
12/1

Foundations of AI

12. Planning

Solving Logically Specified Problems
Step by Step

Bernhard Nebel and Michael Brenner

Contents

• Planning vs. problem solving

• Planning in the situation calculus

• STRIPS formalism

• Non-linear planning

• The POP algorithm

• Graphplan

• Heuristic search planning

• Outlook: Extensions & non-classical planning

Planning

• Given an logical description of the initial
situation,

• a logical description of the goal conditions,
and

• a logical description of a set of possible
actions,

→ find a sequence of actions (a plan) that brings
us from the initial situation to a situation in
which the goal conditions hold.

Planning vs. Problem-Solving

Basic difference: Explicit, logic-based representation

• States/Situations: Through descriptions of the world by
logical formula vs. data structures
This way, the agent can explicitly think about and
communicate

• Goal conditions as logical formulae vs. goal test (black
box)
The agent can also reflect on its goals.

• Operators: Axioms or transformation on formulae vs.
modification of data structures by programs
The agent can gain information about the effects of
actions by inspecting the operators.

Planning vs. Automatic Programming

Difference between planning and automatic
programming (generating programs):

• In planning, one uses a logic-based
description of the environment.

• Plans are usually only linear programs (no
control structures).

Planning as Logical Inference (1)

Planning can be elegantly formalized with the help of
the situation calculus.

Initial state:

A t(H om e,s0) � ¬H ave(m ilk,s0) � ¬H ave(banana,s0) � ¬H ave(drill,s0)

Operators (successor-state axioms):

∀a,s H ave(m ilk, do(a,s)) ⇔
{a = buy(m ilk) � Poss(buy(m ilk), s) � H ave(m ilk,s) � a ≠ ¬drop(m ilk)}

Goal conditions (query):

∃s A t(hom e, s) � H ave(m ilk, s) � H ave(banana,s) � H ave(drill,s)

When the initial state, all prerequisites and all
successor-state axioms are given, the constructive
proof of the existential query delivers a plan that does
what is desired.

Planning as Logical Inference (2)

The variable bindings for s could be as follows:

do(go(hom e), do(buy(drill), do(go(hardw are_store), do(buy(banana), do(buy(m ilk),

do(go(superm arket), s0))))))

I.e. the plan (term) would be

〈go(super_m arket), buy(m ilk), … 〉

However, the following plan is also correct:

〈go(super_m arket), buy(m ilk), drop(m ilk), buy(m ilk), … 〉

In general, planning by theorem proving is very inefficient

Specialized inference system for limited representation.

→ Planning algorithm

The STRIPS Formalism

STRIPS: STanford Research Institute Problem Solver
(early 70s)

The system is obsolete, but the formalism is still used.
Usually simplified version is used:

World state (including initial state): Set of ground
atoms (called fluents), no function symbols except for
constants, interpreted under closed world assumption
(CWA). Sometimes also standard interpretation, i.e.
negative facts must be explicitly given

Goal conditions: Set of ground atoms

Note: No explicit state variables as in sitation calculus.
Only the current world state is accessible.

STRIPS Operators

Operators are triples, consisting of

Action Description: Function name with parameters (as
in situation calculus)

Preconditions: Conjunction of positive literals; must be
true before the operator can be applied (after variables are
instantiated)

Effects: Conjunction of positive and negative literals;
positive literals are added (ADD list), negative literals
deleted (DEL list) (no frame problem!).

O p(Action: G o(here,there),

Precond: A t(here) , Path(here, there),

Effect: A t(there) , ¬A t(here))

Actions and Executions

• An action is an operator, where all variables
have been instantiated:

• O p(Action: G o(),

Precond: A t(H om e) , P ath(H om e, SuperM arket),

Effect: A t(Superm arket) , ¬A t(H om e))

• An action can be executed in a state, if its
precondition is satisfied. It will then bring
about its effects.

Linear Plans

• A sequence of actions is a plan

• For a given initial state I and goal conditions
G, such a plan P can be successfully
executed in I iff there exists a sequence of
states s0, s1, …, sn such that
– the ith action in P can be executed in si-1 and results

in si
– s0 = I and sn satisfies G

• P is called a solution to the planning
problem specified by the operators, I and G

Searching in the State Space

We can now search
through the state
space (the set of
all states formed
by truth
assignments to
fluents) – and in
this way reduce
planning to
searching.

We can search
forwards
(progression
planning):

Or alternatively, we can start at the goal and work backwards
(regression planning).

Possible since the operators provide enough information

Searching in the Plan Space

Instead of searching in the state space, we can search in the
space of all plans.

The initial state is a partial plan containing only start and goal
states:

The goal state is a complete plan that solves the given problem:

Operators in the plan space:

Refinement operators make the plan more complete (more
steps etc.)

Modification operators modify the plan (in the following, we use
only refinement operators)

Plan = Sequence of Actions?

Often, however, it is neither meaningful nor possible to commit to a
specific order early-on (put on socks and shoes).

� Non-linear or partially-ordered plans (least-commitment
planning)

Representation of Non-linear Plans

A plan step = STRIPS operator (or action in the final
plan)

A plan consists of

• A set of plan steps with partial ordering (<),
where Si < Sj implies Si must be executed before
Sj.

• A set of variable assignments x = t, where x is a
variable and t is a constant or a variable.

• A set of causal relationships Si → Sj means “Si

produces the precondition c for Sj” (implies Si <
Sj).

Solutions to planning problems must be complete
and consistent.

Completeness and Consistency

Complete Plan:

Every precondition of a step is fulfilled:

∀S j ∀c ∈ Precond(S j) :

∃S i w ith S i < S j and c ∈ E ffects(S i) and
for every linearization of the plan:

∀S k w ith S i < S k < S j, ¬c ∉ E ffect(S k).

Consistent Plan:

if S i < S j, then S j � S i and
if x = A, then x ≠ B for distinct A and B for a variable x. (unique
name assumption = UNA)

A complete, consistent plan is called a solution to a
planning problem (all linearizations are executable linear
plans)

Example

Actions:

Op(Action: Go(here, there),
Precond: At(here) � Path(here, there),
Effect: At(there) � ¬At(here))

Op(Action: Buy(store, x),
Precond: At(store) � Sells(store, x),
Effect: Have(x))

Note: there, here, x, store are variables.

Note: In figures, we may just write Buy(Banana) instead of Buy(SM, Banana)

Plan Refinement (1)

Regression Planning:
Fulfils the Have
predicates:

… after instantiation of
the variables:

Thin arrow = <, thick arrow = causal relationship + <

Plan Refinement (2)

Shop at the right store…

Plan Refinement (3)

First, you have to go there…

Note: So far no searching, only simple backward
chaining.

Now: Conflict! If we have done go(HWS), we are no
longer At(home). Likewise for go(SM).

Protection of Causal Links

(a) Conflict: S3 threatens the causal relationship between
S1 and S2.

Conflict solutions:

(b) Demotion: Place the threatening step before the
causal relationship.

(c) Promotion: Place the threatening step after the
causal relationship.

A Different Plan Refinement…

• We cannot resolve the conflict by “protection”.

→ It was a mistake to choose to refine the plan.

• Alternative: When instantiating A t(x) in go(SM), choose x = HWS (with

causal relationship)

• Note: This threatens the purchase of the drill � promotion of go(SM).

The Complete Solution

The POP Algorithm

Properties of the POP Algorithm

Correctness: Every result of the POP algorithm is a
complete, correct plan.

Completeness: If breadth-first-search is used, the
algorithm finds a solution, given one exists.

Systematicity: Two distinct partial plans do not have
the same total ordered plans as a refinement
provided the partial plans are not refinements of
one another (and totally ordered plans contain
causal relationships).

Problems: Informed choices are difficult to make & data
structure is expensive

� Instantiation of variables is not addressed.

New Approaches

• Since 1995, a number of new algorithmic approaches
have been developed, which are much faster than the
POP algorithm:

– Planning based on planning graphs

– Satisfiability based planning

– BDD-based approaches (good for multi-state
problems)

– Heuristic-search based planning

• Note: all approaches work on propositional
representations, i.e., all operators are already
instantiated!

Planning Graphs

• Parallel execution of actions possible

• Assumption: Only positive preconditions

• Describe possible developments in a layered graph (fact
level/action level)
– links from (positive) facts to preconditions

– positive effects generate (positive) facts

– negative effects are used to mark conflicts

• Extract plan by choosing only non-conflicting parts of
graph

Generating a Planning Graph

• Start with initial fact level 0.

• Add all applicable actions

• In order to propagate
unchanged property p, use
special action noopp

• Generate all positive effects
on next fact level

• Mark conflicts (between
actions that cannot be
executed in parallel)

• Expand planning graph as
long as not all atoms in fact
level

Extract a Plan

• Start at last fact level
with goal facts

• Select minimal set of
non-conflicting actions
generating the goals

• Use preconditions of
these actions as goals on
next lower level

• Backtrack if no non-
conflicting choice is
possible

Conflict Information

• Two actions interfere (cannot be executed in
parallel):
– one action deletes or asserts the precondition of the

other action

– they have opposite effects on one atomic fact

• They are marked as conflicting
– and this information is propagated to prune the

search early on

Mutex Pairs: Mutually exclusive
action or fact pairs

• No pair of facts is mutex at fact level 0

• A pair of facts is mutex at fact level i > 0 if all ways of
making them true involve actions that are mutex at the
action level i-1

• A pair of actions is mutex at action level i if
– they interfere or

– one precondition of one action is mutex to a precondition
of the other action at fact level i-1

� Mutex pairs cannot be true/executed at the same time

� Note that we do not find all pairs that cannot be
true/executed at the same time, but only the easy to
spot pairs with the procedure sketched above

Planning Graphs: General Method

• Expand planning graph until all goal atoms are in fact
level and they are not mutex

• If not possible, terminate with failure

• Iterate:
– Try to extract plan and terminate with plan if successful

– Expand by another action and fact level

• Termination for unsolvable planning problems can be
guaranteed – but is complex

Properties of the Planning Graph
Approach

• Finds an optimal solution (for parallel plans)

• Terminates on unsolvable planning instances

• Is much faster than POP planning

• Has problems with symmetries:

– Example: Transport n objects from room A to room B
using one gripper

– If shortest plan has k steps, it proves that there is no
k-1 step plans (iterating over all permutations of k-1
objects!)

Planning as Satisfiability

• Based on planning graphs of depth k, one can
generate a set of propositional CNF formulae

– such that each model of these formulae correspond
to a k-step plan

– very similar to modeling a non-det. TM using CNFs in
the proof of NP-hardness of propositional
satisfiability!

– basically, one performs a different kind of search in
the planning graph (middle out instead of regression
search)

– can be considerable faster, sometimes …

Heuristic Search Planning

• Forward state-space search is often considered as too
inefficient because of the high branching factor

• Why not use a heuristic estimator to guide the search?

• Could that be automatically derived from the
representation of the planning instance?

� Yes, since the actions are not “black boxes” as in
search!

Ignoring Negative Effects

• Ignore all negative effects (assuming again we have
only positive preconditions)
– monotone planning

• Example for the buyer’s domain:
– Only Go and Drop have negative effects (perhaps also
Buy)

– Minimal length plan: <Go(HWS), Buy(Drill), Go(SM),
Buy(Bananas), Buy(Milk), Go(Home)>

– Ignoring negative effects: <Go(HWS), Buy(Drill), Go(SM),
Buy(Bananas), Buy(Milk) >

• Usually plans with simplified ops. are shorter

Monotone Planning

• Monotone planning is easy, i.e., can be solved
in polynomial time:

– While we have not made all goal atoms
true:
• Pick any action that

– is applicable and

– has not been applied yet

• and apply it

• If there is no such action, return failure

• otherwise continue

• Planning time and plan length bounded by
number of actions times number of facts

Monotone Optimal Planning

• Finding the shortest plan is what we need to
get an admissible heuristic, though!

• This is NP-hard, even if there are no
preconditions!

� Reason: Minimum Set Cover, which is NP-
complete, can be reduced to this problem

Minimum Set Cover

• Given: A set S, a collection of subsets C =
{C1, . . . , Cn}, Ci ⊆ S, and a natural number
k.

• Question: Does there exist a subset of C of
size k covering S?

� Problem is NP-complete

� and obviously a special case of the monotone
planning optimization problem

Simplifying it Further …

• Since the monotone planning heuristic is
computationally too expensive, simplify it
further:

– compute heuristic distance for each atom
(recursively) by assuming independence of sub-goals

– solve the problem with any planner (i.e. the planning
graph approach) and use this as an approximative
solution

� both approaches may over-estimate, i.e., it is not an
admissible heuristic any longer

The Fast-Forward (FF) System

• Heuristic: Solve the monotone planning
problem resulting from the relaxation using a
planning graph approach

• Search: Hill-climbing extended by breadth-first
search on plateaus

• Pruning: Only those successors are considered
that are part of a relaxed solution

• Fall-back strategy: complete best-first search

Relative Performance of FF

• FF performs very well on the planning
benchmarks that are used for planning
competitions (IPC = International Planning
Competition)

• Examples:
– Blocks world

– Logistics

– Freecell

• Meanwhile refined and also new planners such
as FDD

Example: Freecell

Freecell: Performance

0.01

0.1

1

10

100

1000

10000

2 3 4 5 6 7 8 9 10 11 12 13

se
c.

problem size

FF
HSP2
Mips

STAN

0

50

100

150

200

250

2 3 4 5 6 7 8 9 10 11 12 13

st
ep

s

problem size

FF
HSP2
Mips

STAN

CPU time Solution size

One Possible Explanation …

• Search space topology

• Look for search space properties such as
– local minima
– size of plateaus
– dead ends (detected & undetected)

• Estimate by
– exploring small instances
– sampling large instance

• Try to prove conjectures found this way

� Goes some way in understanding problem
structure

Outlook

• More expressive action languages

• More expressive domains: numerical values /
time

• Non-classical planning: Dropping the single-
state assumption

• Multi-agent planning

Extensions: More Powerful Action
Language

• Conditional actions

– Often the effects are dependent on the context the
action is executed in

– Example: press accelerator pedal

• If in “forward gear”: car goes forward

• If in “neutral gear”: car does nothing

• If in “reverse gear”: car goes backward

• More powerful conditions:

– General propositional connectors

– First-order formulas (over finite domains)

Extensions: Domain Modelling

• Considered so far: fluents that can be true or
false

• Often needed: numerical values

– Resource consumption

– Profit

– Cost-optimal planning

� Leads easily to undecidability

• Special case of resource: time

– Parallel execution of actions with duration

– Needs refined semantics (when do effects occur etc.)

Non-classical Planning

• Classical planning assumes:

– Complete knowledge about the initial state

– Deterministic effects

– No exogenous actions

� Single state after each action execution

• Non-classical planning:

– Drop single-state assumption

– Sensing actions

� Conditional planning

– Perhaps limited observability (none, partial, full)

– No observability: Conformant planning (as in the
vacuum cleaner example)

� Computational complexity of non-classical planning
is much higher (because it is a multi-state problem)

Planning and Execution

• Realistic environments (aka "the real world")
– dynamically changing due to other agents
– only partially observable
� many possible world states

• Conditional planning:
– Very costly
– Plan for every possible world state in advance
– Most of the conditional plan becomes obsolete as

soon as a perception is made
– Often no (good) model of contingencies

• Alternative:
– Planning, execution, monitoring, replanning, ...

Monitoring and Replanning

• Things that may happen during execution
– Everything works like a charm!
– Failures
– Unexpected observations
– Unexpected events (other agents or nature)

• Monitoring
– Action monitoring: check if

• preconditions are satisfied
• intended effects occured

– Plan monitoring: check if
• whole plan is still executable in current state and
• will reach goal state

– Serendipity

• Replanning: several variants
– Start planning again from scratch � find optimal plan (again)
– Determine where plan will fail and replan only from there �

maxime plan stability
– Plan repair by local search � maximize some other similarity

metric

Continual Planning

• Continual Planning:

– Suspend planning

• for partial plan execution

• for sensing � for resolving contingencies

– Then plan again in light of new knowledge.

• How do agents decide when to switch
between planning and execution?

– Model sensing actions

– Reason about how they can reduce
uncertainty

� Active knowledge gathering

Multi-Agent Planning

• Planning for multiple agents
– Concurrent execution

– Execution synchronisation

• Planning by multiple agents
– Distributed planning

• Various degrees of cooperativity � game
theory

• Distributed Continual Planning
– Agents continually interleave planning, acting,

sensing and interacting

– Agents negotiate common goals and plans over time

Summary

• Planning differs from problem-solving in that the
representation is more flexible.

• We can search in the plan space instead of the state
space

• The POP algorithm realizes non-linear planning and is
complete and correct, but it is difficult to design good
heuristics

• Recent approaches to planning have boosted the
efficiency of planning methods significantly

• Heuristic search planning appears to be one of the
fastest (non-optimal) methods

• Non-classical planning makes more realistic
assumptions, but the planning problem becomes much
more complex

• Continual planning can be used to address the
expressivity/efficiency tradeoff

• Multi-agent planning is important if groups of
cooperating or competing agents strive to achieve goals

