Foundations of AI

4. Informed Search Methods

Heuristics, Local Search Methods, Genetic Algorithms Wolfram Burgard and Bernhard Nebel

Contents

- Best-First Search
- A* and IDA*
- Local Search Methods
- Genetic Algorithms

04/2

Best-First Search

Search procedures differ in the way they determine the next node to expand.

Uninformed Search: Rigid procedure with no knowledge of the cost of a given node to the goal.

Informed Search: Knowledge of the cost of a given node to the goal is in the form of an *evaluation function f* or *h*, which assigns a real number to each node.

Best-First Search: Search procedure that expands the node with the "best" *f*- or *h*-value.

General Algorithm

function BEST-FIRST-SEARCH(problem, EVAL-FN) returns a solution sequence
inputs: problem, a problem
Eval-Fn, an evaluation function

Queueing- $Fn \leftarrow$ a function that orders nodes by EVAL-FN return GENERAL-SEARCH(*problem*, Queueing-Fn)

When *h* is always correct, we do not need to search!

Greedy Search

A possible way to judge the "worth" of a node is to estimate its distance to the goal.

h(n) = estimated distance from n to the goal

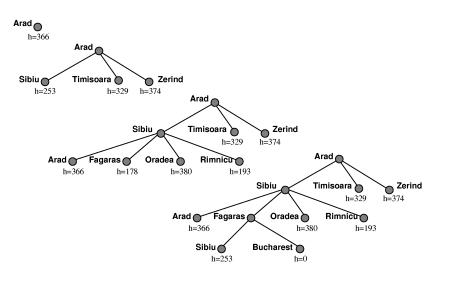
The only real condition is that h(n) = 0 if n is a goal.

A best-first search with this function is called a *greedy search*.

Route-finding problem: h = straight-line distance between two locations.

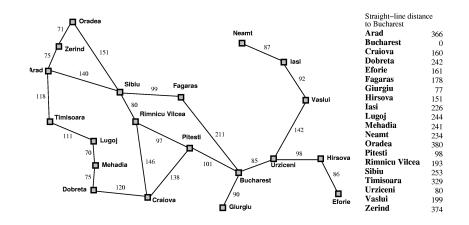
04/5

Greedy Search from Arad to Bucharest



04/7

Greedy Search Example



Heuristics

The evaluation function h in greedy searches is also called a *heuristic* function or simply a *heuristic*.

- The word *heuristic* is derived from the Greek word ευρισκειν (note also: ευρηκα!)
- The mathematician Polya introduced the word in the context of problem solving techniques.
- In AI it has two meanings:
 - Heuristics are fast but in certain situations incomplete methods for problem-solving [Newell, Shaw, Simon 1963] (The greedy search is actually generally incomplete).
 - Heuristics are methods that improve the search in the average-case.

 \rightarrow In all cases, the heuristic is *problem-specific* and *focuses* the search!

04/6

A*: Minimization of the estimated path costs

 A^* combines the greedy search with the uniform-search strategy.

- g(n) = actual cost from the initial state to n.
- h(n) = estimated cost from n to the next goal.

f(n) = g(n) + h(n), the estimated cost of the cheapest solution through *n*.

Let $h^*(n)$ be the actual cost of the optimal path from n to the next goal.

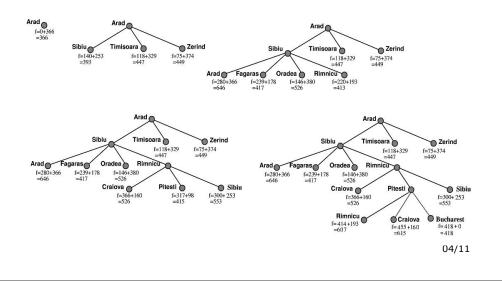
h is *admissible* if the following holds for all *n* :

 $h(n) \leq h^*(n)$

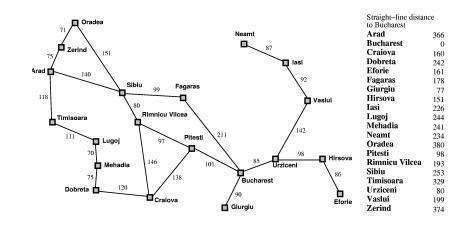
We require that for A^* , *h* is admissible (straight-line distance is admissible).

04/9

A* Search from Arad to Bucharest



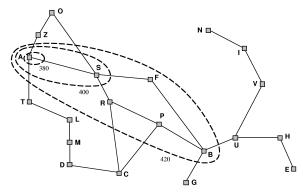
A* Search Example



04/10

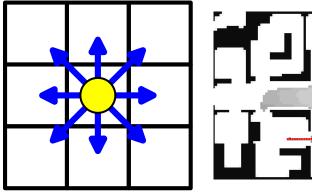
Contours in A*

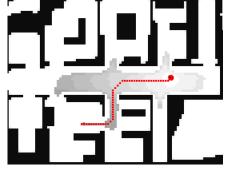
Within the search space, contours arise in which for the given *f*-value all nodes are expanded.



Contours at f = 380, 400, 420

Example: Path Planning for Robots in a Grid-World

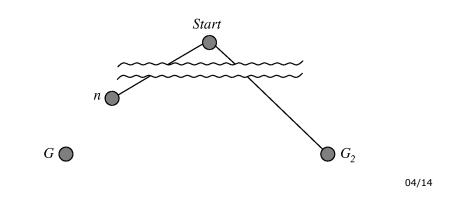




Optimality of A*

Claim: The first solution found has the minimum path cost.

Proof: Suppose there exists a goal node G with optimal path cost f^* , but A* has found another node G_2 with $g(G_2) > f^*$.



Let n be a node on the path from the start to G that has not yet been expanded. Since h is admissible, we have

$$f(n) \leq f^*$$
.

Since *n* was not expanded before G_2 , the following must hold:

 $f(G_2) \leq f(n)$

and

$$f(G_2) \leq f^*$$

It follows from $h(G_2) = 0$ that

$$g(G_2) \leq f^*.$$

 \rightarrow Contradicts the assumption!

04/15

04/13

Completeness and Complexity

Completeness:

If a solution exists, A* will find it provided that (1) every node has a finite number of successor nodes, and (2) there exists a positive constant δ such that every operator has at least cost δ .

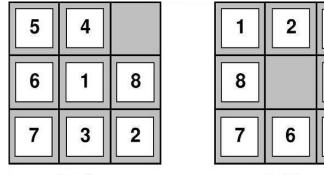
→ Only a finite number of nodes *n* with $f(n) \leq f^*$.

Complexity:

In the case where $|h^*(n) - h(n)| \le O(log(h^*(n)))$, only a sub-exponential number of nodes will be expanded.

Normally, growth is exponential because the error is proportional to the path costs.

Heuristic Function Example



Start State

Goal State

3

4

5

- $h_1 =$ the number of tiles in the wrong position
- h₂ = the sum of the distances of the tiles from their goal positions (*Manhatten distance*)

04/17

Empirical Evaluation

- *d* = distance from goal
- Average over 100 instances

	Search Cost			Effective Branching Factor		
d	IDS	$A^{*}(h_{1})$	$A^*(h_2)$	IDS	$A^*(h_1)$	$A^*(h_2)$
2	10	6	6	2.45	1.79	1.79
4	112	13	12	2.87	1.48	1.45
6	680	20	18	2.73	1.34	1.30
8	6384	39	25	2.80	1.33	1.24
10	47127	93	39	2.79	1.38	1.22
12	364404	227	73	2.78	1.42	1.24
14	3473941	539	113	2.83	1.44	1.23
16	-	1301	211	-	1.45	1.25
18	-	3056	363	-	1.46	1.26
20	-	7276	676	-	1.47	1.27
22	-	18094	1219	-	1.48	1.28
24	_	39135	1641	-	1.48	1.26

04/18

Iterative Deepening A* Search (IDA*)

Idea: A combination of IDS and A*. All nodes inside a contour are searched.

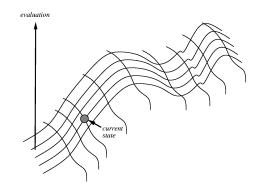
unction	IDA*(problem) returns a solution sequence
	problem, a problem
	f-limit, the current f- COST limit
	root, a node
root ←	MAKE-NODE(INITIAL-STATE[problem])
f-limit	$\leftarrow f - \text{COST}(root)$
loop d	D
sol	ution, f-limit \leftarrow DFS-CONTOUR(root, f-limit)
if s	olution is non-null then return solution
if f	$limit = \infty$ then return failure; end
unction	DFS-CONTOUR(node, f-limit) returns a solution sequence and a new f- COST limit
inputs	node, a node
	f-limit, the current f- COST limit
static:	<i>next-f</i> , the <i>f</i> - COST limit for the next contour, initially ∞
if f- Co	DST[node] > f-limit then return null, f- COST[node]
if GOA	L-TEST[problem](STATE[node]) then return node, f-limit
for eac	h node s in SUCCESSORS(node) do
sol	ution, new- $f \leftarrow \text{DFS-CONTOUR}(s, f-limit)$
if s	olution is non-null then return solution, f-limit
nes	$t-f \leftarrow MIN(next-f, new-f);$ end
return	null, next-f

Local Search Methods

In many problems, it is unimportant how the goal is reached – only the goal itself matters (8-queens problem, VLSI Layout, TSP).

If in addition a quality measure for states is given, a **local search** can be used to find solutions.

Idea: Begin with a randomly-chosen configuration and improve on it stepwise \rightarrow **Hill Climbing**.

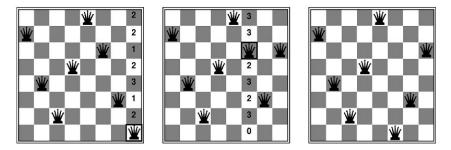


Hill Climbing

function HILL-CLIMBING(problem) returns a solution state
inputs: problem, a problem
static: current, a node
next, a node
current ← MAKE-NODE(INITIAL-STATE[problem])
loop do
next ← a highest-valued successor of current
if VALUE[next] < VALUE[current] then return current
current ← next
end</pre>

Example: 8-Queens Problem

Selects a column and moves the queen to the square with the fewest conflicts.



04/21

Problems with Local Search Methods

- Local maxima: The algorithm finds a sub-optimal solution.
- *Plateaus*: Here, the algorithm can only explore at random.
- Ridges: Similar to plateaus.

Solutions:

- Start over when no progress is being made.
- "Inject smoke" → random walk
- Tabu search: Do not apply the last *n* operators.

Which strategies (with which parameters) are successful (within a problem class) can usually only empirically be determined.

Simulated Annealing

In the simulated annealing algorithm, "smoke" is injected systematically: first a lot, then gradually less.

```
function SIMULATED-ANNEALING(problem, schedule) returns a solution state

inputs: problem, a problem

schedule, a mapping from time to "temperature"

static: current, a node

next, a node

T, a "temperature" controlling the probability of downward steps

current \leftarrow MAKE-NODE(INITIAL-STATE[problem])

for t \leftarrow 1 to \infty do

T \leftarrow schedule[1]

if T=0 then return current

next \leftarrow a randomly selected successor of current

\Delta E \leftarrow VALUE[next] - VALUE[current]

if \Delta E > 0 then current \leftarrow next

else current \leftarrow next only with probability e^{\Delta ET}
```

Has been used since the early 80's for VSLI layout and other optimization problems.

04/22

Genetic Algorithms

Evolution appears to be very successful at finding good solutions.

Idea: Similar to evolution, we search for solutions by "crossing", "mutating", and "selecting" successful solutions.

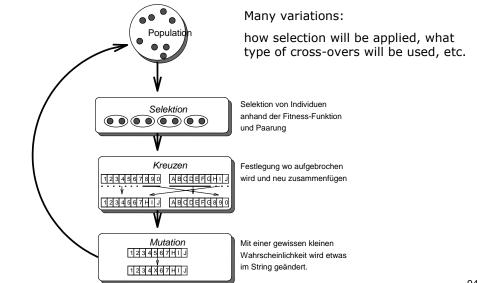
Ingredients:

- Coding of a solution into a string of symbols or bitstring
- A fitness function to judge the worth of configurations
- A population of configurations

Example: 8-queens problem as a chain of 8 numbers. Fitness is judged by the number of non-attacks. The population consists of a set of arrangements of queens.

04/25

Selection, Mutation, and Crossing



04/26

Summary

- Heuristics focus the search
- Best-first search expands the node with the highest worth (defined by any measure) first.
- With the minimization of the evaluated costs to the goal h we obtain a greedy search.
- The minimization of f(n) = g(n) + h(n) combines uniform and greedy searches. When h(n) is admissible, i.e., h* is never overestimated, we obtain the A* search, which is complete and optimal.
- IDA* is a combination of the iterative-deepening and A* searches.
- Local search methods only ever work on one state, attempting to improve it step-wise.
- Genetic algorithms imitate evolution by combining good solutions.