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Why Logic?

Why Logic?

I Logic is one of the best developed systems for representing knowledge.

I Can be used for analysis, design and specification.

I Understanding formal logic is a prerequisite for understanding most
research papers in KRR.
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Why Logic?

The Right Logic. . .

I Logics of different orders (1st, 2nd, ...)
I Modal logics

I epistemic
I temporal
I dynamic (program)
I multi-modal logics
I . . .

I Many-valued logics

I Conditional logics

I Nonmonotonic logics

I Linear logics

I . . .
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Why Logic?

The Logical Approach

I Define a formal language: logical & non-logical symbols, syntax rules

I Provide language with compositional semantics

I Fix universe of discourse
I Specify how the non-logical symbols can be interpreted: interpretation
I Rules how to combine interpretation of single symbols
I Satisfying interpretation = model
I Semantics often entails concept of logical implication/entailment

I Specify a calculus that allows to derive new formulae from old ones –
according to the entailment relation
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Propositional Logic

Propositional Logic: Main Ideas

I Non-logical symbols: propositional variables or atoms
I representing propositions which cannot be decomposed
I which can be true or false (for example: “Snow is white”, “It rains”)

I Logical symbols: propositional connectives such as:
and (∧), or (∨), and not (¬)

I Formulae: built out of atoms and connectives

I Universe of discourse: truth values
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Syntax

Syntax

Countable alphabet Σ of atomic propositions: a, b, c , . . .
Propositional formulae are built according to the following rule:

ϕ −→ a atomic formula
| ⊥ falsity
| > truth
| (¬ϕ′) negation
| (ϕ′ ∧ ϕ′′) conjunction
| (ϕ′ ∨ ϕ′′) disjunction
| (ϕ′ → ϕ′′) implication
| (ϕ′ ↔ ϕ′′) equivalence

Parentheses can be omitted if no ambiguity arises.
Operator precedence: ¬ > ∧ > ∨ > → = ↔.
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Semantics

Semantics: Idea

I Atomic propositions can be true (1,T ) or false (0,F ).

I Provided the truth values of the atoms have been fixed (truth
assignment or interpretation), the truth value of a formula can be
computed from the truth values of the atoms and the connectives.

I Example:
(a ∨ b) ∧ c

is true iff c is true and, additionally, a or b is true.

Logical implication can then be defined as follows:

I ϕ is implied by a set of formulae Θ iff ϕ is true for all truth
assignments (world states) that make all formulae in Θ true.
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Semantics

Formal Semantics
An interpretation or truth assignment over Σ is a function:

I : Σ→ {T ,F}.

A formula ψ is true under I or is satisfied by I (symb. I |= ψ):

I |= a iff I(a) = T

I |= >
I 6|= ⊥

I |= ¬ϕ iff I 6|= ϕ

I |= ϕ ∧ ϕ′ iff I |= ϕ and I |= ϕ′

I |= ϕ ∨ ϕ′ iff I |= ϕ or I |= ϕ′

I |= ϕ→ ϕ′ iff if I |= ϕ, then I |= ϕ′

I |= ϕ↔ ϕ′ iff I |= ϕ if and only if I |= ϕ′
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Semantics

Example
Given

I : a 7→ T , b 7→ F , c 7→ F , d 7→ T ,

Is ((a ∨ b)↔ (c ∨ d)) ∧ (¬(a ∧ c) ∨ (c ∧ ¬d)) true or false?

((a ∨ b)↔ (c ∨ d)) ∧ (¬(a ∧ c) ∨ (c ∧ ¬d))

((a ∨ b)↔ (c ∨ d)) ∧ (¬(a ∧ c) ∨ (c ∧ ¬d))

((a ∨ b)↔ (c ∨ d)) ∧ (¬(a ∧ c) ∨ (c ∧ ¬d))

((a ∨ b)↔ (c ∨ d)) ∧ (¬(a ∧ c) ∨ (c ∧ ¬d))

((a ∨ b)↔ (c ∨ d)) ∧ (¬(a ∧ c) ∨ (c ∧ ¬d))
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Terminology

Terminology

An interpretation I is a model of ϕ iff

I |= ϕ

A formula ϕ is

I satisfiable if there is an I such that I |= ϕ;

I unsatisfiable, otherwise; and

I valid if I |= ϕ for each I;

I falsifiable, otherwise.

Two formulae ϕ and ψ are logically equivalent (symb. ϕ ≡ ψ) if for all
interpretations I,

I |= ϕ iff I |= ψ.
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Terminology

Examples

Satisfiable, unsatisfiable, falsifiable, valid?
(a ∨ b ∨ ¬c) ∧ (¬a ∨ ¬b ∨ d) ∧ (¬a ∨ b ∨ ¬d)

 satisfiable: a 7→ T , b 7→ F , d 7→ F , . . .

 falsifiable: a 7→ F , b 7→ F , c 7→ T , . . .

((¬a→ ¬b)→ (b → a))

 satisfiable: a 7→ T , b 7→ T

 valid: Consider all interpretations or argue about falsifying ones.

Equivalence? ¬(a ∨ b) ≡ ¬a ∧ ¬b

 Of course, equivalent (de Morgan).
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Terminology

Some Obvious Consequences

Proposition

ϕ is valid iff ¬ϕ is unsatisfiable and ϕ is satisfiable iff ¬ϕ is falsifiable.

Proposition

ϕ ≡ ψ iff ϕ↔ ψ is valid.

Theorem
If ϕ ≡ ψ and χ′ results from substituting ϕ by ψ in χ, then χ′ ≡ χ.
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Terminology

Some Equivalences

simplifications ϕ→ ψ ≡ ¬ϕ ∨ ψ ϕ↔ ψ ≡ (ϕ→ ψ) ∧ (ψ → ϕ)
idempotency ϕ ∨ ϕ ≡ ϕ ϕ ∧ ϕ ≡ ϕ
commutativity ϕ ∨ ψ ≡ ψ ∨ ϕ ϕ ∧ ψ ≡ ψ ∧ ϕ
associativity (ϕ ∨ ψ) ∨ χ ≡ ϕ ∨ (ψ ∨ χ) (ϕ ∧ ψ) ∧ χ ≡ ϕ ∧ (ψ ∧ χ)
absorption ϕ ∨ (ϕ ∧ ψ) ≡ ϕ ϕ ∧ (ϕ ∨ ψ) ≡ ϕ
distributivity ϕ ∧ (ψ ∨ χ) ≡ (ϕ ∧ ψ) ∨

(ϕ ∧ χ)
ϕ ∨ (ψ ∧ χ) ≡ (ϕ ∨ ψ) ∧

(ϕ ∨ χ)
double negation ¬¬ϕ ≡ ϕ
constants ¬> ≡ ⊥ ¬⊥ ≡ >
De Morgan ¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψ ¬(ϕ ∧ ψ) ≡ ¬ϕ ∨ ¬ψ
truth ϕ ∨ > ≡ > ϕ ∧ > ≡ ϕ
falsity ϕ ∨ ⊥ ≡ ϕ ϕ ∧ ⊥ ≡ ⊥
taut./contrad. ϕ ∨ ¬ϕ ≡ > ϕ ∧ ¬ϕ ≡ ⊥
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Terminology

How Many Different Formulae Are There . . .

. . . for a given finite alphabet Σ?

I Infinitely many: a, a ∨ a, a ∧ a, a ∨ a ∨ a, . . .
I How many different logically distinguishable (not equivalent)

formulae?
I For Σ with n = |Σ|, there are 2n different interpretations.

I A formula can be characterized by its set of models
(if two formulae are not logically equivalent, then their sets of models
differ).

I There are 2(2n) different sets of interpretations.

I There are 2(2n) (logical) equivalence classes of formulae.
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Terminology

Logical Implication

I Extension of the relation |= to sets Θ of formulae:

I |= Θ iff I |= ϕ for all ϕ ∈ Θ.

I ϕ is logically implied by Θ (symbolically Θ |= ϕ) iff ϕ is true in all
models of Θ:

Θ |= ϕ iff I |= ϕ for all I such that I |= Θ

I Some consequences:
I Deduction theorem: Θ ∪ {ϕ} |= ψ iff Θ |= ϕ→ ψ
I Contraposition: Θ ∪ {ϕ} |= ¬ψ iff Θ ∪ {ψ} |= ¬ϕ
I Contradiction: Θ ∪ {ϕ} is unsatisfiable iff Θ |= ¬ϕ
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Normal Forms

Normal Forms

Terminology:

I Atomic formulae a, negated atomic formulae ¬a, truth > and falsity
⊥ are literals.

I A disjunction of literals is a clause.

I If ¬ only occurs in front of an atom and there are no occurrences of
→ and ↔, the formula is in negation normal form (NNF).
Example: (¬a ∨ ¬b) ∧ c, but not: ¬(a ∧ b) ∧ c

I A conjunction of clauses is in conjunctive normal form (CNF).
Example: (a ∨ b) ∧ (¬a ∨ c)

I The dual form (disjunction of conjunctions of literals) is in disjunctive
normal form (DNF).
Example: (a ∧ b) ∨ (¬a ∧ c)
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Normal Forms

Negation Normal Form

Theorem
For each propositional formula there is a logically equivalent formula in
NNF.

Proof.
First eliminate → and ↔ by the appropriate equivalences. The rest of the proof is
by structural induction.
Base case: Claim is true for a, ¬a, >, ⊥.
Inductive case: Assume claim is true for all formulae ϕ (up to a certain number of
connectives) and call its NNF nnf(ϕ).

I nnf(ϕ ∧ ψ) = nnf(ϕ) ∧ nnf(ψ)

I nnf(ϕ ∨ ψ) = nnf(ϕ) ∨ nnf(ψ)

I nnf(¬(ϕ ∧ ψ)) = nnf(¬ϕ) ∨ nnf(¬ψ)

I nnf(¬(ϕ ∨ ψ)) = nnf(¬ϕ) ∧ nnf(¬ψ)

I nnf(¬(¬ϕ)) = nnf(ϕ)

Nebel, Helmert, Wölfl (Uni Freiburg) KRR April 22 & 25, 2008 18 / 27

Normal Forms

Conjunctive Normal Form

Theorem
For each propositional formula there are logically equivalent formulae in
CNF and DNF, respectively.

Proof.
The claim is true for a, ¬a, >, ⊥.

Let us assume it is true for all formulae ϕ (up to a certain number of connectives)
and call its CNF cnf(ϕ) (and its DNF dnf(ϕ)).

I cnf(¬ϕ) = nnf(¬ dnf(ϕ)) and cnf(ϕ ∧ ψ) = cnf(ϕ) ∧ cnf(ψ).

I Assume cnf(ϕ) =
∧

i χi and cnf(ψ) =
∧

j ρj with χi , ρj being clauses. Then

cnf(ϕ ∨ ψ) = cnf((
∧
i

χi ) ∨ (
∧
j

ρj))

=
∧
i

∧
j

(χi ∨ ρj) (by distributivity)
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Decision Problems

How to Decide Properties of Formulae

How do we decide whether a formula is satisfiable, unsatisfiable, valid, or
falsifiable?

Note: Satisfiability and falsifiability are NP-complete. Validity and
unsatisfiability are co-NP-complete.

I A CNF formula is valid iff all clauses contain two complementary
literals or >.

I A DNF formula is satisfiable iff one disjunct does not contain ⊥ or
two complementary literals.

I However, transformation to CNF or DNF may take exponential time
(and space!).

I One can try out all truth assignments.

I One can test systematically for satisfying truth assignments
(backtracking search)
 Davis-Putnam-Logemann-Loveland procedure (DPLL).
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Decision Problems

Deciding Entailment

I We want to decide Θ |= ϕ.

I Use deduction theorem and reduce to validity:

Θ |= ϕ iff
∧

Θ→ ϕ is valid.

I Now negate and test for unsatisfiability using DPLL.

I Different approach: Try to derive ϕ from Θ – find a proof of ϕ from
Θ.

I Use inference rules to derive new formulae from Θ. Continue to
deduce new formulae until ϕ can be deduced.

I One particular calculus: resolution.
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Resolution

Resolution: Representation

I We assume that all formulae are in CNF.
I Can be generated using the described method.
I Often formulae are already close to CNF.
I There is a “cheap” conversion from arbitrary formulae to CNF that

preserves satisfiability – which is enough as we will see.

I More convenient representation:
I CNF formula is represented as a set.
I Each clause is a set of literals.
I (a ∨ ¬b) ∧ (¬a ∨ c)  {{a,¬b}, {¬a, c}}

I Empty clause (symbolically �) and empty set of clauses (symbolically
∅) are different!
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Resolution

Resolution: The Inference Rule

Let l be a literal and l its complement.

The resolution rule

C1
.
∪ {l},C2

.
∪ {l}

C1 ∪ C2

C1 ∪ C2 is the resolvent of the parent clauses C1 ∪ {l} and C2 ∪ {l}. l and
l are the resolution literals.

Example: {a, b,¬c} resolves with {a, d , c} to {a, b, d}.
Note: The resolvent is not logically equivalent to the set of parent clauses!

Notation:

R(∆) = {C |C is resolvent of two clauses in ∆}
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Resolution Derivations

Resolution: Derivations

D can be derived from ∆ by resolution (symbolically ∆ ` D) if there is a
sequence C1, . . . ,Cn of clauses such that

1. Cn = D and

2. Ci ∈ R(∆ ∪ {C1, . . . ,Ci−1}), for all i ∈ {1, . . . , n}.
Define R∗(∆) = {D|∆ ` D}.

Theorem (Soundness of resolution)

Let D be a clause. If ∆ ` D then ∆ |= D.

Proof idea.
Show ∆ |= D if D ∈ R(∆) and use induction on proof length.
Let C1 ∪ {l} and C2 ∪ {l} be the parent clauses of D = C1 ∪ C2.
Assume I |= ∆, we have to show I |= D.
Case 1: I |= l then there must be a literal m ∈ C2 s.t. I |= m. This implies I |= D.
Case 2: I |= l similarly, there is m ∈ C1 s.t. I |= m.

This means that each model I of ∆ also satisfies D, i.e., ∆ |= D.
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Resolution Completeness

Resolution: Completeness?

Do we have
∆ |= ϕ implies ∆ ` ϕ?

Of course, could only hold for CNF. However:{
{a, b}, {¬b, c}

}
|= {a, b, c}
6` {a, b, c}

However, one can show that resolution is refutation-complete:

∆ is unsatisfiable iff ∆ ` �.

Entailment: Reduce to unsatisfiability testing and decide by resolution.
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Resolution Resolution Strategies

Resolution Strategies

I Trying out all different resolutions can be very costly,

I and might not be necessary.

I There are different resolution strategies.
I Examples:

I Input resolution (RI (·)): In each resolution step, one of the parent
clauses must be a clause of the input set.

I Unit resolution (RU(·)): In each resolution step, one of the parent
clauses must be a unit clause.

I Not all strategies are (refutation) completeness preserving. Neither
input nor unit resolution is. However, there are others.
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Resolution Horn Clauses

Horn Clauses & Resolution
Horn clauses: Clauses with at most one positive literal
Example: (a ∨ ¬b ∨ ¬c), (¬b ∨ ¬c)

Proposition

Unit resolution is refutation-complete for Horn clauses.

Proof idea.
Consider R∗U(∆) of Horn clause set ∆. We have to show that if
� 6∈ R∗U(∆), then ∆(≡ R∗U(∆)) is satisfiable.

I Assign true to all unit clauses in R∗U(∆).

I Those clauses that do not contain a literal l such that {l} is one of the unit
clauses have at least one negative literal.

I Assign true to these literals.

I Results in satisfying truth assignment for R∗U(∆) (and ∆ ⊆ R∗U(∆)).
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