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Motivation

Usually:
Given: A logical theory (set of propositions)

Question: Does a proposition logically follow from 
this theory?

Reduction to unsatisfiability, which is coNP-complete
(complementary to NP problems)

Sometimes:
Given: A logical theory

Wanted: Model of the theory.

Example: Configurations that fulfill the constraints 
given in the theory.

Can be “easier” because it is enough to find one 
model
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The Davis-Putnam Procedure

DP Function

Given a set of clauses ∆ defined over a set of variables ∑, return 
“satisfiable” if ∆ is satisfiable. Otherwise return “unsatisfiable”.

1. If return “satisfiable”

2. If return “unsatisfiable”

3. Unit-propagation Rule: If ∆ contains a unit-clause C, assign 
a truth-value to the variable in C that satisfies C, simplify ∆
to ∆’ and return DP(∆’).

4. Splitting Rule: Select from ∑ a variable v which has not 
been assigned a truth-value. Assign one truth value t to it, 
simplify ∆ to ∆’ and call DP(∆’)

a. If the call returns “satisfiable”, then return “satisfiable”

b. Otherwise assign the other truth-value to v in ∆, 
simplify to ∆’’ and return DP(∆’’).
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Example (1)
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Example (2)
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Properties of DP

DP is complete, correct, and guaranteed to 
terminate.
DP constructs a model, if one exists.
In general, DP requires exponential time
(splitting rule!)
DP is polynomial on horn clauses, i.e., clauses 
with at most one positive literal.

→ Heuristics are needed to determine which 
variable should be instantiated next and which 
value should be used 

→ In all SAT competitions so far, DP-based 
procedures have shown the best performance.
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DP on Horn Clauses (1)

Note:
1. The simplifications in DP on Horn clauses 

always generate Horn clauses.
2. A set of Horn clauses without unit clauses

is satisfiable
– All clauses have at least one negative literal
– Assign false to all variables

3. If the first sequence of applications of the 
unit propagation rule in DP does not lead 
to the empty clause, a set of Horn clauses 
without unit clauses is generated (which is 
satisfiable according to (2))
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DP on Horn Clauses (2)

4. Although a set of Horn clauses without a 
unit clause is satisfiable, DP may not 
immediately recognize it.
a. If DP assigns false to a variable, this cannot 

lead to an unsatisfiable set and after a sequence 
of unit propagations we are in the same 
situation as in 4.

b. If DP assigns true, then we may get an empty 
clause - perhaps after unit propagation (and 
have to backtrack) - or the set is still satisfiable 
and we are in the same situation as in 4.
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DP on Horn Clauses (3)

In summary:
1. DP executes a sequence of unit propagation

steps resulting in
an empty clause or 
a set of Horn clauses without a unit clause, which 
is satisfiable

2. In the latter case, DP proceeds by choosing for 
one variable:

false, which does not change the satisfiability
true, which either
– leads to an immediate contradiction (after unit 

propagation) and backtracking or
– does not change satisfiabilty

Run time is polynomial in the number of 
variables
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How Good is DP in the Average Case?

We know that SAT is NP-complete, i.e., in the 
worst case, it takes exponential time.
This is clearly also true for the DP-procedure.

→ Couldn’t we do better in the average case?
For CNF-formulae in which the probability for 
a positive appearance, negative appearance 
and non-appearance in a clause is 1/3, DP 
needs on average quadratic time (Goldberg 
79)!

→ The probability that these formulae are 
satisfiable is, however, very high.

08/12

Phase Transitions …

Conversely, we can, of course, try to identify 
hard to solve problem instances.

Cheeseman et al. (IJCAI-91) came up with 
the following plausible conjecture:

All NP-complete problems have at least one order
parameter and the hard to solve problems are 
around a critical value of this order parameter. This 
critical value (a phase transition) separates one 
region from another, such as over-constrained and 
under-constrained regions of the problem space.

Confirmation for graph coloring and Hamilton 
path … later also for other NP-complete 
problems.
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Phase Transitions with 3-SAT

Constant clause length model (Mitchell et al., AAAI-92): 
Clause length k is given. Choose variables for every clause k
and use the complement with probability 0.5 for each 
variable.

Phase transition for 3-SAT with a clause/variable ratio of 
approx. 4.3:
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Empirical Difficulty
The Davis-Putnam (DP) Procedure shows extreme 
runtime peaks at the phase transition:

Note: Hard instances can exist even in the regions of 
the more easily satisfiable/unsatisfiable instances!
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Notes on the Phase Transition

When the probability of a solution is close to 1 
(under-constrained), there are many solutions, 
and the first search path of a backtracking search 
is usually successful.
If the probability of a solution is close to 0 (over-
constrained), this fact can usually be determined 
early in the search.
In the phase transition stage, there are many near 
successes (“close, but no cigar”).

→ (limited) possibility of predicting the difficulty of 
finding a solution based on the parameters.

→ (search intensive) benchmark problems are 
located in the phase region (but they have a 
special structure)

08/16

Local Search Methods for Solving 
Logical Problems

In many cases, we are interested in finding a 
satisfying assignment of variables (example 
CSP), and we can sacrifice completeness if we 
can “solve” much large instances this way.

Standard process for optimization problems: 
Local Search

Based on a (random) configuration

Through local modifications, we hope to 
produce better configurations

→ Main problem: local maxima
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Dealing with Local Maxima

As a measure of the value of a configuration in a 
logical problem, we could use the number of 
satisfied constraints/clauses.

But local search seems inappropriate, considering 
we want to find a global maximum (all 
constraints/clauses satisfied).

By restarting and/or injecting noise, we can often 
escape local maxima.

Actually: Local search performs very well for 
finding satisfying assignments of CNF formulae 
(even without injecting noise).
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GSAT

Procedure GSAT

INPUT: a set of clauses α, MAX-FLIPS, and MAX-TRIES

OUTPUT: a satisfying truth assignment of α, if found

begin
for i:=1 to MAX-TRIES

T := a randomly-generated truth assignment
for j:=1 to MAX-FLIPS

if T satisfies α then return T
v := a propositional variable such that a change in its truth 

assignment gives the largest increase in the number of clauses 
of α that are satisfied by T.

T:=T with the truth assignment of v reversed
end for

end for
return “no satisfying assignment found”

end
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The Search Behavior of GSAT

In contrast to normal local search methods, 
we must also allow sideways movements!
Most time is spent searching on plateaus.
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State of the Art

SAT competitions since beginning of the 
´90
Current SAT competitions 
(http://www.satlive.org/):
In 2003: 

Largest solved instances: 
100,000 variables / 1,000,000 clauses
Smallest unsolved instances:
200 variables/ 1,000 clauses

Complete solvers are as good as 
randomized ones!
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Concluding Remarks

DP-based SAT solver prevail:
Very efficient implementation techniques
Good branching heuristics
Clause learning

Incomplete randomized SAT-solvers
are good (in particular on random 
instances)
but there is no dramatic increase in size of 
what they can solve
parameters are difficult to adjust


