Foundations of Al
4. Informed Search Methods

Heuristics, Local Search Methods,

Genetic Algorithms
Wolfram Burgard and Bernhard Nebel

Contents

Best-First Search

A* and IDA*

Local Search Methods

Genetic Algorithms

04/2
Best-First Search Genera Algorithm
Search procedures differ in the way they determine the
next node to expand.
) L . function BEST-FIRST-SEARCH(problem, EVAL-FN) returns a solution sequence
Uninformed Search: Rigid procedure with no inputs: problem, a problem
knowledge of the cost of a given node to the goal. Eval-Fn, an evaluation function
Queueing-Fn + a function that orders nodes by EvAL-FN

Informed Search: Knowledge of the cost of a given return GENFRAL-SEARCH(problem, Queueing-Fn)
node to the goal is in the form of an evaluation function
for h, which assigns a real number to each node. When h is always correct, we do not need to search!
Best-First Search: Search procedure that expands the
node with the “best” f- or h-value.

04/3 04/4

Greedy Search

A possible way to judge the “worth” of a node is to
estimate its distance to the goal.

h(n) = estimated distance from n to the goal

The only real condition is that h(n) = 0 if nis a
goal.

A best-first search with this function is called a
greedy search.

Route-finding problem: h = straight-line distance
between two locations.

04/5

Greedy Search Example

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Arad [] Eforie
Fagaras
Giurgiu
Hirsova
Tasi
Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
36 Sibiu
Timisoara
Dobreta [] Urziceni
Eforie Vaslui

[] Giurgiu Zerind

Straight-line distance

366
0
160
242
161
178
77
151
226
244
241
234
380
98
193
253
329
80
199
374

04/6

Greedy Search from Arad to Bucharest

Arad @
h=366

Arad
smmA&. Zerind

h=253 h=329 h=374
Arad

Zerind
h=374

Timisoara
h=329

Arad

Arad
h=366 h=178 h=380 h=193

Zerind
h=374

Timisoara
h=329

Arad
h=366

h=253 h=0

04/7

Heuristics
The evaluation function h in greedy searches is also
called a heuristic function or simply a heuristic.

e The word heuristic is derived from the Greek word
eupiokelv (note also: evpnkal)

e The mathematician Polya introduced the word in the
context of problem solving techniques.

e In Al it has two meanings:

- Heuristics are fast but in certain situations
incomplete methods for problem-solving [Newell,
Shaw, Simon 1963] (The greedy search is
actually generally incomplete).

- Heuristics are methods that improve the search
in the average-case.

- In all cases, the heuristic is problem-specific and
focuses the search!

04/8

A*: Minimization of the estimated path
costs

A* combines the greedy search with the uniform-search
strategy.

A* Search Example

to Bucharest

Straight-line distance

Arad 366
e s Buchares
g(n) = actual cost from the initial state to n. Craova 160
Dobreta 242
h(n) = estimated cost from n to the next goal. pred b Faomas o
. Sibiu 99 Fagaras Giurgiu 77
f(n) = g(n) + h(n), the estimated cost of the cheapest us - M Vastul Hirsova 151
solution through n. Lugoj "
Mehadia 241
Let h*(n) be the actual cost of the optimal path from n to Pitest Seamt o
the next goal. [Hirsova Litesti 98
Rimnicu Vilcea 193
. Sibi
h is admissible if the following holds for all n : “ Timisara 39
Dobreta [] Urziceni 80
* LI craiova forie Vaslui 9
h(n) <h*(n) orel o Glurgu Eore erind e
We require that for A*, h is admissible (straight-line
distance is admissible).
04/9 04/10
* -
A* Search from Arad to Bucharest Contours in A*
Within the search space, contours arise in which for
the given f-value all nodes are expanded.
Arad Arad
[=0+366
=366
Sibiu Timisoara Zerind Sibiu Timisoara Zerind
f;l;l;}c—li.% 1‘;141;%320 l'jj;iﬂd 1':5;&4}329 Ijg;riﬂ
Arad
F=2804366 f=239+178 [=146+380 f=220+193
=646 =417 =526 =413
Arad Arad
Sibiu Zerind Zerind
r:;;;mzo 1':;/:2;374 f,:;j;,374
Arad Arad
[:6?.324-3(16 l:;ufg-* 178 f:; 3?380 rzsjgﬁﬁﬁ [:}]E!_‘iﬂ 78 f:;gg—r}s[)
Craiova) Sibiu Craiova Sibiu
[:S!ggﬂﬁo l’jll‘z-ﬂ-‘iﬂ l:g%# 253 (iggd-lﬂo ligg)* 253
Rimnicu
Balane e o Contours at f = 380, 400, 420
= =615 =d1g
04/11 04/12

Example: Path Planning for Robots in
a Grid-World

04/13

Optimality of A*
Claim: The first solution found has the minimum path cost.

Proof: Suppose there exists a goal hode G with optimal path
cost f*, but A* has found another node G, with g(G,) > f*.

Start

IO

GQ® G,

04/14

Let n be a node on the path from the start to G
that has not yet been expanded. Since h is
admissible, we have

f(n) s f*

Since n was not expanded before G,, the following
must hold:

f(G,) <f(n)

and
f(G,) s f*.
It follows from h(G,) = 0 that
ag(G,) sf*.

- Contradicts the assumption!
04/15

Completeness and Complexity

Completeness:

If a solution exists, A* will find it provided that (1) every
node has a finite number of successor nodes, and (2) there
exists a positive constant o such that every operator has at
least cost 0.

- Only a finite number of nodes n with f(n) <f*.

Complexity:

In the case where |h*(n) — h(n)| =0O(log(h*(n)), only a
sub-exponential number of nodes will be expanded.

Normally, growth is exponential because the error is
proportional to the path costs.

04/16

Heuristic Function Example

7 3 2 7 6 5

Start State Goal State
h, = the number of tiles in the wrong position
h, = the sum of the distances of the tiles from their goal

positions (Manhatten distance)

04/17

Empirical Evaluation

m d = distance from goal
m Average over 100 instances

Search Cost Effective Branching Factor

d DS A*(hy) A*(hy) IDS A*(hy) A*(hy)

2 10 6 6 245 179 179

4 112 13 12 2.87 1.48 1.45

6 680 20 18 273 134 1.30

8 6384 39 25 2.80 133 124
10 47127 93 39 279 138 122
12 364404 227 73 278 142 124
14 3473941 539 113 2.83 1.44 123
16 - 1301 211 - 1.45 125
18 - 3056 363 - 1.46 126
20 - 7276 676 - 147 127
22 - 18094 1219 - 1.48 1.28
24 - 39135 1641 - 1.48 126

04/18

Iterative Deepening A* Search (IDA¥*)

Idea: A combination of IDS and A*. All nodes inside a
contour are searched.

Tunction IDA*{ problem) returns a solution sequence
inputs: problem, a problem
static: f-limir, the current /- COST limit
root, a node

root +— MAKE-NODE{INTTIAL-STATE[probient])
flimit + f- CoST(root)
loop do
solution, f-limit « DFS-CONTOUR(roat, f-limit)
if solution is non-null then return solution
if f-limit = oo then return failure; end

funetion DFS-CoNTOUR(node, flimif) returns a solution sequence and a new f- COST limit
inputs: node, a node
JHimit, the current f- COST limit
static: next-f, the f- COST limit for the next contour, initially oo

il - CosTlnode] > [limit then relurn null, f- CosT[node]
if GoAL-TEST[problem](STATE[node]) then relurn node, f-limit
for each node s in SUCCESSORS(rode) do
solution, new-f < DIS-CONTOUR(s, f-Limir)
if soludion is non-null then return solution, {-limit
nextf — MiN(rext-f, new-f); end
return null, next-f* 04/19

Local Search Methods

In many problems, it is unimportant how the goal is reached -
only the goal itself matters (8-queens problem, VLSI Layout, TSP).

If in addition a quality measure for states is given, a local search
can be used to find solutions.

Idea: Begin with a randomly-chosen configuration and improve on
it stepwise > Hill Climbing.

evaluation

current
state

04/20

Hill Climbing

function HILL-CLIMBING(problem) returns a solution state
inputs: problem, a problem
static: current, a node
next, a node

current +— MAKE-NODE(INITIAL-STATE[problem])

loop do
nexi + a highest-valued successor of current
il VALUE[next] < VALUE[current] then return current
current «— next

end

Example: 8-Queens Problem

Selects a column and moves the queen to the square
with the fewest conflicts.

04/21 04/22
Problems with Local Search Methods Simulated Annealing
In the simulated annealing algorithm, “smoke” is
) . . . injected systematically: first a lot, then gradually less.
= Local maxima: The algorithm finds a sub-optimal] Y Y ! 9 Y
SO I ution. function SIMULATED-ANNEALING] problem, schedule) returns a solution state
= Plateaus: Here, the algorithm can only explore at Inpuls: podiemdpblem,)
schedale, a mapping from time to “temperature™
ra ndom . statie: carrent, a node
. . . rext, a node
[Rldges: Similar to plateaus. T, a “temperature” controlling the probability of downward steps
currenti— MAKE-NODE(INITIAL-STATE [problem])
Solutions: for 1 ¢~ 110 oo do
)) T + schedulelt]
= Start over when no progress is being made. b lles s ooy ;
next +— a randomly selected successor of curvent
“Inject smoke” = random walk AE VAI,UII[MX{]—\’A[,[JE[{:urrem]
if AE = 0 then currant i next
= Tabu search: Do not apply the last n operators. else current +— next only with probability ¢*57
Which strategies (with which parameters) are successful Has been used since the early 80’s for VSLI layout
(within a problem class) can usually only empirically be and other optimization problems.
determined.
04/23 04/24

Genetic Algorithms

Evolution appears to be very successful at finding good
solutions.

Idea: Similar to evolution, we search for solutions by

”

“crossing”, “mutating”, and “selecting” successful solutions.

Ingredients:

e Coding of a solution into a string of symbols or bit-
string
¢ A fitness function to judge the worth of configurations

e A population of configurations

Example: 8-queens problem as a chain of 8 numbers.
Fitness is judged by the number of non-attacks. The
population consists of a set of arrangements of queens.

04/25

Selection, Mutation, and Crossing

Selektion

OO

V

Kreuzen
[EEEEECEEECMECEEEEEECDE
[EEEEECECDERECEEEEGEEDE)

Mutation
EEEEECECIE

EEEEECECIE

Many variations:
how selection will be applied, what

type of cross-overs will be used, etc.

Selektion von Individuen
anhand der Fitness-Funktion
und Paarung

Festlegung wo aufgebrochen
wird und neu zusammenfiigen

Mit einer gewissen kleinen
Wahrscheinlichkeit wird etwas
im String geandert.

04/26

Summary

= Heuristics focus the search

= Best-first search expands the node with the highest
worth (defined by any measure) first.

= With the minimization of the evaluated costs to the goal
h we obtain a greedy search.

= The minimization of f(n) = g(n) + h(n) combines
uniform and greedy searches. When h(n) is admissible,
i.e., h*is never overestimated, we obtain the A*
search, which is complete and optimal.

= IDA* is a combination of the iterative-deepening and A*
searches.

= Local search methods only ever work on one state,
attempting to improve it step-wise.

= Genetic algorithms imitate evolution by combining good

solutions.
04/27

