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Probabilistic Robotics

Key idea: Explicit representation of

uncertainty
(using the calculus of probability theory)

® Perception = state estimation
® Action = utility optimization



Bayes Filters: Framework

e Given:
e Stream of observations z and action data u:
d ={u,z©,u,z}
e Sensor model P(z|x).
e Action model P(x|u,x’).
e Prior probability of the system state P(x).
e Wanted:
e Estimate of the state X of a dynamical system.
e The posterior of the state is also called Belief:

Bel(x) = P(x |u,z©,u,,7)



Markov Assumption

P(Z [ %21, Uy) = P(Z %)
POX | Xy1s Zs U) = PO [ Xn W)

Underlying Assumptions

e Static world

® [ndependent noise

® Perfect model, no approximation errors



Bayes Filters
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Algorithm Bayes_ filter( Bel(x),d ):
n=0
If d is a perceptual data item z then
For all x do
Bel' (x) = P(z| x)Bel(x)
n =n+Bel(x)
For all x do
Bel'(x) =1 'Bel'(X)
Else if d is an action data item u then
For all x do
Bel'(X) = [ P(x|u,x) Bel(x') dx

Return Bel’(x)




Bayes Filters are Frequently
used Robotics

Bel(x) =77 P(z |%) [ P(x |u, %) Bel(x.) dx.,

e Kalman filters

® Particle filters

® Hidden Markov models

® Dynamic Bayesian networks

® Partially Observable Markov Decision
Processes (POMDPs)




Example: Robot Localization using
a Bayes Filter

Action: motion information of the robot

Perception: compare the robots sensor observations
to the model of the world

Particle filters are a way to efficiently represent
non-Gaussian distribution

Basic principle
" Set of state hypotheses (“particles”)
® Kind of “survival-of-the-fittest”



Mathematical Description

" Set of weighted samples
S = {<s[i],w[i]> |1 = 1,...,]\/’}

]

State hypothesis Importance weight

" The samples represent the posterior

N
p(x) > w8 (x)
i=1



Particle Filter Algorithm

" Action step: sample the next generation for
particles using a probabilistic motion model
(proposal distribution)

Bel (x) « j p(x|u, x') Bel(x') dx

" Perception step: compute the importance weights
to incorporate the observation:

Bel(x) ~ a p(z|x)Bel (x)=a p(z|x)Bel (x)

® Resampling: Draw particle with a probability
proportional to their importance weight

“Replace unlikely samples by more likely ones”
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Particle Filters
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Sensor Information: Importance Sampling
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Robot Motion
Bel (x) « jp(x|u,x‘) Bel(x') dx’




Sensor Information: Importance Sampling
Bel(x)

a p(z|x) Bel (x)
a p(z|x) Bel (x)
Bel (x)

—

W

a p(z|x)

—

s




Robot Motion

Bel (x) « jp(x|u,x‘) Bel(x') dx’




Particle Filter Algorithm
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Particle Filter Algorithm

1. Algorithm particle_filter( S, ;, u,; z,):
2. §=0, n=0

3. For i=1®n Generate new samples

4 Sample index(i) from the discrete distribution given by ,
5. Sample¢ fromp(x, |%_.u_)  using)) andu,,

6 W =p(z | x) Compute importance weight
7 n=n+w Update normalization factor
8 S =S 0{<x,w >} Insert

9. For i=1®n

10. W =w/g Normalize weights
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Resampling

= Given: Set S of weighted samples.

= Wanted : Random sample, where the
probability of drawing Xx; is given by w;.

= Typically done n times with replacement to
generate new sample set S”.
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Resampling

® Stochastic universal sampling
® Roulette wheel e Systematic resampling
® Binary search, n log n ® Linear time complexity
® Easy to implement, low variance
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Resampling Algorithm

1. Algorithm systematic_resampling(S,n):

2. S=0,¢c,=w

3. For i=2Gn Generate cdf

4. G =G +wW

5. u,~Ulon™],i=1 Initialize threshold

6. For j =1®n Draw samples ...

7. While(u, >¢ ) Skip until next threshold reached
8. i =i+1

9. S=SO{<x,n*> Insert

10. u,,=u +n™ Increment threshold

11.Return S’

Also called stochastic universal samplirfg



Motion Model Reminder

10 meters
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mple-based Localization (Sonar)
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Initial Distribution
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After Incorporating Ten
Ultrasound Scans
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After Incorporating 65
Ultrasound Scans
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Estimated Path




Using Ceiling Maps for Localization

[Dellaert et al4989]



Vision-based Localization
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Under a Light

M easur ement z;

P(z|x)
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Next to a Light

M easur ement z: P(z|x)
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Elsewhere

M easur ement z: P(z|x)
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Global Localization Using Vision

[VIDEO]
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Summary - Particle Filters

Particle filters are an implementation of
recursive Bayesian filtering

They represent the posterior by a set of
weighted samples

They can model non-Gaussian
distributions

Proposal distribution to draw new samples

Weight to account for the differences
between the proposal and the target

Monte Carlo filter, Survival of the fittest,
Condensation, Bootstrap filter
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Summary - PF Localization

= In the context of localization, the
particles are propagated according
to the motion model

= They are then weighted according to
the likelihood of the observations

= In a re-sampling step, new particles
are drawn with a probability
proportional to the likelihood of the
observation
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