Probabilistic Robotics

Mobile Robot Localization

Wolfram Burgard Cyrill Stachniss

Probabilistic Robotics

Key idea: Explicit representation of uncertainty

(using the calculus of probability theory)

- Perception = state estimation
- Action = utility optimization

Bayes Filters: Framework

• Given:

Stream of observations z and action data u:

$$d_t = \{u_1, z_1 \oplus, u_t, z_t\}$$

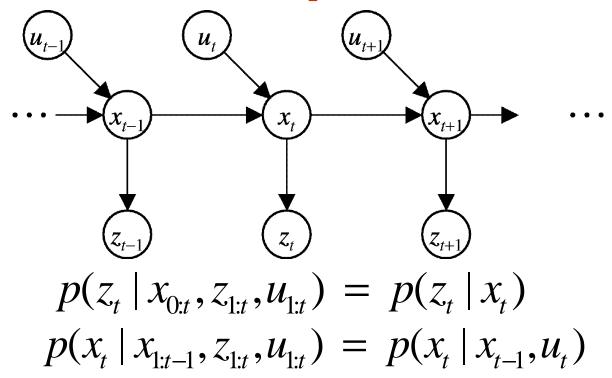
- Sensor model P(z|x).
- Action model P(x|u,x').
- Prior probability of the system state P(x).

• Wanted:

- Estimate of the state X of a dynamical system.
- The posterior of the state is also called Belief:

$$Bel(x_t) = P(x_t \mid u_1, z_1 \oplus u_t, z_t)$$

Markov Assumption



Underlying Assumptions

- Static world
- Independent noise
- Perfect model, no approximation errors

z = observationu = actionx = state

Bayes Filters

$$= \eta P(z_t | x_t) \int P(x_t | u_t, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

$Bel(x_t) = \eta \ P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) \ Bel(x_{t-1}) \ dx_{t-1}$

```
Algorithm Bayes_filter( Bel(x),d ):
2.
      \eta = 0
3.
      If d is a perceptual data item z then
4.
         For all x do
              Bel'(x) = P(z \mid x)Bel(x)
5.
             \eta = \eta + Bel'(x)
6.
         For all x do
7.
              Bel'(x) = \eta^{-1}Bel'(x)
8.
      Else if d is an action data item u then
9.
10.
         For all x do
             Bel'(x) = \int P(x \mid u, x') Bel(x') dx'
11.
12.
      Return Bel'(x)
```

Bayes Filters are Frequently used Robotics

$$Bel(x_t) = \eta \ P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) \ Bel(x_{t-1}) \ dx_{t-1}$$

- Kalman filters
- Particle filters
- Hidden Markov models
- Dynamic Bayesian networks
- Partially Observable Markov Decision Processes (POMDPs)

Example: Robot Localization using a Bayes Filter

- Action: motion information of the robot
- Perception: compare the robots sensor observations to the model of the world
- Particle filters are a way to efficiently represent non-Gaussian distribution
- Basic principle
 - Set of state hypotheses ("particles")
 - Kind of "survival-of-the-fittest"

Mathematical Description

Set of weighted samples

$$S = \left\{ \left\langle s^{[i]}, w^{[i]} \right\rangle \mid i = 1, \dots, N \right\}$$
 State hypothesis Importance weight

The samples represent the posterior

$$p(x) = \sum_{i=1}^{N} w_i \cdot \delta_{s[i]}(x)$$

Particle Filter Algorithm

 Action step: sample the next generation for particles using a probabilistic motion model (proposal distribution)

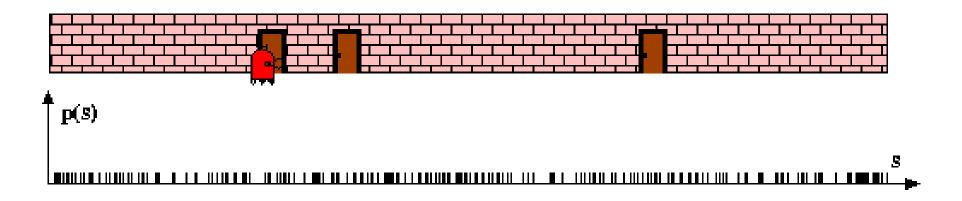
$$Bel^{-}(x) \leftarrow \int p(x|u,x') Bel(x') dx'$$

Perception step: compute the importance weights to incorporate the observation:

$$Bel(x) \leftarrow \alpha p(z \mid x) Bel^{-}(x) = \alpha p(z \mid x) Bel^{-}(x)$$

 Resampling: Draw particle with a probability proportional to their importance weight "Replace unlikely samples by more likely ones"

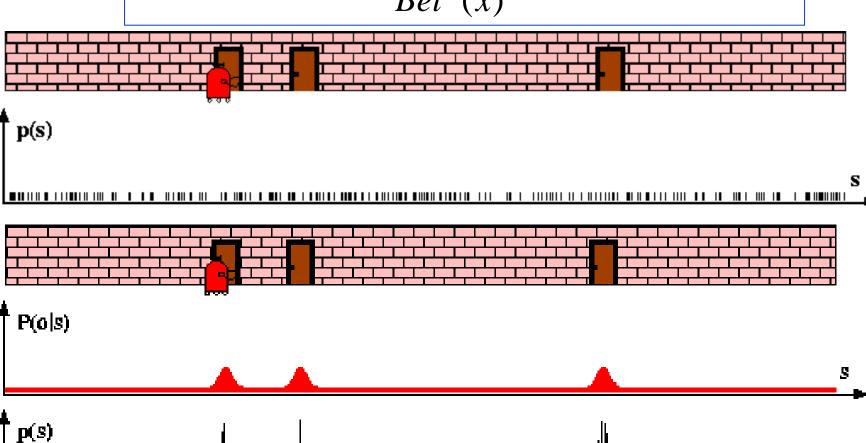
Particle Filters



Sensor Information: Importance Sampling

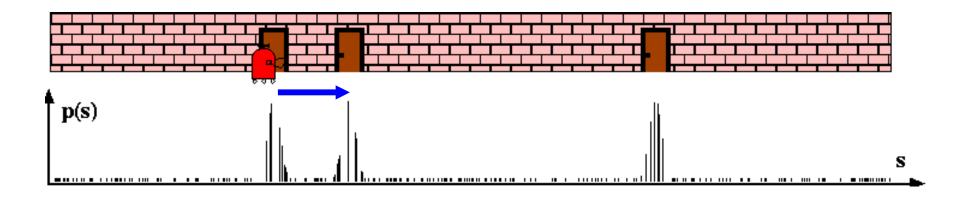
$$Bel(x) \leftarrow \alpha p(z|x) Bel^{-}(x)$$

$$w \leftarrow \frac{\alpha p(z|x) Bel^{-}(x)}{Bel^{-}(x)} = \alpha p(z|x)$$



Robot Motion

$$Bel^{-}(x) \leftarrow \int p(x|u,x') Bel(x') dx'$$

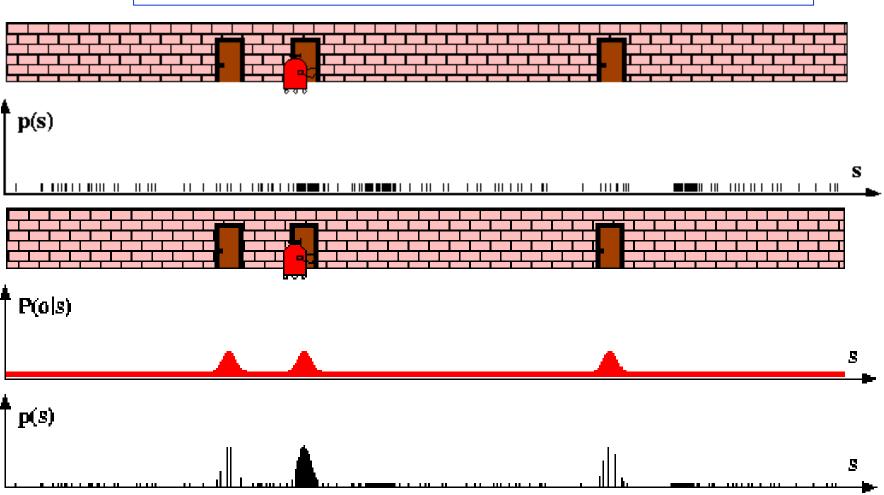




Sensor Information: Importance Sampling

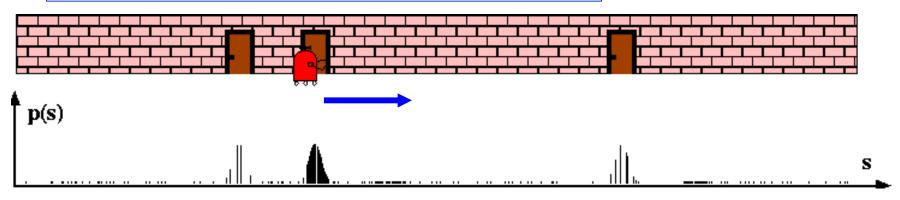
$$Bel(x) \leftarrow \alpha p(z|x) Bel^{-}(x)$$

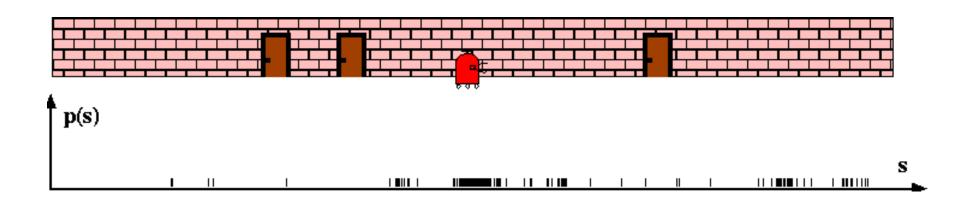
$$w \leftarrow \frac{\alpha p(z|x) Bel^{-}(x)}{Bel^{-}(x)} = \alpha p(z|x)$$



Robot Motion

$$Bel^{-}(x) \leftarrow \int p(x|u,x') Bel(x') dx'$$





Particle Filter Algorithm

$$Bel(x_{t}) = \eta p(z_{t} \mid x_{t}) \int p(x_{t} \mid x_{t-1}, u_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

$$\Rightarrow \text{ draw } x^{i}_{t-1} \text{ from } Bel(x_{t-1})$$

$$\Rightarrow \text{ lmportance factor for } x^{i}_{t}:$$

$$w^{i}_{t} = \frac{\text{target distribution}}{\text{proposal distribution}}$$

$$= \frac{\eta p(z_{t} \mid x_{t}) p(x_{t} \mid x_{t-1}, u_{t-1}) Bel(x_{t-1})}{p(x_{t} \mid x_{t-1}, u_{t-1}) Bel(x_{t-1})}$$

$$\approx p(z_{t} \mid x_{t})$$

Particle Filter Algorithm

- 1. Algorithm **particle_filter**(S_{t-1} , U_{t-1} Z_t):
- $2. \quad S_t = \emptyset, \quad \eta = 0$
- 3. For $i=1 \oplus n$

Generate new samples

- 4. Sample index j(i) from the discrete distribution given by w_{t-1}
- 5. Sample x_t^i from $p(x_t | x_{t-1}, u_{t-1})$ using $x_{t-1}^{j(i)}$ and u_{t-1}
- $6. w_t^i = p(z_t \mid x_t^i)$

Compute importance weight

7. $\eta = \eta + w_t^i$

Update normalization factor

8. $S_t = S_t \cup \{\langle x_t^i, w_t^i \rangle\}$

Insert

- 9. For $i = 1 \oplus n$
- 10. $w_t^i = w_t^i / \eta$

Normalize weights

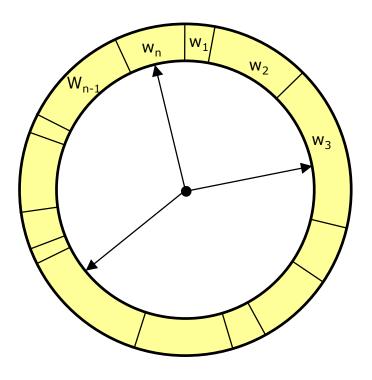
Resampling

Given: Set S of weighted samples.

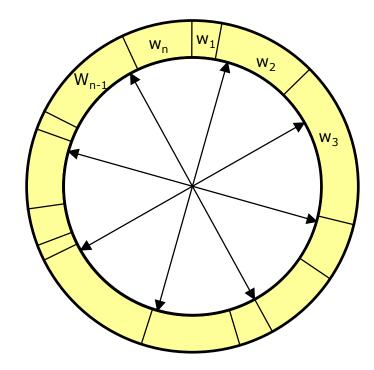
• Wanted: Random sample, where the probability of drawing x_i is given by w_i .

Typically done n times with replacement to generate new sample set S'.

Resampling



- Roulette wheel
- Binary search, n log n



- Stochastic universal sampling
- Systematic resampling
- Linear time complexity
- Easy to implement, low variance

Resampling Algorithm

1. Algorithm **systematic_resampling**(*S*,*n*):

2.
$$S' = \emptyset, c_1 = w^1$$

3. For
$$i = 2 \oplus n$$
 Generate cdf

4.
$$c_i = c_{i-1} + w^i$$

5.
$$u_1 \sim U[0, n^{-1}], i = 1$$
 Initialize threshold

6. For
$$j = 1 \oplus n$$
 Draw samples ...

7. While
$$(u_j > c_i)$$
 Skip until next threshold reached

$$8. i = i + 1$$

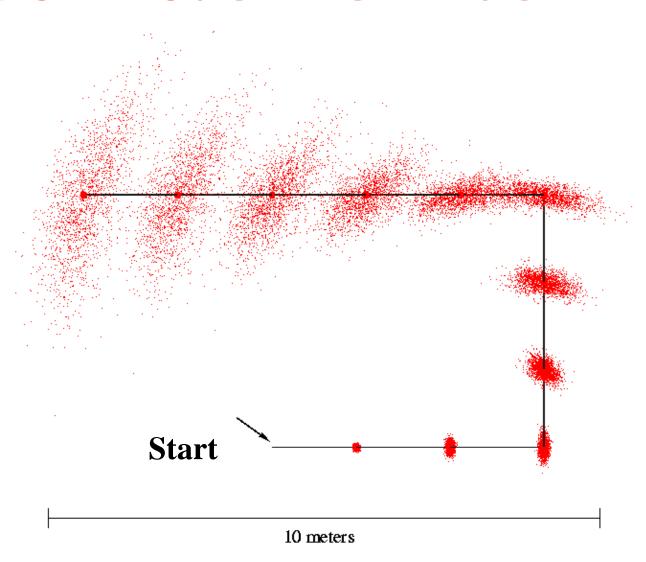
8.
$$i = i + 1$$

9. $S' = S' \cup \{ < x^i, n^{-1} > \}$ Insert

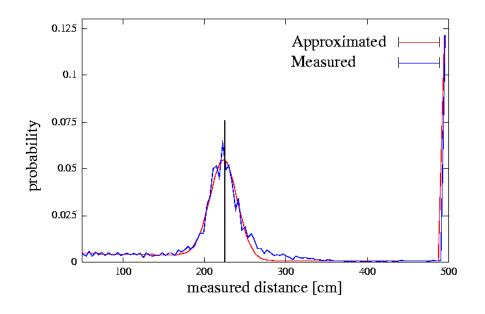
10.
$$u_{j+1} = u_j + n^{-1}$$
 Increment threshold

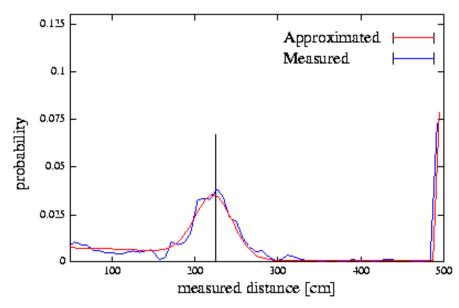
11. Return S'

Motion Model Reminder



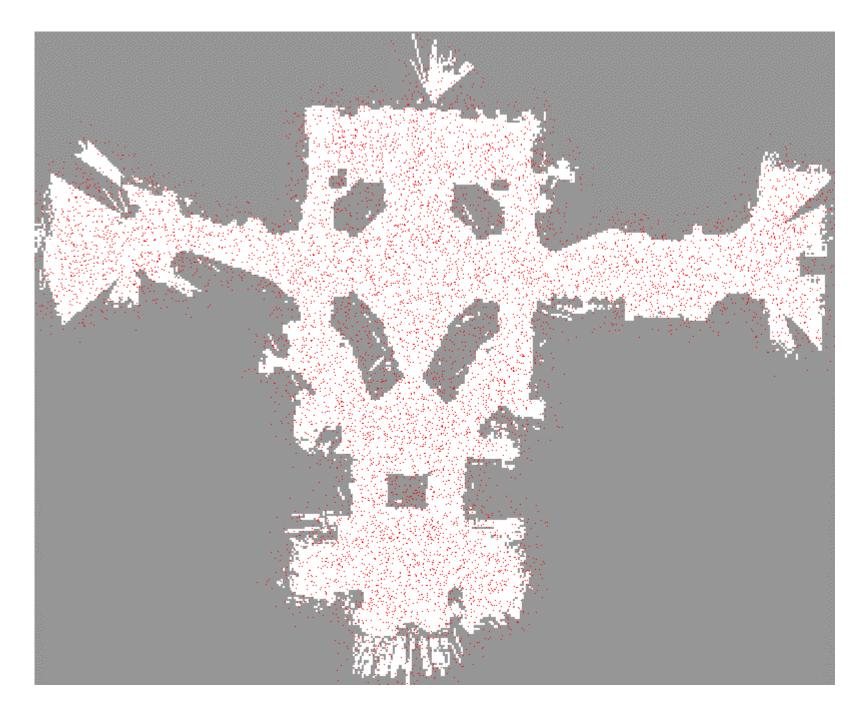
Proximity Sensor Model Reminder

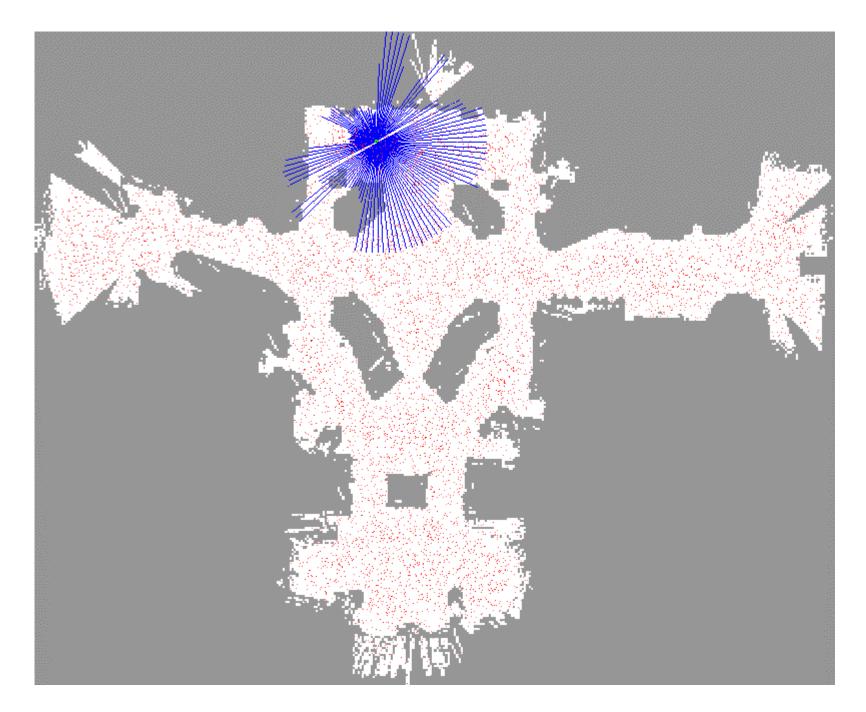


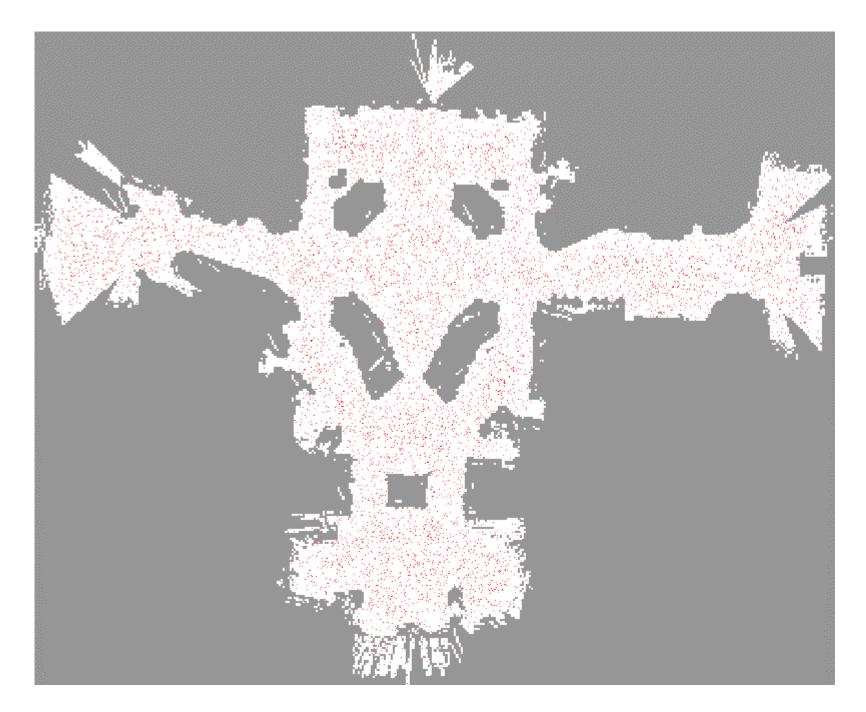


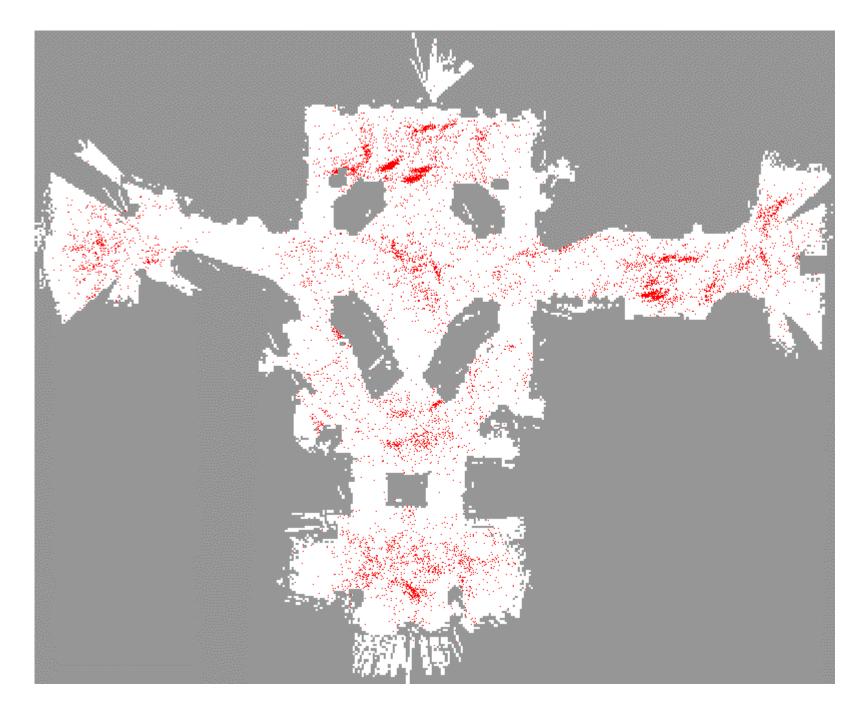
Laser sensor

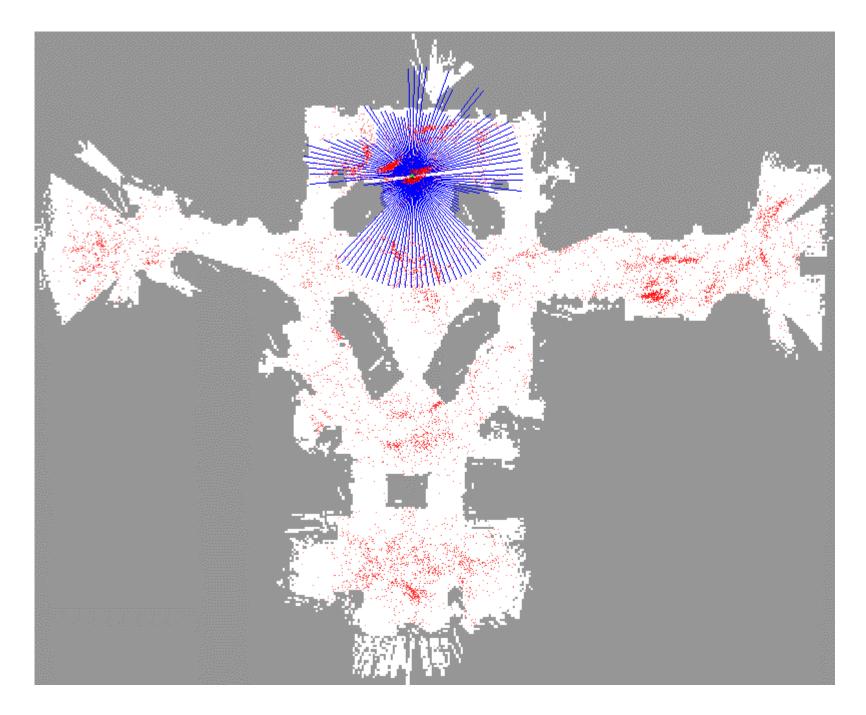
Sonar sensor

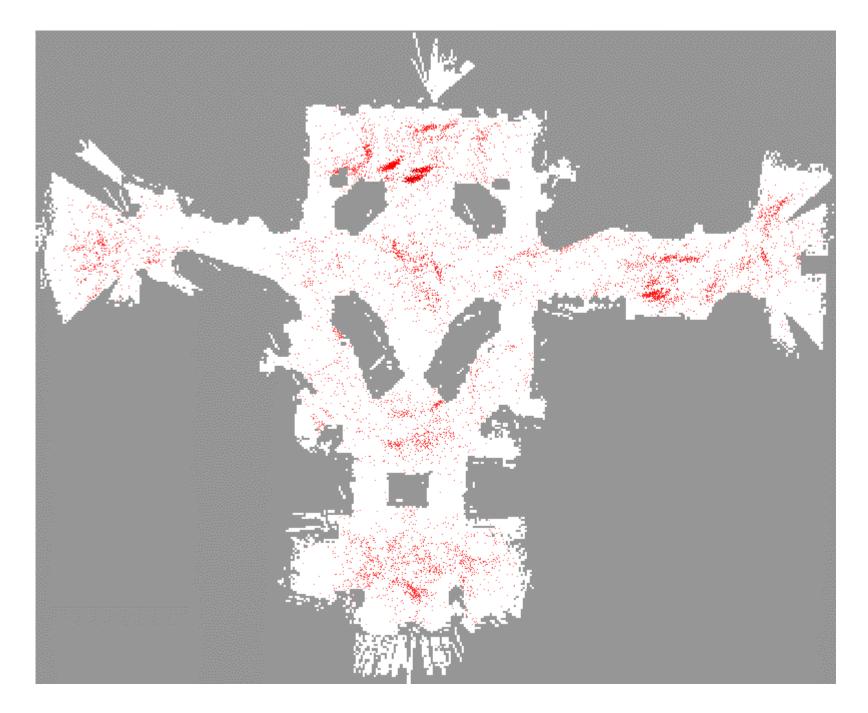


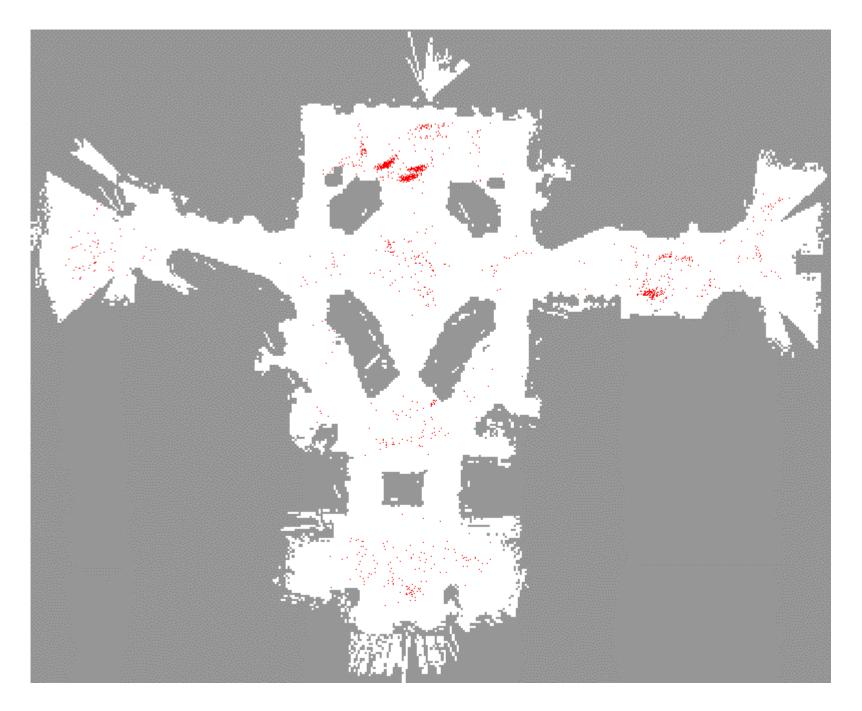


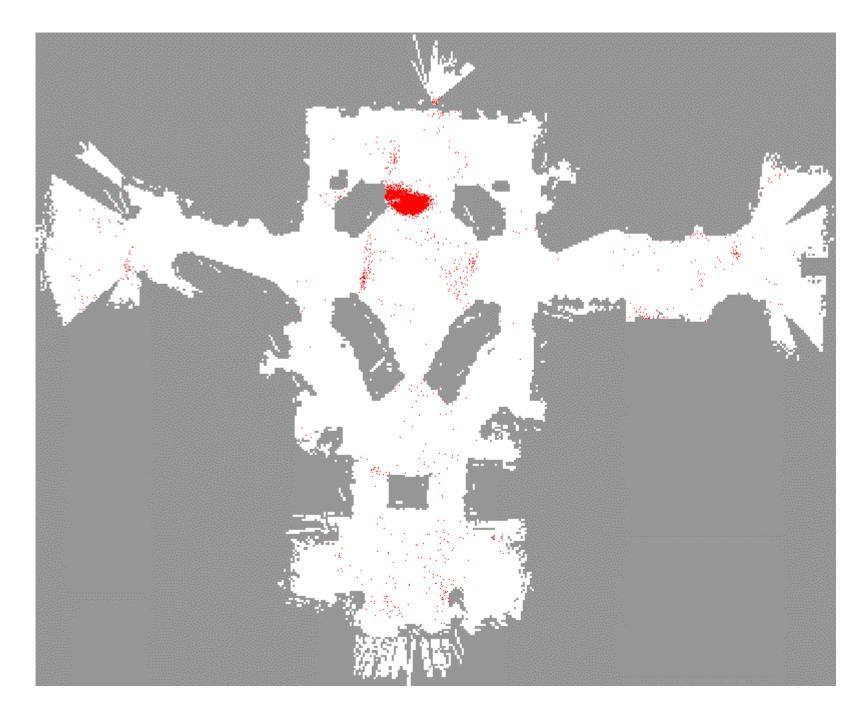


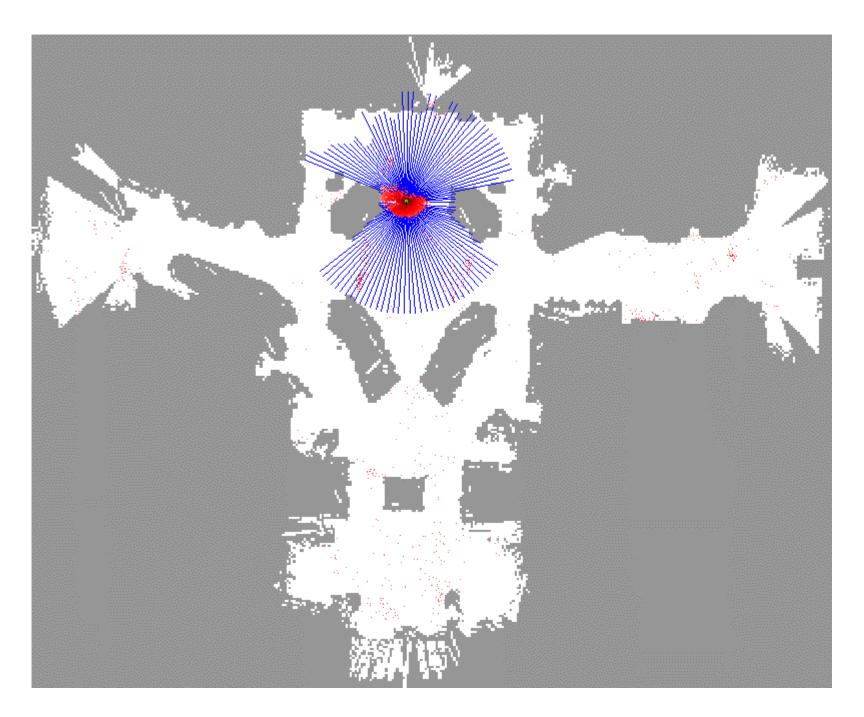


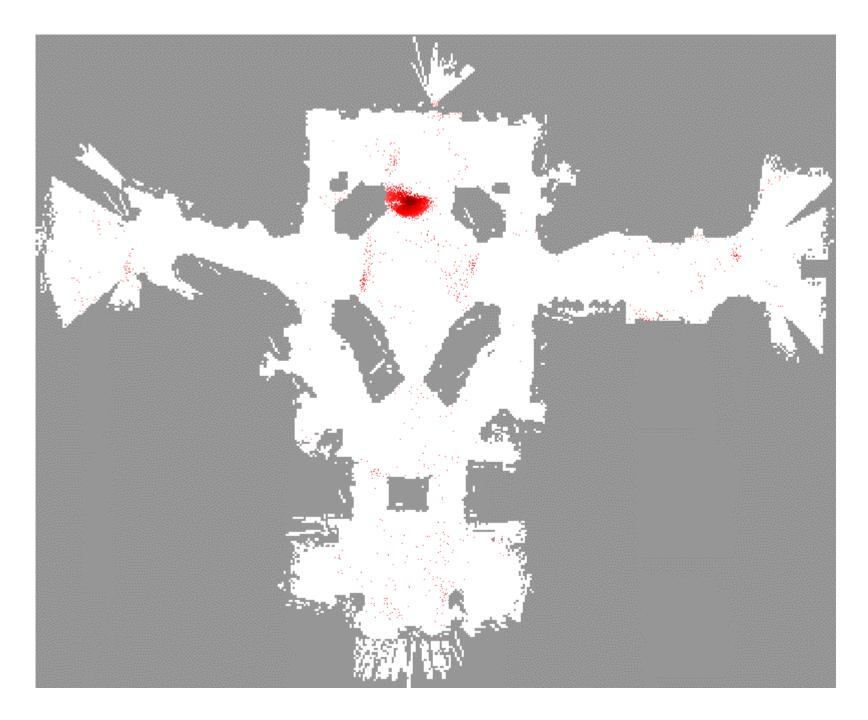


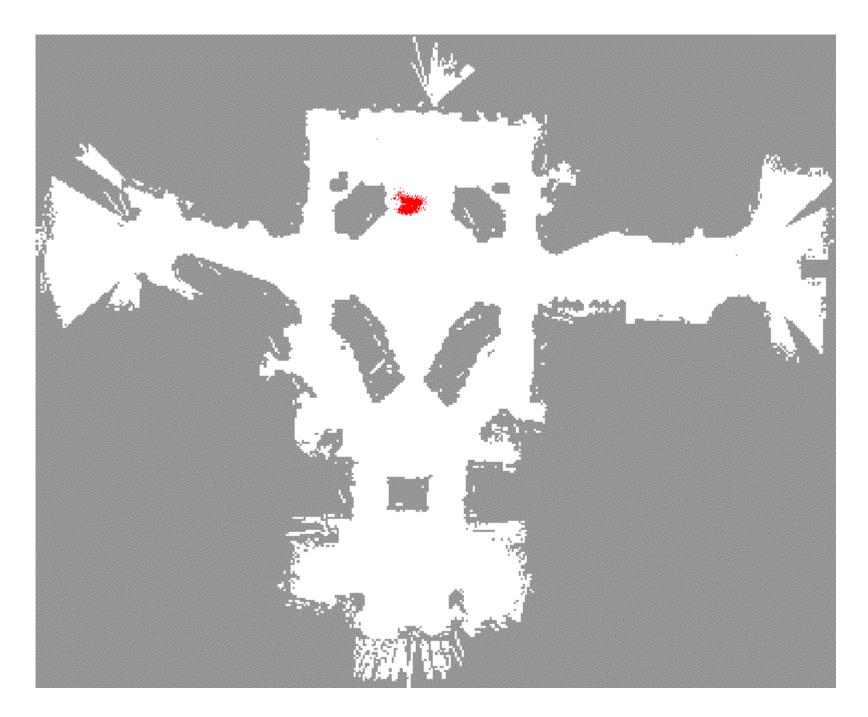


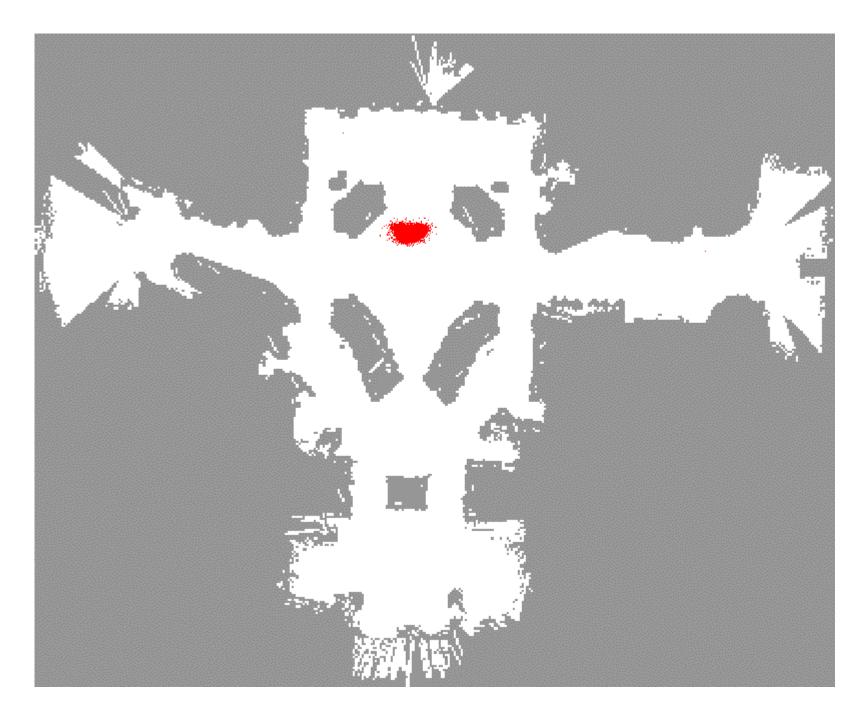


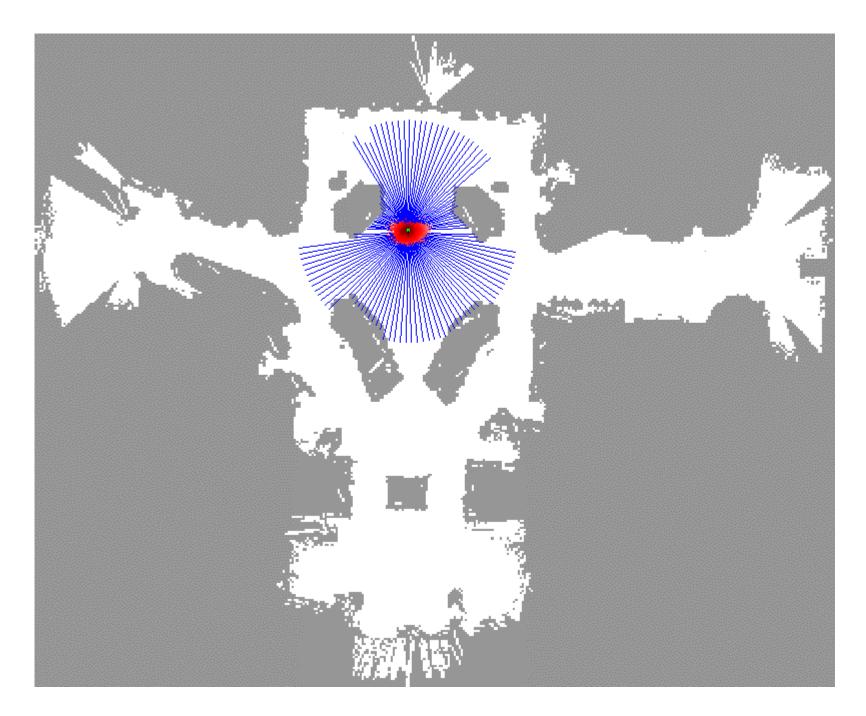


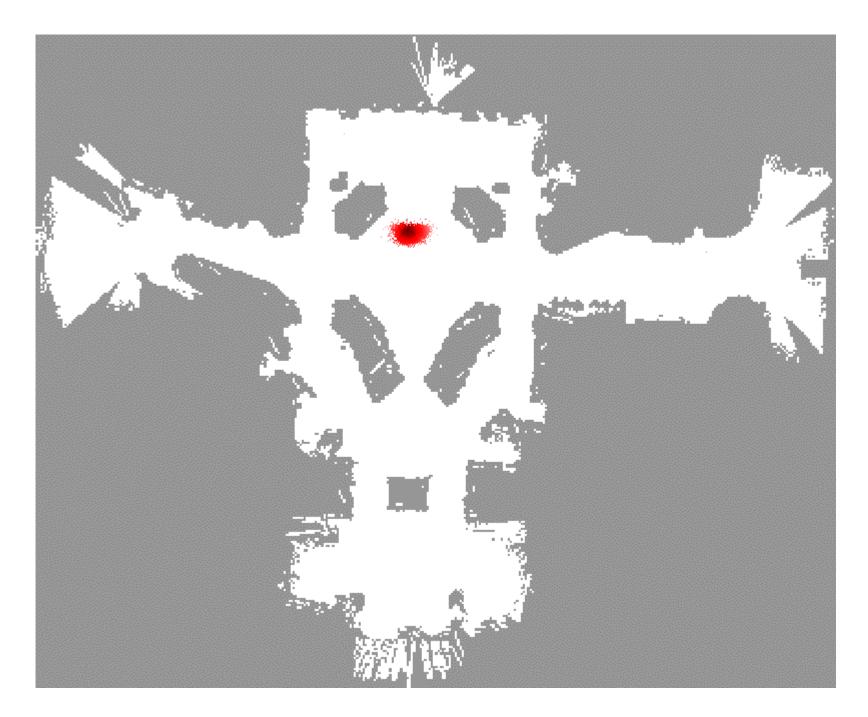


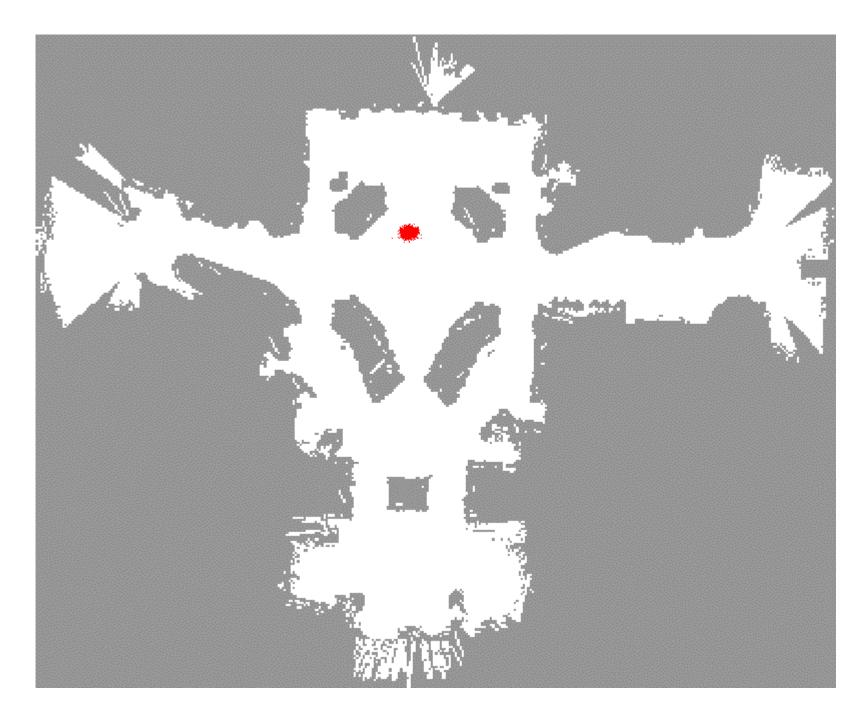


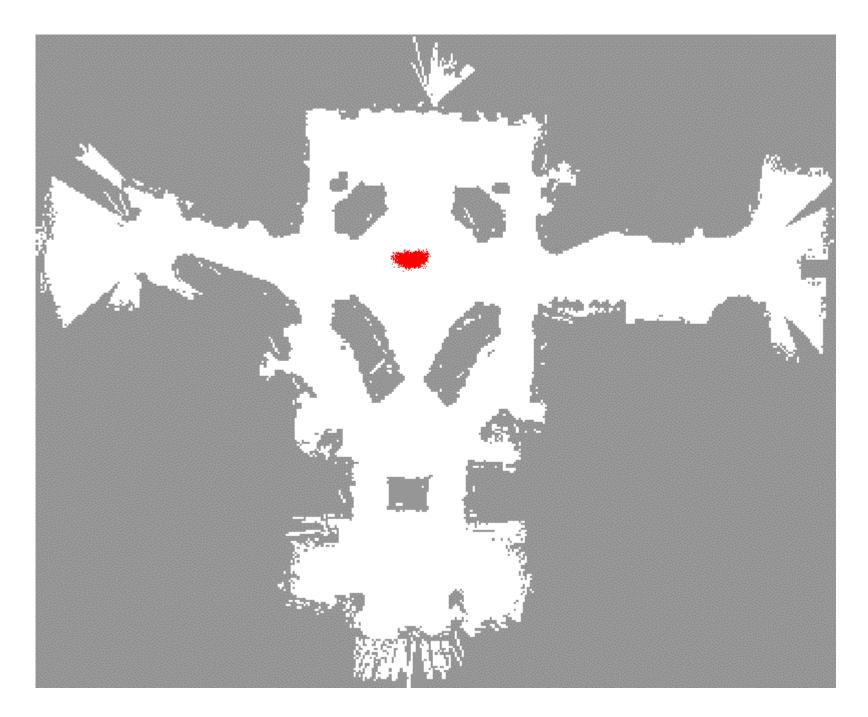


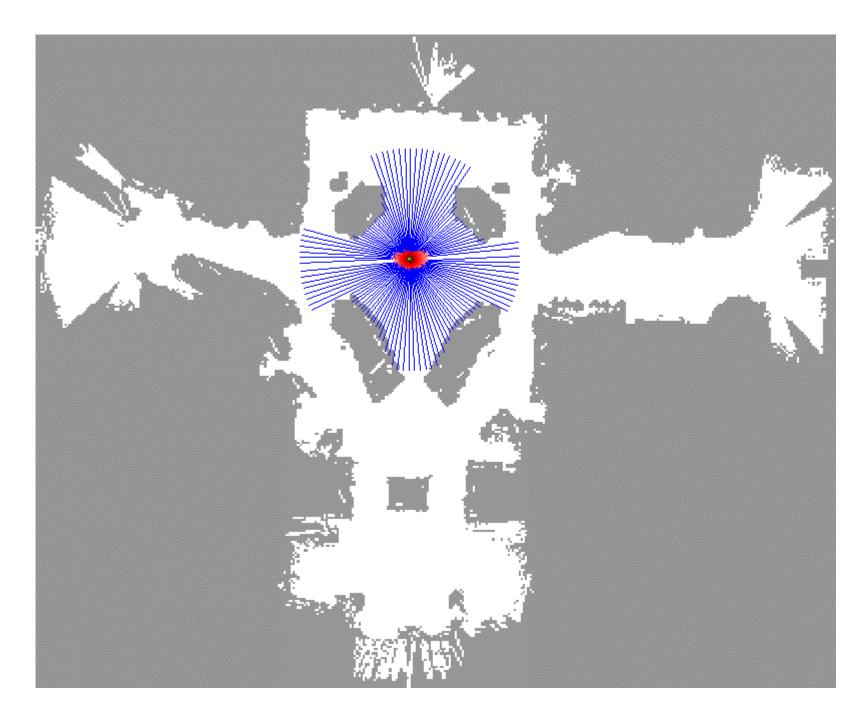


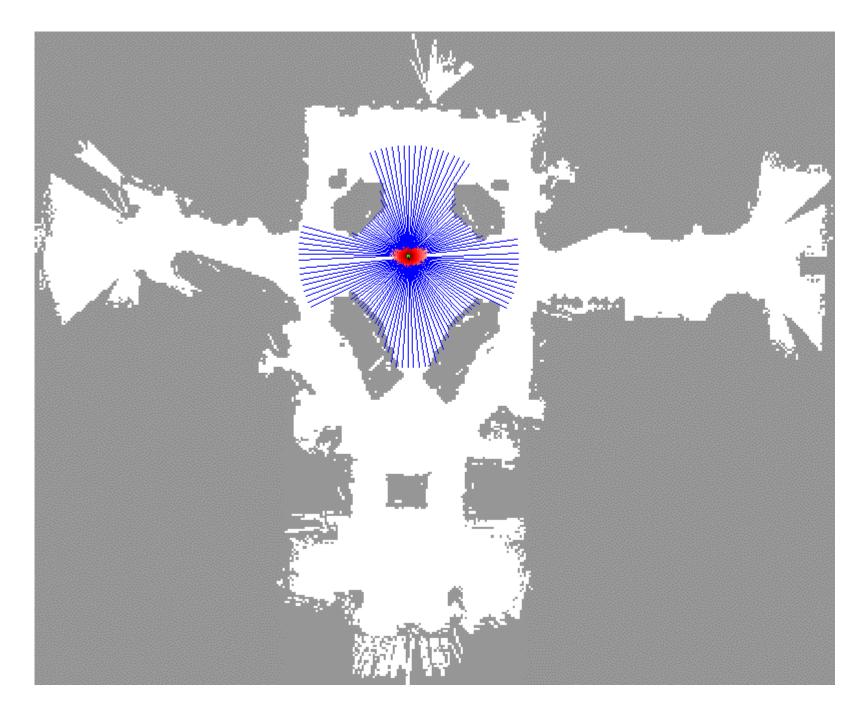




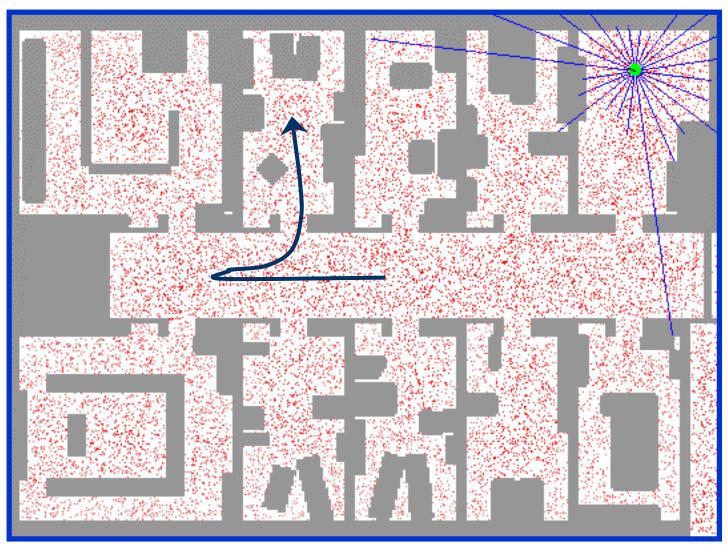






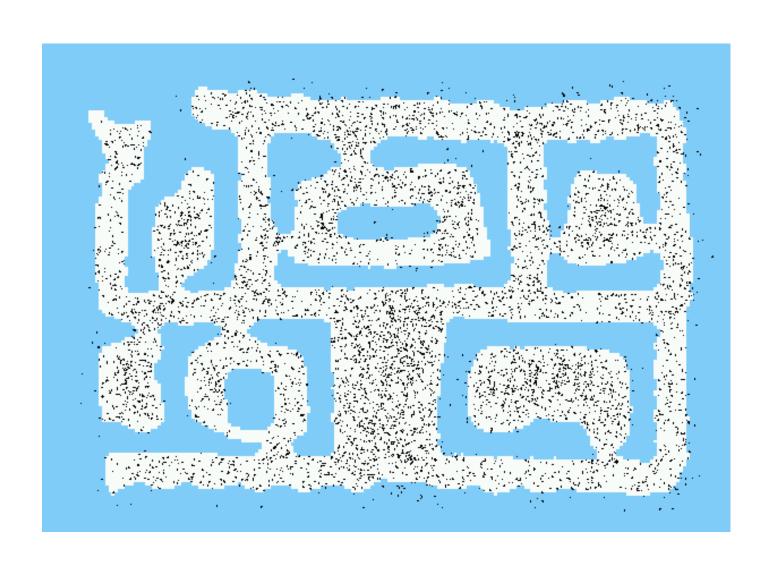


Sample-based Localization (Sonar)

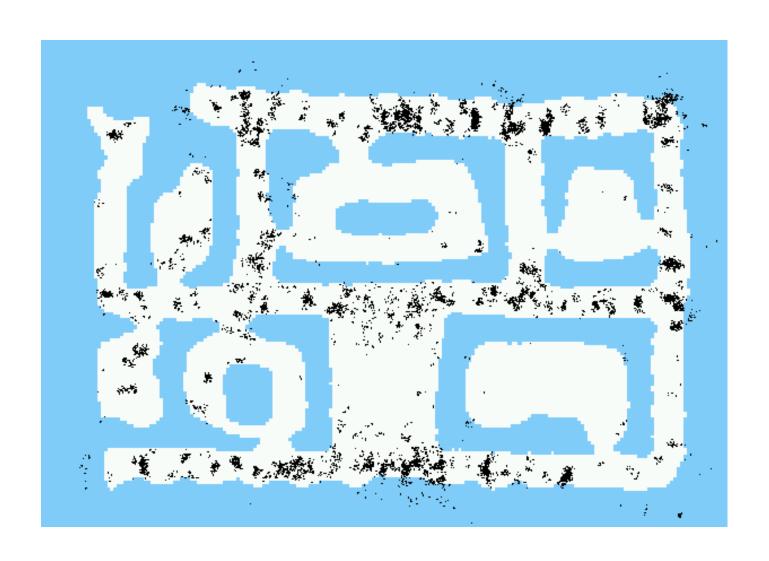


[VIDEO]

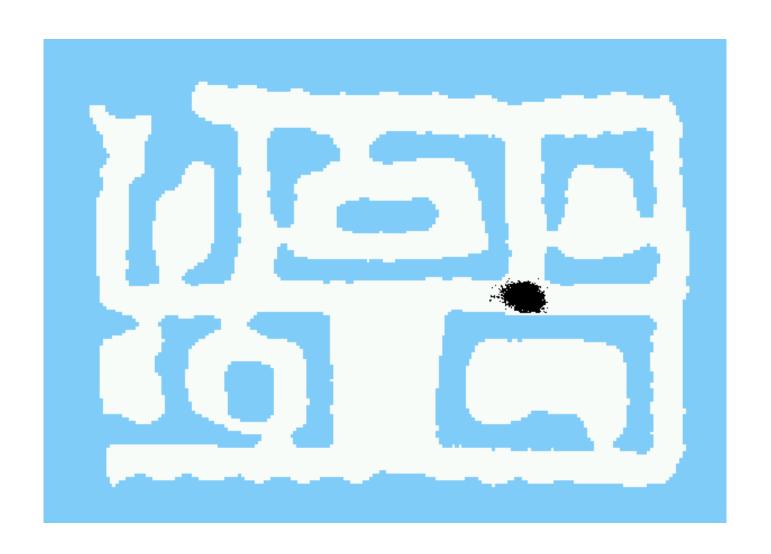
Initial Distribution



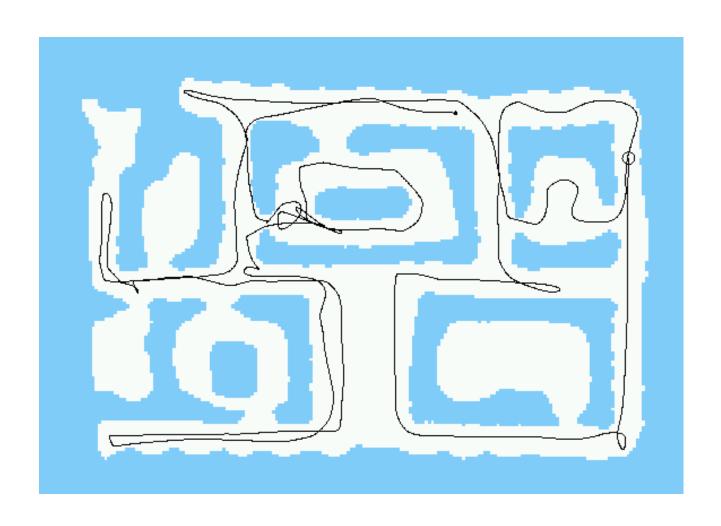
After Incorporating Ten Ultrasound Scans



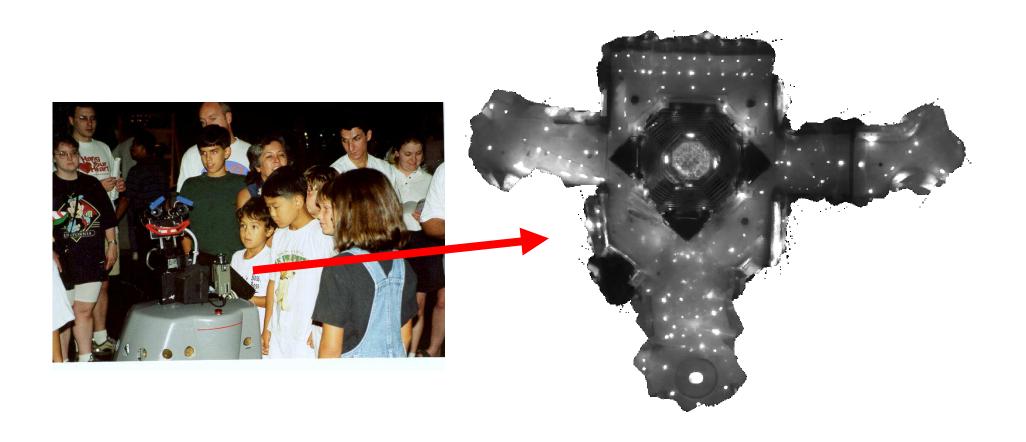
After Incorporating 65 Ultrasound Scans



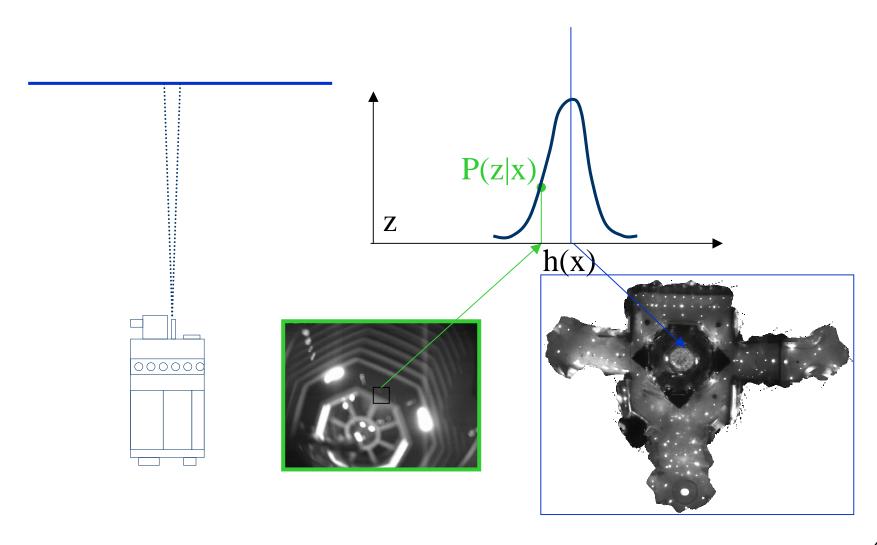
Estimated Path



Using Ceiling Maps for Localization

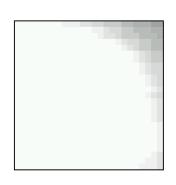


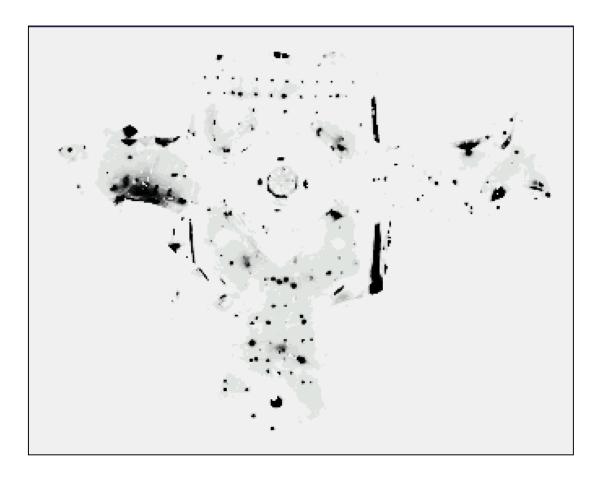
Vision-based Localization



Under a Light

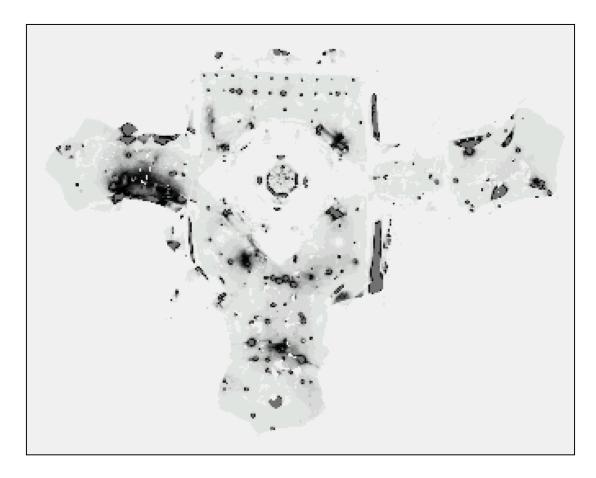
Measurement z:





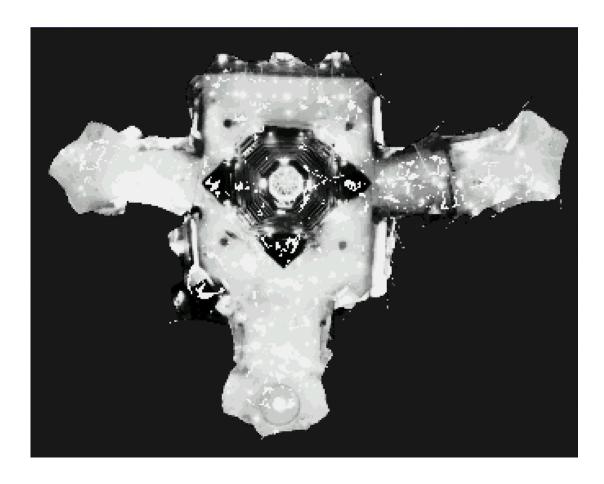
Next to a Light

Measurement z:

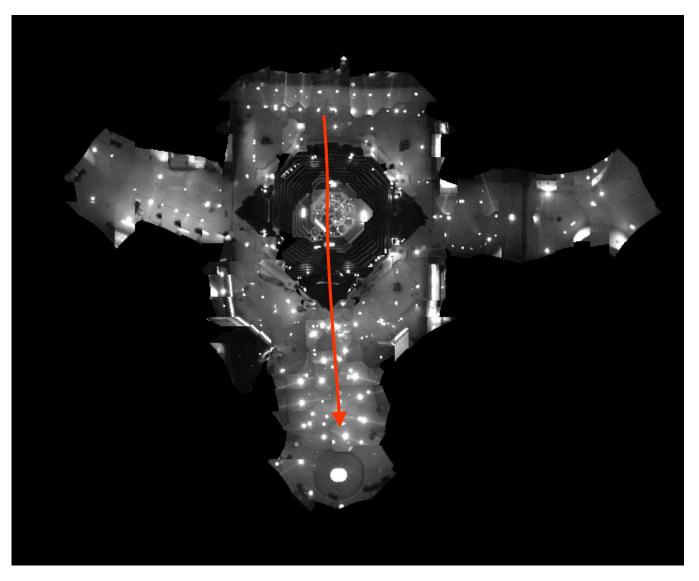


Elsewhere

Measurement z:



Global Localization Using Vision



[VIDEO]

Summary – Particle Filters

- Particle filters are an implementation of recursive Bayesian filtering
- They represent the posterior by a set of weighted samples
- They can model non-Gaussian distributions
- Proposal distribution to draw new samples
- Weight to account for the differences between the proposal and the target
- Monte Carlo filter, Survival of the fittest,
 Condensation, Bootstrap filter

Summary - PF Localization

- In the context of localization, the particles are propagated according to the motion model
- They are then weighted according to the likelihood of the observations
- In a re-sampling step, new particles are drawn with a probability proportional to the likelihood of the observation