Principles of Knowledge Representation and Reasoning

B. Nebel, M. Helmert, S. Wölfl
G. Röger
Summer Semester 2008

University of Freiburg
Department of Computer Science

Exercise Sheet 1
 Due: April 29th, 2008

Exercise 1.1 (Propositional Logic, $1+1+3$)
(a) Is the infinite set of clauses

$$
S=\left\{A_{1} \vee A_{2}, \neg A_{2} \vee \neg A_{3}, A_{3} \vee A_{4}, \neg A_{4} \vee \neg A_{5}, \ldots\right\}
$$

satisfiable?
(b) Show that $(A \vee \neg(B \wedge A)) \wedge(C \vee(D \vee C))$ is logically equivalent to $(C \vee D)$ by applying the equivalences from the lecture.
(c) Prove that there is no polynomial time algorithm that transforms arbitrary propositional formulae to equivalent formulae in CNF.

Hint: Find a family of formulae in DNF with n variables for which every equivalent formula in CNF must consist of an exponential number of clauses. Be careful: It is not sufficient to show that the transformations that have been presented in the lecture lead to an exponential growth. (Why?)

Exercise 1.2 (Resolution and Horn Clauses, 2+3)
(a) Use resolution to show that

$$
F=(\neg B \wedge \neg C \wedge D) \vee(\neg B \wedge \neg D) \vee(C \wedge D) \vee B
$$

is a tautology (valid).
(b) Prove or disprove: For each propositional formula ϕ there is a Horn formula (a set of Horn clauses) that is logically equivalent to ϕ.

Hint: Prove first the following property of satisfiable Horn formulae: the interpretation that makes a variable true iff the variable is true in all models of the formula is also a model of the formula.

