Principles of Knowledge Representation and Reasoning

 Complexity TheoryBernhard Nebel, Malte Helmert and Stefan Wölfl

Albert-Ludwigs-Universität Freiburg

April 29, 2008

Principles of Knowledge Representation and Reasoning

April 29, 2008 - Complexity Theory
 Motivation

Reminder: Basic Notions

Algorithms and Turing Machines
Problems, Solutions, and Complexity
Complexity Classes P and NP
Upper and Lower Bounds
Polynomial Reductions
NP-Completeness
Beyond NP
The Class co-NP
The Class PSPACE
Other Classes
Oracle TMs and the Polynomial Hierarchy
Oracle Turing-Machines
Turing Reduction
Complexity Classes Based on OTMs

Motivation for Using Complexity Theory

- Complexity theory can answer questions on how easy or hard a problem is
- Gives hints on what algorithms could be appropriate, e.g.:
- algorithms for polynomial-time problems are usually easy to design
- for NP-complete problems, backtracking and local search work well
- Gives hints on what type of algorithm will (most probably) not work
- for problems that are believed to be harder than NP-complete ones, simple backtracking will not work
- Gives hint on what sub-problems might be interesting

Algorithms and Turing Machines

- We use Turing machines as formal models of algorithms
- This is justified, because:
- we assume that Turing machines can compute all computable functions
- the resource requirements (in term of time and memory) of a Turing machine are only polynomially worse than other models
- The regular type of Turing machine is the deterministic one: DTM (or simply TM)
- Often, however, we use the notion of nondeterministic TMs: NDTM

Problems, Solutions, and Complexity

- A problem is a set of pairs (I, A) of strings in $\{0,1\}^{*}$.

I: Instance; A: Answer.
If $A \in\{0,1\}$: decision problem

- A decision problem is the same as a formal language: namely the set of strings formed by the instances with answer 1
- An algorithm decides (or solves) a problem if it computes the right answer for all instances.
- The complexity of an algorithm is a function

$$
T: \mathbf{N} \rightarrow \mathbf{N}
$$

measuring the number of basic steps (or memory requirement) the algorithm needs to compute an answer depending on the size of the instance.

- The complexity of a problem is the complexity of the most efficient algorithm that solves this problem.

Complexity Classes P and NP

Problems are categorized into complexity classes according to the requirements of computational resources:

- The class of problems decidable on deterministic Turing machines in polynomial time: P
- Problems in P are assumed to be efficiently solvable (although this might not be true if the exponent is very large)
- In practice, this notion appears to be more often reasonable than not
- The class of problems decidable on non-deterministic Turing machines in polynomial time: NP
- More classes are definable using other resource bounds on time and memory

Upper and Lower Bounds

- Upper bounds (membership in a class) are usually easy to prove:
- provide an algorithm
- show that the resource bounds are respected
- Lower bounds (hardness for a class) are usually difficult to show:
- the technical tool here is the polynomial reduction (or any other appropriate reduction)
- show that some hard problem can be reduced to the problem at hand

Polynomial Reductions

- Given two languages L_{1} and L_{2}, L_{1} can be polynomially reduced to L_{2}, written $L_{1} \leq_{p} L_{2}$, iff there exists a polynomially computable function f such that

$$
x \in L_{1} \text { iff } f(x) \in L_{2}
$$

- It cannot be harder to decide L_{1} than L_{2}
- L is hard for a class C (C-hard) iff all languages of this class can be reduced to L.
- L is complete for C (C-complete) iff L is C-hard and $L \in C$.

NP-complete Problems

- A problem is NP-complete iff it is NP-hard and in NP.
- Example: SAT - the satisfiability problem for propositional logic - is NP-complete (Cook/Karp)
- Membership is obvious, hardness follows because computations on a NDTM correspond to satisfying truth-assignments of certain formulae

The Complexity Class co-NP

- Note that there is some asymmetry in the definition of NP:
- It is clear that we can decide SAT by using a NDTM with polynomially bounded computation
- There exists an accepting computation of polynomial length iff the formula is satisfiable
- What if we want to solve UNSAT, the complementary problem?
- It seems necessary to check all possible truth-assignments!
- Define co- $C=\left\{L \mid \Sigma^{*}-L \in C\right\}$, provided Σ is our alphabet
- co-NP $=\left\{L \mid \Sigma^{*}-L \in N P\right\}$
- For example UNSAT, TAUT \in co-NP!
- Note: P is closed under complement, i.e.,

$$
P \subseteq N P \cap c o-N P
$$

PSPACE

There are problems even more difficult than NP and co-NP.
Definition ((N)PSPACE)
PSPACE (NPSPACE) is the class of decision problems that can be decided on deterministic (non-deterministic) Turing machines using only polynomially many tape cells.
Some facts about PSPACE:

- PSPACE is closed under complements (as all other deterministic classes)
- PSPACE is identical to NPSPACE (because non-deterministic Turing machines can be simulated on deterministic TMs using only quadratic space)
- NP \subseteq PSPACE (because in polynomial time one can "visit" only polynomial space, i.e., NP \subseteq NPSPACE)
- It is unknown whether NP \neq PSPACE, but it is believed that this is true.

PSPACE-completeness

Definition (PSPACE-completeness)

A decision problem (or language) is PSPACE-complete, if it is in PSPACE and all other problems in PSPACE can be polynomially reduced to it. Intuitively, PSPACE-complete problems are the "hardest" problems in PSPACE (similar to NP-completeness). They appear to be "harder" than NP-complete problems from a practical point of view.
An example for a PSPACE-complete problem is the NDFA equivalence problem:

Instance: Two non-deterministic finite state automata A_{1} and A_{2}.
Question: Are the languages accepted by A_{1} and A_{2} identical?

Other Complexity Classes ...

- There are complexity classes above PSPACE (EXPTIME, EXPSPACE, NEXPTIME, DEXPTIME ...)
- there are (infinitely many) classes between NP and PSPACE (the polynomial hierarchy defined by oracle machines)
- there are (infinitely many) classes inside P (circuit classes with different depths)
- and for most of the classes we do not know whether the containment relationships are strict

Oracle Turing Machines

- An Oracle Turing machine ((N)OTM) is a Turing machine (DTM, NDTM) with the possibility to query an oracle (i.e., a different Turing machine without resource restrictions) whether it accepts or rejects a given string.
- Computation by the oracle does not cost anything!
- Formalization:
- a tape onto which strings for the oracle are written,
- a yes/no answer from the oracle depending on whether it accepts or rejects the input string.
- Usage of OTMs answers what-if questions: What if we could solve the oracle-problem efficiently?

Turing Reductions

- OTMs allow us to define a more general type of reduction
- Idea: The "classical" reduction can be seen as calling a subroutine once.
- L_{1} is Turing-reducible to L_{2}, symbolically $L_{1} \leq_{T} L_{2}$, if there exists a poly-time OTM that decides L_{1} by using an oracle for L_{2}.
- Polynomial reducibility implies Turing reducibility, but not vice versa!
- NP-hardness and co-NP-hardness with respect to Turing reducibility are equivalent!
- Turing reducibility can also be applied to general search problems!

Complexity Classes Based on Oracle TMs

1. $\mathrm{P}^{\mathrm{NP}}=$ decision problems solved by poly-time DTMs with an oracle for a decision problem in NP.
2. NPNP = decision problems solved by poly-time NDTMs with an oracle for a decision problem in NP.
3. co-NPNP $=$ complements of decision problems solved by poly-time NDTMs with an oracle for a decision problem in NP.
4. $N P^{N P} N P=\ldots$
... and so on

Example

- Consider the Minimum Equivalent Expression (MEE) problem:

Instance: A well-formed Boolean formula ϕ using the standard connectives (not \leftrightarrow) and a nonnegative integer K. Question: Is there a well-formed Boolean formula ϕ^{\prime} that contains K or fewer literal occurrences and that is logical equivalent to ϕ ?

- This problem is NP-hard (wrt. to Turing reductions).
- It does not appear to be NP-complete
- We could guess a formula and then use a SAT-oracle
- MEE $\in N P^{N P}$.

The Polynomial Hierarchy

The complexity classes based on OTMs form an infinite hierarchy. The polynomial hierarchy PH

$$
\begin{aligned}
\Sigma_{0}^{p} & =\mathrm{P} & \Pi_{0}^{p} & =\mathrm{P} & \Delta_{0}^{p} & =\mathrm{P} \\
\Sigma_{i+1}^{p} & =\mathrm{NP}^{\Sigma_{i}^{p}} & \Pi_{i+1}^{p} & =\operatorname{co}-\Sigma_{i+1}^{p} & \Delta_{i+1}^{p} & =\mathrm{P}^{\Sigma_{i}^{p}}
\end{aligned}
$$

- $\mathrm{PH}=\bigcup_{i \geq 0}\left(\Sigma_{i}^{p} \cup \Pi_{i}^{p} \cup \Delta_{i}^{p}\right) \subseteq$ PSPACE
- $\mathrm{NP}=\Sigma_{1}^{P}$
- $\operatorname{co-NP}=\Pi_{1}^{p}$

Quantified Boolean Formulae: Definition

- If ϕ is a propositional formula, P is the set of Boolean variables used in ϕ and σ is a sequence of $\exists p$ and $\forall p$, one for every $p \in P$, then $\sigma \phi$ is a QBF.
- A formula $\exists x \phi$ is true if and only if $\phi[T / x] \vee \phi[\perp / x]$ is true. (Equivalently, $\phi[T / x]$ is true or $\phi[\perp / x]$ is true.)
- A formula $\forall x \phi$ is true if and only if $\phi[T / x] \wedge \phi[\perp / x]$ is true. (Equivalently, $\phi[\top / x]$ is true and $\phi[\perp / x]$ is true.)
- This definition directly leads to an AND/OR tree traversal algorithm for evaluating QBF.

Quantified Boolean Formulae: Definition

The evaluation problem of QBF generalizes both the satisfiability and validity/tautology problems of propositional logic.
The latter are respectively NP-complete and co-NP-complete whereas the former is PSPACE-complete.

Example
The formulae $\forall x \exists y(x \leftrightarrow y)$ and $\exists x \exists y(x \wedge y)$ are true.
Example
The formulae $\exists x \forall y(x \leftrightarrow y)$ and $\forall x \forall y(x \vee y)$ are false.

The Polynomial Hierarchy: Connection to QBF

Truth of QBFs with prefix $\overbrace{\forall \exists \forall \cdots}$ is Π_{i}^{p}-complete.
Truth of QBFs with prefix $\overbrace{\exists \forall \exists \ldots}$ is \sum_{i}^{p}-complete.

Special cases corresponding to SAT and TAUT: The truth of QBFs with prefix $\exists x_{1}^{1} \ldots x_{n}^{1}$ is NP $=\Sigma_{1}^{p}$-complete. The truth of QBFs with prefix $\forall x_{1}^{1} \ldots x_{n}^{1}$ is co-NP $=\Pi_{1}^{p}$-complete.

Literature

M. R. Garey and D. S. Johnson.

Computers and Intractability - A Guide to the Theory of NP-Completeness. Freeman and Company, San Francisco, 1979.
T
C. H. Papadimitriou.

Computational Complexity. Addison-Wesley,Reading, MA, 1994.

