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Probabilistic Robotics

Key idea: Explicit representation of 
uncertainty 

(using the calculus of probability theory)

• Perception  = state estimation

•Action = utility optimization
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Bayes Filters: Framework

• Given:

• Stream of observations z and action data u:

• Sensor model P(z|x).

• Action model P(x|u,x’).

• Prior probability of the system state P(x).

• Wanted: 

• Estimate of the state X of a dynamical system.

• The posterior of the state is also called Belief:
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Markov Assumption

Underlying Assumptions

• Static world

• Independent noise

• Perfect model, no approximation errors
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Bayes Filters

),,,|(),,,,|( 1111 ttttt uzuxPuzuxzP ��η=Bayes

z = observation
u = action
x = state
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Bayes Filter Algorithm 

1. Algorithm Bayes_filter( Bel(x),d ):

2. η=0

3. If d is a perceptual data item z then

4. For all x do

5.

6.

7. For all x do

8.

9. Else if d is an action data item u then

10. For all x do

11.

12. Return Bel’(x)

)()|()(' xBelxzPxBel =
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Bayes Filters are Frequently 
used Robotics

• Kalman filters

• Particle filters

• Hidden Markov models

• Dynamic Bayesian networks

• Partially Observable Markov Decision 
Processes (POMDPs)

111 )(),|()|()( −−−∫= tttttttt dxxBelxuxPxzPxBel η



8

� Action: motion information of the robot

� Perception: compare the robots sensor observations 

to the model of the world

� Particle filters are a way to efficiently represent 

non-Gaussian distribution

� Basic principle

� Set of state hypotheses (“particles”)

� Kind of “survival-of-the-fittest” 

Example: Robot Localization using 
a Bayes Filter
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� Set of weighted samples

Mathematical Description

� The samples represent the posterior

State hypothesis Importance weight
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Particle Filter Algorithm

� Action step: sample the next generation for 

particles using a probabilistic motion model 

(proposal distribution)

� Perception step: compute the importance weights 

to incorporate the observation:

� Resampling: Draw particle with a probability 

proportional to their importance weight

“Replace unlikely samples by more likely ones”
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Particle Filters
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Sensor Information: Importance Sampling
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Robot Motion
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Sensor Information: Importance Sampling
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Robot Motion
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draw xi
t−1 from Bel(xt−1)

draw xi
t from p(xt | xi

t−1,ut−1)

Importance factor for xi
t:
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Particle Filter Algorithm
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1. Algorithm particle_filter( St-1, ut-1 zt):

2.

3. For Generate new samples

4. Sample index j(i) from the discrete distribution given by wt-1

5. Sample     from                         using          and

6. Compute importance weight

7. Update normalization factor

8. Insert

9. For

10. Normalize weights

Particle Filter Algorithm
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Resampling

� Given: Set S of weighted samples.

� Wanted : Random sample, where the 
probability of drawing xi is given by wi.

� Typically done n times with replacement to 
generate new sample set S’.
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Resampling

w2

w3

w1wn

Wn-1

• Roulette wheel

• Binary search, n log n

• Stochastic universal sampling

• Systematic resampling

• Linear time complexity

• Easy to implement, low variance
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1. Algorithm systematic_resampling(S,n):

2.

3. For Generate cdf
4.
5. Initialize threshold

6. For Draw samples …
7. While (            ) Skip until next threshold reached
8.
9. Insert
10. Increment threshold

11.Return S’

Resampling Algorithm
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Also called stochastic universal sampling
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Start

Motion Model  Reminder
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Proximity Sensor Model Reminder

Laser sensor Sonar sensor
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Sample-based Localization (Sonar)

[VIDEO]
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Initial Distribution
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After Incorporating Ten 
Ultrasound Scans
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After Incorporating 65 
Ultrasound Scans
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Estimated Path
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Using Ceiling Maps for Localization

[Dellaert et al. 99]
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Vision-based Localization

P(z|x)

h(x)
z
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Under a Light

Measurement z: P(z|x):
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Next to a Light

Measurement z: P(z|x):
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Elsewhere

Measurement z: P(z|x):
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Global Localization Using Vision

[VIDEO]
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Summary – Particle Filters

� Particle filters are an implementation of 
recursive Bayesian filtering

� They represent the posterior by a set of 
weighted samples

� They can model non-Gaussian 
distributions

� Proposal distribution to draw new samples

� Weight to account for the differences 
between the proposal and the target

� Monte Carlo filter, Survival of the fittest, 
Condensation, Bootstrap filter
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Summary – PF Localization

� In the context of localization, the 
particles are propagated according 
to the motion model

� They are then weighted according to 
the likelihood of the observations

� In a re-sampling step, new particles 
are drawn with a probability 
proportional to the likelihood of the 
observation


