Principles of Knowledge Representation and Reasoning Propositional Logic

Bernhard Nebel, Malte Helmert and Stefan Wölfl

Albert-Ludwigs-Universität Freiburg

April 22 & 25, 2008

Principles of Knowledge Representation and Reasoning

April 22 & 25, 2008 — Propositional Logic

Why Logic?

Propositional Logic

Syntax

Semantics

Terminology

Normal Forms

Decision Problems

Resolution

Derivations

Completeness

Resolution Strategies

Horn Clauses

Why Logic?

- ▶ Logic is one of the best developed systems for representing knowledge.
- ▶ Can be used for analysis, design and specification.
- ▶ Understanding formal logic is a prerequisite for understanding most research papers in KRR.

The Right Logic...

- ► Logics of different orders (1st, 2nd, ...)
- Modal logics
 - epistemic
 - temporal
 - dynamic (program)
 - multi-modal logics
 - **.** . . .
- Many-valued logics
- ► Conditional logics
- ► Nonmonotonic logics
- ▶ Linear logics
- **.** . .

The Logical Approach

- ▶ Define a formal language: logical & non-logical symbols, syntax rules
- Provide language with compositional semantics
 - ► Fix universe of discourse
 - Specify how the non-logical symbols can be interpreted: interpretation
 - ▶ Rules how to combine interpretation of single symbols
 - Satisfying interpretation = model
 - Semantics often entails concept of logical implication/entailment
- ► Specify a calculus that allows to derive new formulae from old ones according to the entailment relation

Propositional Logic: Main Ideas

- ► Non-logical symbols: propositional variables or atoms
 - representing propositions which cannot be decomposed
 - ▶ which can be true or false (for example: "Snow is white", "It rains")
- ▶ Logical symbols: propositional connectives such as: and (∧), or (∨), and not (¬)
- ▶ Formulae: built out of atoms and connectives
- ▶ Universe of discourse: truth values

Syntax

Countable alphabet Σ of atomic propositions: a, b, c, ...Propositional formulae are built according to the following rule:

$$\begin{array}{ccccc} \varphi & \longrightarrow & \text{a} & \text{atomic formula} \\ & | & \bot & \text{falsity} \\ & | & \top & \text{truth} \\ & | & (\neg\varphi') & \text{negation} \\ & | & (\varphi' \wedge \varphi'') & \text{conjunction} \\ & | & (\varphi' \vee \varphi'') & \text{disjunction} \\ & | & (\varphi' \to \varphi'') & \text{implication} \\ & | & (\varphi' \leftrightarrow \varphi'') & \text{equivalence} \end{array}$$

Parentheses can be omitted if no ambiguity arises.

Operator precedence: $\neg > \land > \lor > \rightarrow = \leftrightarrow$.

Semantics: Idea

- ▶ Atomic propositions can be true (1, T) or false (0, F).
- ▶ Provided the truth values of the atoms have been fixed (truth assignment or interpretation), the truth value of a formula can be computed from the truth values of the atoms and the connectives.
- ► Example:

$$(a \lor b) \land c$$

is true *iff* c is true and, additionally, a or b is true.

Logical implication can then be defined as follows:

 $ightharpoonup \varphi$ is implied by a set of formulae Θ iff φ is true for all truth assignments (world states) that make all formulae in Θ true.

Formal Semantics

An interpretation or truth assignment over Σ is a function:

$$\mathcal{I}\colon \Sigma \to \{T,F\}.$$

A formula ψ is true under \mathcal{I} or is satisfied by \mathcal{I} (symb. $\mathcal{I} \models \psi$):

Example

Given

$$\mathcal{I}: a \mapsto \mathsf{T}, \ b \mapsto \mathsf{F}, \ c \mapsto \mathsf{F}, \ d \mapsto \mathsf{T},$$

$$\mathsf{Is} \ ((a \lor b) \leftrightarrow (c \lor d)) \land (\neg(a \land c) \lor (c \land \neg d)) \ \mathsf{true} \ \mathsf{or} \ \mathsf{false}?$$

$$((a \lor b) \leftrightarrow (c \lor d)) \land (\neg(a \land c) \lor (c \land \neg d))$$

$$((a \lor b) \leftrightarrow (c \lor d)) \land (\neg(a \land c) \lor (c \land \neg d))$$

$$((a \lor b) \leftrightarrow (c \lor d)) \land (\neg(a \land c) \lor (c \land \neg d))$$

$$((a \lor b) \leftrightarrow (c \lor d)) \land (\neg(a \land c) \lor (c \land \neg d))$$

$$((a \lor b) \leftrightarrow (c \lor d)) \land (\neg(a \land c) \lor (c \land \neg d))$$

Terminology

An interpretation ${\mathcal I}$ is a model of φ iff

$$\mathcal{I} \models \varphi$$

A formula φ is

- **satisfiable** if there is an \mathcal{I} such that $\mathcal{I} \models \varphi$;
- unsatisfiable, otherwise; and
- ▶ valid if $\mathcal{I} \models \varphi$ for each \mathcal{I} ;
- ► falsifiable, otherwise.

Two formulae φ and ψ are logically equivalent (symb. $\varphi \equiv \psi$) if for all interpretations \mathcal{I} ,

$$\mathcal{I} \models \varphi \text{ iff } \mathcal{I} \models \psi.$$

Examples

Satisfiable, unsatisfiable, falsifiable, valid?

$$(a \lor b \lor \neg c) \land (\neg a \lor \neg b \lor d) \land (\neg a \lor b \lor \neg d)$$

- \rightsquigarrow satisfiable: $a \mapsto T, b \mapsto F, d \mapsto F, \dots$
- \rightsquigarrow falsifiable: $a \mapsto F, b \mapsto F, c \mapsto T, \dots$

$$((\neg a \rightarrow \neg b) \rightarrow (b \rightarrow a))$$

- \rightarrow satisfiable: $a \mapsto T, b \mapsto T$
- valid: Consider all interpretations or argue about falsifying ones.

Equivalence? $\neg(a \lor b) \equiv \neg a \land \neg b$

→ Of course, equivalent (de Morgan).

Some Obvious Consequences

Proposition

 φ is valid iff $\neg \varphi$ is unsatisfiable and φ is satisfiable iff $\neg \varphi$ is falsifiable.

Proposition

 $\varphi \equiv \psi \text{ iff } \varphi \leftrightarrow \psi \text{ is valid.}$

Theorem

If $\varphi \equiv \psi$ and χ' results from substituting φ by ψ in χ , then $\chi' \equiv \chi$.

Some Equivalences

simplifications	$\varphi o \psi$	\equiv	$\neg\varphi\vee\psi$	$\varphi \leftrightarrow \psi$	\equiv	$(\varphi \to \psi) \land (\psi \to \varphi)$
idempotency	$\varphi \lor \varphi$	\equiv	φ	$\varphi \wedge \varphi$	\equiv	φ
commutativity	$\varphi \lor \psi$	\equiv	$\psi \lor \varphi$	$\varphi \wedge \psi$	\equiv	$\psi \wedge \varphi$
associativity	$(\varphi \lor \psi) \lor \chi$	\equiv	$\varphi \lor (\psi \lor \chi)$	$(\varphi \wedge \psi) \wedge \chi$	\equiv	$\varphi \wedge (\psi \wedge \chi)$
absorption	$\varphi \lor (\varphi \land \psi)$	\equiv	φ	$\varphi \wedge (\varphi \vee \psi)$	\equiv	φ
distributivity	$\varphi \wedge (\psi \vee \chi)$	\equiv	$(\varphi \wedge \psi) \vee$	$\varphi \lor (\psi \land \chi)$	\equiv	$(\varphi \lor \psi) \land$
			$(\varphi \wedge \chi)$			$(\varphi \lor \chi)$
double negation	$\neg \neg \varphi$	\equiv	φ			
constants	$\neg \top$	\equiv	\perp	$\neg \bot$	\equiv	Τ
De Morgan	$\neg(\varphi \lor \psi)$	\equiv	$\neg \varphi \wedge \neg \psi$	$\neg(\varphi \wedge \psi)$	\equiv	$\neg \varphi \vee \neg \psi$
truth	$\varphi \lor \top$	\equiv	Τ	$\varphi \wedge \top$	\equiv	φ
falsity	$\varphi \lor \bot$	\equiv	φ	$\varphi \wedge \bot$	\equiv	\perp
taut./contrad.	$\varphi \vee \neg \varphi$	\equiv	Т	$\varphi \wedge \neg \varphi$	\equiv	\perp

How Many Different Formulae Are There ...

- ... for a given *finite* alphabet Σ ?
 - ▶ Infinitely many: $a, a \lor a, a \land a, a \lor a \lor a, ...$
 - ► How many different logically distinguishable (not equivalent) formulae?
 - ▶ For Σ with $n = |\Sigma|$, there are 2^n different interpretations.
 - ► A formula can be characterized by its set of models (if two formulae are not logically equivalent, then their sets of models differ).
 - ▶ There are $2^{(2^n)}$ different sets of interpretations.
 - ▶ There are $2^{(2^n)}$ (logical) equivalence classes of formulae.

Logical Implication

 \blacktriangleright Extension of the relation \models to sets Θ of formulae:

$$\mathcal{I} \models \Theta \text{ iff } \mathcal{I} \models \varphi \text{ for all } \varphi \in \Theta.$$

 $ightharpoonup \varphi$ is logically implied by Θ (symbolically $\Theta \models \varphi$) iff φ is true in all models of Θ :

$$\Theta \models \varphi \text{ iff } \mathcal{I} \models \varphi \text{ for all } \mathcal{I} \text{ such that } \mathcal{I} \models \Theta$$

- Some consequences:
 - ▶ Deduction theorem: $\Theta \cup \{\varphi\} \models \psi \text{ iff } \Theta \models \varphi \rightarrow \psi$
 - ▶ Contraposition: $\Theta \cup \{\varphi\} \models \neg \psi \text{ iff } \Theta \cup \{\psi\} \models \neg \varphi$
 - ▶ Contradiction: $\Theta \cup \{\varphi\}$ is unsatisfiable iff $\Theta \models \neg \varphi$

Normal Forms

Terminology:

- ▶ Atomic formulae a, negated atomic formulae $\neg a$, truth \top and falsity \bot are literals.
- ▶ A disjunction of literals is a clause.
- ▶ If \neg only occurs in front of an atom and there are no occurrences of \rightarrow and \leftrightarrow , the formula is in negation normal form (NNF). Example: $(\neg a \lor \neg b) \land c$, but not: $\neg (a \land b) \land c$
- ▶ A conjunction of clauses is in conjunctive normal form (CNF). Example: $(a \lor b) \land (\neg a \lor c)$
- The dual form (disjunction of conjunctions of literals) is in disjunctive normal form (DNF).
 Example: (a ∧ b) ∨ (¬a ∧ c)

Negation Normal Form

Theorem

For each propositional formula there is a logically equivalent formula in NNF.

Proof.

First eliminate \to and \leftrightarrow by the appropriate equivalences. The rest of the proof is by structural induction.

Base case: Claim is true for a, $\neg a$, \top , \bot .

Inductive case: Assume claim is true for all formulae φ (up to a certain number of connectives) and call its NNF $\operatorname{nnf}(\varphi)$.

Conjunctive Normal Form

Theorem

For each propositional formula there are logically equivalent formulae in CNF and DNF, respectively.

Proof.

The claim is true for $a, \neg a, \top, \bot$.

Let us assume it is true for all formulae φ (up to a certain number of connectives) and call its CNF $\operatorname{cnf}(\varphi)$ (and its DNF $\operatorname{dnf}(\varphi)$).

- ightharpoonup cnf($\neg \varphi$) = nnf(\neg dnf(φ)) and cnf($\varphi \land \psi$) = cnf(φ) \land cnf(ψ).
- ▶ Assume $cnf(\varphi) = \bigwedge_i \chi_i$ and $cnf(\psi) = \bigwedge_i \rho_j$ with χ_i, ρ_j being clauses. Then

$$\begin{split} \mathsf{cnf}(\varphi \vee \psi) &= \mathsf{cnf}((\bigwedge_i \chi_i) \vee (\bigwedge_j \rho_j)) \\ &= \bigwedge_i \bigwedge_i (\chi_i \vee \rho_j) \quad \text{(by distributivity)} \end{split}$$

How to Decide Properties of Formulae

How do we decide whether a formula is satisfiable, unsatisfiable, valid, or falsifiable?

Note: Satisfiability and falsifiability are NP-complete. Validity and unsatisfiability are co-NP-complete.

- ► A CNF formula is valid iff all clauses contain two complementary literals or T.
- ➤ A DNF formula is satisfiable iff one disjunct does not contain ⊥ or two complementary literals.
- However, transformation to CNF or DNF may take exponential time (and space!).
- ▶ One can try out all truth assignments.
- One can test systematically for satisfying truth assignments (backtracking search)
 - → Davis-Putnam-Logemann-Loveland procedure (DPLL).

Deciding Entailment

- ▶ We want to decide $\Theta \models \varphi$.
- Use deduction theorem and reduce to validity:

$$\Theta \models \varphi \text{ iff } \bigwedge \Theta \rightarrow \varphi \text{ is valid.}$$

- ▶ Now negate and test for unsatisfiability using DPLL.
- ▶ Different approach: Try to derive φ from Θ find a proof of φ from Θ .
- ▶ Use inference rules to derive new formulae from Θ . Continue to deduce new formulae until φ can be deduced.
- ▶ One particular calculus: resolution.

Resolution: Representation

- We assume that all formulae are in CNF.
 - Can be generated using the described method.
 - Often formulae are already close to CNF.
 - ► There is a "cheap" conversion from arbitrary formulae to CNF that preserves satisfiability which is enough as we will see.
- ► More convenient representation:
 - CNF formula is represented as a set.
 - ▶ Each clause is a set of literals.
 - $(a \vee \neg b) \wedge (\neg a \vee c) \rightsquigarrow \{\{a, \neg b\}, \{\neg a, c\}\}$
- Empty clause (symbolically □) and empty set of clauses (symbolically ∅) are different!

Resolution: The Inference Rule

Let I be a literal and \overline{I} its complement.

The resolution rule

$$\frac{C_1 \dot{\cup} \{I\}, C_2 \dot{\cup} \{\bar{I}\}}{C_1 \cup C_2}$$

 $C_1 \cup C_2$ is the resolvent of the parent clauses $C_1 \cup \{I\}$ and $C_2 \cup \{\overline{I}\}$. I and \overline{I} are the resolution literals.

Example: $\{a, b, \neg c\}$ resolves with $\{a, d, c\}$ to $\{a, b, d\}$.

Note: The resolvent is <u>not</u> logically equivalent to the set of parent clauses!

Notation:

$$R(\Delta) = \{C | C \text{ is resolvent of two clauses in } \Delta\}$$

Resolution: Derivations

D can be derived from Δ by resolution (symbolically $\Delta \vdash D$) if there is a sequence C_1, \ldots, C_n of clauses such that

- 1. $C_n = D$ and
- 2. $C_i \in R(\Delta \cup \{C_1, ..., C_{i-1}\})$, for all $i \in \{1, ..., n\}$.

Define $R^*(\Delta) = \{D | \Delta \vdash D\}$.

Theorem (Soundness of resolution)

Let D be a clause. If $\Delta \vdash D$ then $\Delta \models D$.

Proof idea.

Show $\Delta \models D$ if $D \in R(\Delta)$ and use induction on proof length.

Let $C_1 \cup \{I\}$ and $C_2 \cup \{\overline{I}\}$ be the parent clauses of $D = C_1 \cup C_2$.

Assume $\mathcal{I} \models \Delta$, we have to show $\mathcal{I} \models D$.

Case 1: $\mathcal{I} \models I$ then there must be a literal $m \in C_2$ s.t. $\mathcal{I} \models m$. This implies $\mathcal{I} \models D$.

Case 2: $\mathcal{I} \models \overline{I}$ similarly, there is $m \in C_1$ s.t. $\mathcal{I} \models m$.

This means that each model \mathcal{I} of Δ also satisfies D, i.e., $\Delta \models D$.

Resolution: Completeness?

Do we have

$$\Delta \models \varphi \text{ implies } \Delta \vdash \varphi?$$

Of course, could only hold for CNF. However:

$$\left\{\{a,b\},\{\neg b,c\}\right\} \models \{a,b,c\}$$

$$\not\vdash \{a,b,c\}$$

However, one can show that resolution is refutation-complete:

 Δ is unsatisfiable iff $\Delta \vdash \Box$.

Entailment: Reduce to unsatisfiability testing and decide by resolution.

Resolution Strategies

- ▶ Trying out all different resolutions can be very costly,
- and might not be necessary.
- ► There are different resolution strategies.
- Examples:
 - ▶ Input resolution $(R_I(\cdot))$: In each resolution step, one of the parent clauses must be a clause of the input set.
 - ▶ Unit resolution $(R_U(\cdot))$: In each resolution step, one of the parent clauses must be a unit clause.
 - Not all strategies are (refutation) completeness preserving. Neither input nor unit resolution is. However, there are others.

Horn Clauses & Resolution

Horn clauses: Clauses with at most one positive literal

Example: $(a \lor \neg b \lor \neg c), (\neg b \lor \neg c)$

Proposition

Unit resolution is refutation-complete for Horn clauses.

Proof idea.

Consider $R_{ij}^*(\Delta)$ of Horn clause set Δ . We have to show that if $\square \notin R_{II}^*(\Delta)$, then $\Delta (\equiv R_{II}^*(\Delta))$ is satisfiable.

- ▶ Assign *true* to all unit clauses in $R_{II}^*(\Delta)$.
- ▶ Those clauses that do not contain a literal / such that {/} is one of the unit clauses have at least one negative literal.
- Assign true to these literals.
- ▶ Results in satisfying truth assignment for $R_{ii}^*(\Delta)$ (and $\Delta \subseteq R_{ii}^*(\Delta)$).