Principles of Knowledge Representation and Reasoning

B. Nebel, M. Helmert, S. WölflG. RögerSummer Semester 2008

University of Freiburg Department of Computer Science

Exercise Sheet 3 Due: May 20, 2008

Exercise 3.1 (Complexity Theory, 1+2)

- (a) Prove that P is closed under complement, in particular $P \subseteq NP \cap co-NP$.
- (b) Prove: Each problem in NP is Turing-reducible to a problem in co-NP and vice versa.

Exercise 3.2 (Modal Logic, 3+4)

- (a) Prove the following statements:
 - (a) If \mathcal{F} is reflexive and Euclidean, then \mathcal{F} is symmetric and transitive.
 - (b) If \mathcal{F} is symmetric and transitive, then \mathcal{F} is Euclidean.
 - (c) The following statements are equivalent:
 - i. \mathcal{F} is reflexive, symmetric, and transitive.
 - ii. \mathcal{F} is symmetric, transitive, and serial.
 - iii. ${\mathcal F}$ is reflexive and Euclidean.
- (b) Examine which of the following formulae are valid in S4 and which are valid in S5. Provide a semantic proof or a model that is a counter example. In addition, please provide an overview in table form.
 - (a) $\Box \Diamond p \to \Diamond \Box p$
 - (b) $\Diamond \Box p \to \Box \Diamond p$
 - (c) $\Box(\Box p \to p) \to \Box p$
 - (d) $\Box(\Box p \to q) \lor \Box(\Box q \to p)$
 - (e) $p \to \Box(\Diamond p \to p)$
 - (f) $\Diamond (p \land \Box q) \to \Box (p \lor \Diamond q)$