
Principles of Knowledge Representation and Reasoning
Complexity Theory

Bernhard Nebel, Malte Helmert and Stefan Wölfl

Albert-Ludwigs-Universität Freiburg

April 29, 2008

Nebel, Helmert, Wölfl (Uni Freiburg) KRR April 29, 2008 1 / 22

Principles of Knowledge Representation and Reasoning
April 29, 2008 — Complexity Theory
Motivation
Reminder: Basic Notions

Algorithms and Turing Machines
Problems, Solutions, and Complexity
Complexity Classes P and NP
Upper and Lower Bounds
Polynomial Reductions
NP-Completeness

Beyond NP
The Class co-NP
The Class PSPACE
Other Classes

Oracle TMs and the Polynomial Hierarchy
Oracle Turing-Machines
Turing Reduction
Complexity Classes Based on OTMs
QBFNebel, Helmert, Wölfl (Uni Freiburg) KRR April 29, 2008 2 / 22

Motivation

Motivation for Using Complexity Theory

I Complexity theory can answer questions on how easy or hard a
problem is

I Gives hints on what algorithms could be appropriate, e.g.:
I algorithms for polynomial-time problems are usually easy to design
I for NP-complete problems, backtracking and local search work well

I Gives hints on what type of algorithm will (most probably) not work
I for problems that are believed to be harder than NP-complete ones,

simple backtracking will not work

I Gives hint on what sub-problems might be interesting

Nebel, Helmert, Wölfl (Uni Freiburg) KRR April 29, 2008 3 / 22

Reminder: Basic Notions Algorithms and Turing Machines

Algorithms and Turing Machines

I We use Turing machines as formal models of algorithms
I This is justified, because:

I we assume that Turing machines can compute all computable functions
I the resource requirements (in term of time and memory) of a Turing

machine are only polynomially worse than other models

I The regular type of Turing machine is the deterministic one: DTM
(or simply TM)

I Often, however, we use the notion of nondeterministic TMs: NDTM

Nebel, Helmert, Wölfl (Uni Freiburg) KRR April 29, 2008 4 / 22



Reminder: Basic Notions Problems, Solutions, and Complexity

Problems, Solutions, and Complexity

I A problem is a set of pairs (I ,A) of strings in {0, 1}∗.
I : Instance; A: Answer.
If A ∈ {0, 1}: decision problem

I A decision problem is the same as a formal language: namely the set
of strings formed by the instances with answer 1

I An algorithm decides (or solves) a problem if it computes the right
answer for all instances.

I The complexity of an algorithm is a function

T : N→ N,

measuring the number of basic steps (or memory requirement) the
algorithm needs to compute an answer depending on the size of the
instance.

I The complexity of a problem is the complexity of the most efficient
algorithm that solves this problem.

Nebel, Helmert, Wölfl (Uni Freiburg) KRR April 29, 2008 5 / 22

Reminder: Basic Notions Complexity Classes P and NP

Complexity Classes P and NP

Problems are categorized into complexity classes according to the
requirements of computational resources:

I The class of problems decidable on deterministic Turing machines in
polynomial time: P

I Problems in P are assumed to be efficiently solvable (although this
might not be true if the exponent is very large)

I In practice, this notion appears to be more often reasonable than not

I The class of problems decidable on non-deterministic Turing machines
in polynomial time: NP

I More classes are definable using other resource bounds on time and
memory

Nebel, Helmert, Wölfl (Uni Freiburg) KRR April 29, 2008 6 / 22

Reminder: Basic Notions Upper and Lower Bounds

Upper and Lower Bounds

I Upper bounds (membership in a class) are usually easy to prove:
I provide an algorithm
I show that the resource bounds are respected

I Lower bounds (hardness for a class) are usually difficult to show:
I the technical tool here is the polynomial reduction (or any other

appropriate reduction)
I show that some hard problem can be reduced to the problem at hand

Nebel, Helmert, Wölfl (Uni Freiburg) KRR April 29, 2008 7 / 22

Reminder: Basic Notions Polynomial Reductions

Polynomial Reductions

I Given two languages L1 and L2, L1 can be polynomially reduced to
L2, written L1 ≤p L2, iff there exists a polynomially computable
function f such that

x ∈ L1 iff f (x) ∈ L2

I It cannot be harder to decide L1 than L2

I L is hard for a class C (C -hard) iff all languages of this class can be
reduced to L.

I L is complete for C (C -complete) iff L is C -hard and L ∈ C .

Nebel, Helmert, Wölfl (Uni Freiburg) KRR April 29, 2008 8 / 22



Reminder: Basic Notions NP-Completeness

NP-complete Problems
I A problem is NP-complete iff it is NP-hard and in NP.
I Example: SAT – the satisfiability problem for propositional logic – is

NP-complete (Cook/Karp)
I Membership is obvious, hardness follows because computations on a

NDTM correspond to satisfying truth-assignments of certain formulae

NP

P

NP−hard

NP−complete

all problems

Nebel, Helmert, Wölfl (Uni Freiburg) KRR April 29, 2008 9 / 22

Beyond NP The Class co-NP

The Complexity Class co-NP

I Note that there is some asymmetry in the definition of NP:
I It is clear that we can decide SAT by using a NDTM with polynomially

bounded computation
I There exists an accepting computation of polynomial length iff the

formula is satisfiable
I What if we want to solve UNSAT, the complementary problem?
I It seems necessary to check all possible truth-assignments!

I Define co-C = {L|Σ∗ − L ∈ C}, provided Σ is our alphabet

I co-NP = {L|Σ∗ − L ∈ NP}
I For example UNSAT, TAUT ∈ co-NP!

I Note: P is closed under complement, i.e.,

P ⊆ NP ∩ co-NP

Nebel, Helmert, Wölfl (Uni Freiburg) KRR April 29, 2008 10 / 22

Beyond NP The Class PSPACE

PSPACE
There are problems even more difficult than NP and co-NP.

Definition ((N)PSPACE)

PSPACE (NPSPACE) is the class of decision problems that can be decided
on deterministic (non-deterministic) Turing machines using only
polynomially many tape cells.

Some facts about PSPACE:

I PSPACE is closed under complements (as all other deterministic
classes)

I PSPACE is identical to NPSPACE (because non-deterministic Turing
machines can be simulated on deterministic TMs using only quadratic
space)

I NP⊆PSPACE (because in polynomial time one can “visit” only
polynomial space, i.e., NP⊆NPSPACE)

I It is unknown whether NP6=PSPACE, but it is believed that this is
true.

Nebel, Helmert, Wölfl (Uni Freiburg) KRR April 29, 2008 11 / 22

Beyond NP The Class PSPACE

PSPACE-completeness

Definition (PSPACE-completeness)

A decision problem (or language) is PSPACE-complete, if it is in PSPACE
and all other problems in PSPACE can be polynomially reduced to it.

Intuitively, PSPACE-complete problems are the “hardest” problems in
PSPACE (similar to NP-completeness). They appear to be “harder” than
NP-complete problems from a practical point of view.

An example for a PSPACE-complete problem is the
NDFA equivalence problem:

Instance: Two non-deterministic finite state automata A1 and
A2.
Question: Are the languages accepted by A1 and A2 identical?

Nebel, Helmert, Wölfl (Uni Freiburg) KRR April 29, 2008 12 / 22



Beyond NP Other Classes

Other Complexity Classes . . .

I There are complexity classes above PSPACE (EXPTIME,
EXPSPACE, NEXPTIME, DEXPTIME . . . )

I there are (infinitely many) classes between NP and PSPACE (the
polynomial hierarchy defined by oracle machines)

I there are (infinitely many) classes inside P (circuit classes with
different depths)

I and for most of the classes we do not know whether the containment
relationships are strict

Nebel, Helmert, Wölfl (Uni Freiburg) KRR April 29, 2008 13 / 22

Oracle TMs and the Polynomial Hierarchy Oracle Turing-Machines

Oracle Turing Machines

I An Oracle Turing machine ((N)OTM) is a Turing machine (DTM,
NDTM) with the possibility to query an oracle (i. e., a different
Turing machine without resource restrictions) whether it accepts or
rejects a given string.

I Computation by the oracle does not cost anything!
I Formalization:

I a tape onto which strings for the oracle are written,
I a yes/no answer from the oracle depending on whether it accepts or

rejects the input string.

I Usage of OTMs answers what-if questions: What if we could solve
the oracle-problem efficiently?

Nebel, Helmert, Wölfl (Uni Freiburg) KRR April 29, 2008 14 / 22

Oracle TMs and the Polynomial Hierarchy Turing Reduction

Turing Reductions

I OTMs allow us to define a more general type of reduction

I Idea: The “classical” reduction can be seen as calling a subroutine
once.

I L1 is Turing-reducible to L2, symbolically L1 ≤T L2, if there exists a
poly-time OTM that decides L1 by using an oracle for L2.

I Polynomial reducibility implies Turing reducibility, but not vice versa!

I NP-hardness and co-NP-hardness with respect to Turing reducibility
are equivalent!

I Turing reducibility can also be applied to general search problems!

Nebel, Helmert, Wölfl (Uni Freiburg) KRR April 29, 2008 15 / 22

Oracle TMs and the Polynomial Hierarchy Complexity Classes Based on OTMs

Complexity Classes Based on Oracle TMs

1. PNP = decision problems solved by poly-time DTMs with an oracle
for a decision problem in NP.

2. NPNP = decision problems solved by poly-time NDTMs with an
oracle for a decision problem in NP.

3. co-NPNP = complements of decision problems solved by poly-time
NDTMs with an oracle for a decision problem in NP.

4. NPNPNP
= ...

. . . and so on

Nebel, Helmert, Wölfl (Uni Freiburg) KRR April 29, 2008 16 / 22



Oracle TMs and the Polynomial Hierarchy Complexity Classes Based on OTMs

Example

I Consider the Minimum Equivalent Expression (MEE) problem:

Instance: A well-formed Boolean formula φ using the
standard connectives (not ↔) and a nonnegative integer K.
Question: Is there a well-formed Boolean formula φ′ that
contains K or fewer literal occurrences and that is logical
equivalent to φ?

I This problem is NP-hard (wrt. to Turing reductions).

I It does not appear to be NP-complete

I We could guess a formula and then use a SAT-oracle

I MEE ∈ NPNP.

Nebel, Helmert, Wölfl (Uni Freiburg) KRR April 29, 2008 17 / 22

Oracle TMs and the Polynomial Hierarchy Complexity Classes Based on OTMs

The Polynomial Hierarchy

The complexity classes based on OTMs form an infinite hierarchy.

The polynomial hierarchy PH

Σp
0 = P Πp

0 = P ∆p
0 = P

Σp
i+1 = NPΣp

i Πp
i+1 = co-Σp

i+1 ∆p
i+1 = PΣp

i

I PH =
⋃

i≥0(Σp
i ∪ Πp

i ∪∆p
i ) ⊆PSPACE

I NP = Σp
1

I co-NP = Πp
1

Nebel, Helmert, Wölfl (Uni Freiburg) KRR April 29, 2008 18 / 22

Oracle TMs and the Polynomial Hierarchy QBF

Quantified Boolean Formulae: Definition

I If φ is a propositional formula, P is the set of Boolean variables used
in φ and σ is a sequence of ∃p and ∀p, one for every p ∈ P, then σφ
is a QBF.

I A formula ∃xφ is true if and only if φ[>/x ] ∨ φ[⊥/x ] is true.
(Equivalently, φ[>/x ] is true or φ[⊥/x ] is true.)

I A formula ∀xφ is true if and only if φ[>/x ] ∧ φ[⊥/x ] is true.
(Equivalently, φ[>/x ] is true and φ[⊥/x ] is true.)

I This definition directly leads to an AND/OR tree traversal algorithm
for evaluating QBF.

Nebel, Helmert, Wölfl (Uni Freiburg) KRR April 29, 2008 19 / 22

Oracle TMs and the Polynomial Hierarchy QBF

Quantified Boolean Formulae: Definition

The evaluation problem of QBF generalizes both the satisfiability and
validity/tautology problems of propositional logic.
The latter are respectively NP-complete and co-NP-complete whereas the
former is PSPACE-complete.

Example

The formulae ∀x∃y(x ↔ y) and ∃x∃y(x ∧ y) are true.

Example

The formulae ∃x∀y(x ↔ y) and ∀x∀y(x ∨ y) are false.

Nebel, Helmert, Wölfl (Uni Freiburg) KRR April 29, 2008 20 / 22



Oracle TMs and the Polynomial Hierarchy QBF

The Polynomial Hierarchy: Connection to QBF

Truth of QBFs with prefix

i︷ ︸︸ ︷
∀∃∀ . . . is Πp

i -complete.

Truth of QBFs with prefix

i︷ ︸︸ ︷
∃∀∃ . . . is Σp

i -complete.

Special cases corresponding to SAT and TAUT:
The truth of QBFs with prefix ∃x1

1 . . . x
1
n is NP= Σp

1-complete.
The truth of QBFs with prefix ∀x1

1 . . . x
1
n is co-NP= Πp

1-complete.

Nebel, Helmert, Wölfl (Uni Freiburg) KRR April 29, 2008 21 / 22

Literature

Literature

M. R. Garey and D. S. Johnson.
Computers and Intractability – A Guide to the Theory of NP-Completeness.
Freeman and Company, San Francisco, 1979.

C. H. Papadimitriou.
Computational Complexity.
Addison-Wesley,Reading, MA, 1994.

Nebel, Helmert, Wölfl (Uni Freiburg) KRR April 29, 2008 22 / 22


	Motivation
	Reminder: Basic Notions
	Algorithms and Turing Machines
	Problems, Solutions, and Complexity
	Complexity Classes P and NP
	Upper and Lower Bounds
	Polynomial Reductions
	NP-Completeness

	Beyond NP
	The Class co-NP
	The Class PSPACE
	Other Classes

	Oracle TMs and the Polynomial Hierarchy
	Oracle Turing-Machines
	Turing Reduction
	Complexity Classes Based on OTMs
	QBF

	Literature

