might not be true if the exponent is very large)
- ▶ In practice, this notion appears to be more often reasonable than not
- ▶ The class of problems decidable on non-deterministic Turing machines in polynomial time: NP
- ▶ More classes are definable using other resource bounds on time and memory

Nebel, Helmert, Wölfl (Uni Freiburg)

April 29, 2008

Reminder: Basic Notions Upper and Lower Bounds

Upper and Lower Bounds

- ▶ Upper bounds (membership in a class) are usually easy to prove:
 - provide an algorithm
 - show that the resource bounds are respected
- ▶ Lower bounds (hardness for a class) are usually difficult to show:
 - ▶ the technical tool here is the polynomial reduction (or any other appropriate reduction)
 - ▶ show that some hard problem can be reduced to the problem at hand

Reminder: Basic Notions Polynomial Reductions

Polynomial Reductions

 \triangleright Given two languages L_1 and L_2 , L_1 can be polynomially reduced to L_2 , written $L_1 \leq_p L_2$, iff there exists a polynomially computable function f such that

$$x \in L_1$$
 iff $f(x) \in L_2$

- ▶ It cannot be harder to decide L_1 than L_2
- ▶ L is hard for a class C (C-hard) iff all languages of this class can be reduced to 1
- ▶ L is complete for C (C-complete) iff L is C-hard and $L \in C$.

Beyond NP The Class co-NF

NP-complete Problems

- ▶ A problem is **NP-complete** iff it is NP-hard and in NP.
- ▶ Example: **SAT** the satisfiability problem for propositional logic is NP-complete (Cook/Karp)
- ▶ Membership is obvious, hardness follows because computations on a NDTM correspond to satisfying truth-assignments of certain formulae

Nebel, Helmert, Wölfl (Uni Freiburg)

KRR

April 29, 2008

9 / 22

The Complexity Class co-NP

- ▶ Note that there is some asymmetry in the definition of NP:
 - ▶ It is clear that we can decide SAT by using a NDTM with polynomially bounded computation
 - ▶ There exists an accepting computation of polynomial length iff the formula is satisfiable
 - ▶ What if we want to solve UNSAT, the complementary problem?
 - ▶ It seems necessary to check all possible truth-assignments!
- ▶ Define co- $C = \{L | \Sigma^* L \in C\}$, provided Σ is our alphabet
- ightharpoonup co-NP = $\{L|\Sigma^* L \in NP\}$
- ► For example UNSAT, TAUT ∈ co-NP!
- ▶ Note: P is closed under complement, i.e.,

 $P \subseteq NP \cap co-NP$

Nebel, Helmert, Wölfl (Uni Freiburg)

April 29, 2008

10 / 22

The Class PSPACE

PSPACE

There are problems even more difficult than NP and co-NP.

Definition ((N)PSPACE)

PSPACE (NPSPACE) is the class of decision problems that can be decided on deterministic (non-deterministic) Turing machines using only polynomially many tape cells.

Some facts about PSPACE:

- ▶ PSPACE is closed under complements (as all other deterministic classes)
- ▶ PSPACE is identical to NPSPACE (because non-deterministic Turing machines can be simulated on deterministic TMs using only quadratic space)
- ▶ NP⊂PSPACE (because in polynomial time one can "visit" only polynomial space, i.e., NPCNPSPACE)
- ▶ It is unknown whether NP≠PSPACE, but it is believed that this is true.

Beyond NP The Class PSPACE

PSPACE-completeness

Definition (PSPACE-completeness)

A decision problem (or language) is PSPACE-complete, if it is in PSPACE and all other problems in PSPACE can be polynomially reduced to it.

Intuitively, PSPACE-complete problems are the "hardest" problems in PSPACE (similar to NP-completeness). They appear to be "harder" than NP-complete problems from a practical point of view.

An example for a PSPACE-complete problem is the NDFA equivalence problem:

Instance: Two non-deterministic finite state automata A₁ and A_2 .

Question: Are the languages accepted by A_1 and A_2 identical?

Other Complexity Classes . . .

- ▶ There are complexity classes above PSPACE (EXPTIME, EXPSPACE, NEXPTIME, DEXPTIME ...)
- ▶ there are (infinitely many) classes between NP and PSPACE (the polynomial hierarchy defined by oracle machines)
- ▶ there are (infinitely many) classes inside P (circuit classes with different depths)
- ▶ and for most of the classes we do not know whether the containment relationships are strict

Nebel, Helmert, Wölfl (Uni Freiburg)

April 29, 2008

13 / 22

April 29, 2008

14 / 22

Oracle TMs and the Polynomial Hierarchy

Turing Reductions

- ▶ OTMs allow us to define a more general type of reduction
- ▶ Idea: The "classical" reduction can be seen as calling a subroutine once.
- ▶ L_1 is Turing-reducible to L_2 , symbolically $L_1 <_T L_2$, if there exists a poly-time OTM that decides L_1 by using an oracle for L_2 .
- ▶ Polynomial reducibility implies Turing reducibility, but not *vice versa*!
- ▶ NP-hardness and co-NP-hardness with respect to Turing reducibility are equivalent!
- ▶ Turing reducibility can also be applied to general search problems!

Oracle TMs and the Polynomial Hierarchy Oracle Turing-Machine

Oracle Turing Machines

- ► An Oracle Turing machine ((N)OTM) is a Turing machine (DTM, NDTM) with the possibility to query an oracle (i. e., a different Turing machine without resource restrictions) whether it accepts or rejects a given string.
- ► Computation by the oracle does not cost anything!
- ► Formalization:
 - ▶ a tape onto which strings for the oracle are written.
 - ▶ a yes/no answer from the oracle depending on whether it accepts or rejects the input string.
- ▶ Usage of OTMs answers what-if questions: What if we could solve the oracle-problem efficiently?

Nebel, Helmert, Wölfl (Uni Freiburg)

Oracle TMs and the Polynomial Hierarchy Complexity Classes Based on OTMs

Complexity Classes Based on Oracle TMs

- 1. P^{NP} = decision problems solved by poly-time DTMs with an oracle for a decision problem in NP.
- 2. NP^{NP} = decision problems solved by poly-time NDTMs with an oracle for a decision problem in NP.
- 3. $co-NP^{NP}$ = complements of decision problems solved by poly-time NDTMs with an oracle for a decision problem in NP.
- 4. NP^{NP} = ...

... and so on

Oracle TMs and the Polynomial Hierarchy Complexity Classes Based on OTMs

Example

► Consider the Minimum Equivalent Expression (MEE) problem:

Instance: A well-formed Boolean formula ϕ using the standard connectives (not \leftrightarrow) and a nonnegative integer K. **Question**: Is there a well-formed Boolean formula ϕ' that contains K or fewer literal occurrences and that is logical equivalent to ϕ ?

- ▶ This problem is NP-hard (wrt. to Turing reductions).
- ▶ It does not appear to be NP-complete
- ▶ We could guess a formula and then use a SAT-oracle
- ► MEE \in NP NP

Nebel, Helmert, Wölfl (Uni Freiburg)

April 29, 2008

17 / 22

The Polynomial Hierarchy

The complexity classes based on OTMs form an infinite hierarchy.

The polynomial hierarchy PH

$$\Sigma_{0}^{p} = P$$
 $\Pi_{0}^{p} = P$ $\Delta_{0}^{p} = P$ $\Sigma_{i+1}^{p} = NP^{\Sigma_{i}^{p}}$ $\Pi_{i+1}^{p} = co-\Sigma_{i+1}^{p}$ $\Delta_{i+1}^{p} = P^{\Sigma_{i}^{p}}$

- ▶ $PH = \bigcup_{i>0} (\Sigma_i^p \cup \Pi_i^p \cup \Delta_i^p) \subseteq PSPACE$
- ightharpoonup NP = Σ_1^p
- ightharpoonup co-NP = Π_1^p

Nebel, Helmert, Wölfl (Uni Freiburg)

April 29, 2008 18 / 22

Oracle TMs and the Polynomial Hierarchy

Quantified Boolean Formulae: Definition

- - \triangleright If ϕ is a propositional formula, P is the set of Boolean variables used in ϕ and σ is a sequence of $\exists p$ and $\forall p$, one for every $p \in P$, then $\sigma \phi$ is a QBF.
 - ▶ A formula $\exists x \phi$ is true if and only if $\phi[\top/x] \lor \phi[\bot/x]$ is true. (Equivalently, $\phi[\top/x]$ is true or $\phi[\bot/x]$ is true.)
 - ▶ A formula $\forall x \phi$ is true if and only if $\phi[\top/x] \land \phi[\bot/x]$ is true. (Equivalently, $\phi[\top/x]$ is true and $\phi[\bot/x]$ is true.)
 - ▶ This definition directly leads to an AND/OR tree traversal algorithm for evaluating QBF.

Oracle TMs and the Polynomial Hierarchy

Quantified Boolean Formulae: Definition

The evaluation problem of QBF generalizes both the satisfiability and validity/tautology problems of propositional logic.

The latter are respectively NP-complete and co-NP-complete whereas the former is PSPACE-complete.

KRR

Example

The formulae $\forall x \exists y (x \leftrightarrow y)$ and $\exists x \exists y (x \land y)$ are true.

Example

The formulae $\exists x \forall y (x \leftrightarrow y)$ and $\forall x \forall y (x \lor y)$ are false.

Oracle TMs and the Polynomial Hierarchy

The Polynomial Hierarchy: Connection to QBF

Truth of QBFs with prefix $\forall \exists \forall \dots$ is $\prod_{i=1}^{p}$ -complete.

Truth of QBFs with prefix $\exists \forall \exists \dots$ is $\sum_{i=1}^{p}$ -complete.

Special cases corresponding to SAT and TAUT:

The truth of QBFs with prefix $\exists x_1^1 \dots x_n^1$ is NP= Σ_1^p -complete. The truth of QBFs with prefix $\forall x_1^1 \dots x_n^1$ is co-NP= Π_1^p -complete.

Nebel, Helmert, Wölfl (Uni Freiburg)

KRR

April 29, 2008

21 / 22

Literature

M. R. Garey and D. S. Johnson.

Computers and Intractability – A Guide to the Theory of NP-Completeness. Freeman and Company, San Francisco, 1979.

C. H. Papadimitriou.

Computational Complexity.

Addison-Wesley, Reading, MA, 1994.

Nebel, Helmert, Wölfl (Uni Freiburg)

April 29, 2008 22 / 22