
12/1

Foundations of AI

12. Acting under Uncertainty

Maximizing Expected Utility
Wolfram Burgard, Bernhard Nebel, and Luc De Raedt

12/2

Contents

� Introduction to utility theory

� Choosing individual actions

� Sequential decision problems

� Markov decision processes

� Value iteration

12/3

The Basis of Utility Theory

The utility function rates states and thus formalizes the
desirability of a state through the agent.

U(S) denotes the utility of state S for the agent.

A nondeterministic action A can lead to the outcome
states Resulti(A). How high is the probability that the
outcome state Resulti(A) is reached, if A is executed in
the current state with evidence E?

→ P(Resulti(A) | Do(A),E)

Expected Utility:

EU(A | E) = Σi P(Resulti(A) | Do(A),E) x U(Resulti(A))

The principle of maximum expected utility (MEU) says
that a rational agent should choose an action that
maximizes EU(A | E).

12/4

Problems with the MEU Principle

P(Resulti(A) | Do(A),E)

requires a complete causal model of the world.

→ Constant updating of belief networks

→ NP-complete for Bayesian networks

U(Resulti(A))

requires search or planning, because an agent
needs to know the possible future states in order to
assess the worth of the current state (“effect of the
state on the future”).

12/5

The Axioms of Utility Theory (1)

Justification of the MEU principle i.e. maximization of the average
utility.

Scenario = Lottery L

• Possible outcomes = possible prizes

• The outcome is determined by chance

• L = [p1,C1; p2,C2; … ; pn,Cn]

Example:
Lottery L with two outcomes, C1 and C2:

L = [p, C1; 1 – p, C2]

Preference between lotteries:

L1 n L2 Agent L1 is preferred to L2

L1 π L2 The agent is indifferent between L1 and L2

L1 Ü L2 L1 prefers or is indifferent to L2

12/6

Given states A, B, C

� Orderability
(A n B) - (B n A) - (A π B)
An agent should know what it wants: it must
either prefer one of the 2 lotteries or be
indifferent to both.

� Transitivity
(A n B) . (B n C) ⇒ (A n C)
Violating transitivity causes irrational
behaviour: A n B n C n A. The agent has A and
would pay to exchange it for C. C would do the
same for A.
� The agent loses money this way.

The Axioms of Utility Theory (2)

12/7

The Axioms of Utility Theory (3)

� Continuity
A n B n C ⇒ ∃p [p, A; 1 – p, C] ~ B
If some state B is between A and C in
preference, then there is some probability p for
which the agent is indifferent between getting
B for sure and the lottery that yields A with
probability p and C with probability 1 – p.

� Substitutability
A ~ B ⇒ [p, A; 1 – p, C] ~ [p, B; 1 – p, C]
Simpler lotteries can be replaced by more
complicated ones, without changing the
indifference factor.

12/8

The Axioms of Utility Theory (4)

� Monotonicity
A n B ⇒ (p ≥ q) ⇔ [p, A; 1 – p, B] Ü [q, A; 1 – q, B]

If an agent prefers the outcome A, then it must
also prefer the lottery that has a higher
probability for A.

� Decomposability
[p, A; 1 – p, [q, B; 1 – q, C]] ~
[p, A; (1 – p)q, B ; (1 – p)(1 – q), C]

An agent should not automatically prefer lotteries
with more choice points (“no fun in gambling”).

12/9

Utility Functions and Axioms

The axioms only make statements about
preferences.

The existence of a utility function follows from
the axioms!

• Utility Principle
If an agent’s preferences obey the axioms, then
there exists a function U : S → R with
U(A) > U(B) ⇔ A n B
U(A) = U(B) ⇔ A ~ B

• Maximum Expected Utility Principle
U([p1, S1; … ; pn, Sn]) = Σi p i x U(Si)

How do we design utility functions that cause the
agent to act as desired?

12/10

Possible Utility Functions

From economic models:

12/11

Scaling and normalizing:

� Best possible price U(S) = umax = 1

�Worst catastrophe U(S) = umin = 0

We obtain intermediate utilities of intermediate
outcomes by asking the agent about its preference
between a state S and a standard lottery
[p, umax;1-p, umin].

The probability p is adjusted untill the agent is
indifferent between S and the standard lottery.

Assuming normalized utilities, the utility of S is given
by p.

Assessing Utilities

12/12

Sequential Decision Problems (1)

� Beginning in the start state the agent must choose an action
at each time step.

� The interaction with the environment terminates if the agent
reaches one of the goal states (4, 3) (reward of +1) or (4,2)
(reward –1). Each other location has a reward of -.04.

� In each location the available actions are Up, Down, Left,
Right.

12/13

Sequential Decision Problems (2)

� Deterministic version: All actions always lead
to the next square in the selected direction,
except that moving into a wall results in no
change in position.

� Stochastic version: Each action achieves the
intended effect with probability 0.8, but the
rest of the time, the agent moves at right
angles to the intended direction. 0.8

0.1 0.1

12/14

Markov Decision Problem (MDP)

Given a set of states in an accessible, stochastic
environment, an MDP is defined by

� Initial state S0

� Transition Model T(s,a,s’)

� Reward function R(s)

Transition model: T(s,a,s’) is the probability that state
s’ is reached, if action a is executed in state s.

Policy: Complete mapping π that specifies for each
state s which action π(s) to take.

Wanted: The optimal policy π* that maximizes the

expected utility.

12/15

� Given the optimal policy, the agent uses its
current percept that tells it its current state.

� It then executes the action π*(s).
� We obtain a simple reflex agent that is
computed from the information used for a
utility-based agent.

Optimal policy for our
MDP:

Optimal Policies (1)

12/16

R(s) ≤ -1.6248

-0.0221 < R(s) < 0

-0.4278 < R(s) < -0.085

0 < R(s)

How to compute optimal policies?

Optimal Policies (2)

12/17

� Performance of the agent is measured by the sum of
rewards for the states visited.

� To determine a optimal policy we will first calculate the
utility of each state and then use the state utilities to
select the optimal action for each state.

� The result depends on whether we have a finite or
infinite horizon problem.

� Utility function for state sequences: Uh([s0,s1,…,sn])

� Finite horizon: Uh([s0,s1,…,sN+k]) = Uh([s0,s1,…,sN]) for
all k > 0.

� For finite horizon problems the optimal policy depends
on the horizon N and therefore is called nonstationary.

� In infinite horizon problems the optimal policy only
depends on the current state and therefore is
stationary.

Finite and Infinite Horizon Problems

12/18

� For stationary systems there are just two ways
to assign utilities to state sequences.

� Additive rewards:
Uh([s0,s1 s2,…]) = R(s0) + R(s1) + R(s2) + …

� Discounted rewards:
Uh([s0,s1 s2,…]) = R(s0) + γR(s1) + γ2R(s2) + …

� The term γ∈[0:1[is called the discount factor.

� With discounted rewards the utility of an
infinite state sequence is always finite.

Assigning Utilities to State Sequences

12/19

� The utility of a state depends on the utility of the
state sequences that follow it.

� Let Uπ(s) be the utility of a state under policy π.

� Let st be the state of the agent after executing π
for t steps. Thus, the utility of s under π is

� The true utility U(s) of a state is Uπ*(s).

� R(s) is the short-term reward for being in s and
U(s) is the long-term total reward from s onwards.

Utilities of States

12/20

The utilities of the states in our 4x3 world with γ=1
and R(s)=-0.04 for non-terminal states:

Example

12/21

The agent simply chooses the action that
maximizes the expected utility of the
subsequent state:

The utility of a state is the immediate reward
for that state plus the expected discounted
utility of the next state, assuming that the
agent chooses the optimal action:

Choosing Actions using the Maximum
Expected Utility Principle

12/22

� The equation

is also called the Bellman-Equation.

� In our 4x3 world the equation for the state (1,1) is

U(1,1) = -0.04 + γ max{ 0.8 U(1,2) + 0.1 U(2,1) + 0.1 U(1,1), (Up)
0.9 U(1,1) + 0.1 U(1,2), (Left)
0.9 U(1,1) + 0.1 U(2,1), (Down)
0.8 U(2,1) + 0.1 U(1,2) + 0.1 U(1,1) } (Right)

t Given the numbers for the optimal policy, Up is
the optimal action in (1,1).

Bellman-Equation

12/23

Value Iteration (1)

An algorithm to calculate an optimal strategy.

Basic Idea: Calculate the utility of each state. Then
use the state utilities to select an optimal action for
each state.

A sequence of actions generates a tree of possible
states (histories). A utility function on histories Uh is
separable iff there exists a function f such that

Uh([s0,s1,…,sn]) = f (s0, Uh([s1,…,sn]))

The simplest form is an additive reward function R:

Uh([s0,s1,…,sn]) = R(s0) + Uh([s1,…,sn]))

In the example, R((4,3)) = +1, R((4,2)) = –1,
R(other) = –1/25.

12/24

Value Iteration (2)

The utility of a state i is defined by the

expected utility of the optimal strategy under
transition model M in i.

R(i) + argmaxa ∑jM
a
ij U(j)U(i) =

argmaxa ∑jM
a
ij U(j)policy*(i) =

∑P(H(i, policy*) | M) • Uh(H(i, policy*))=

EU(H(i, policy*) | M)U(i) =

� Basis for dynamic programming

12/25

Value Iteration (3)

If the utilities of the terminal states are known, then in
certain cases we can reduce an n-step decision problem

to the calculation of the utilities of the terminal states
of the (n – 1)-step decision problem.

� Iterative and efficient process

Problem: Typical problems contain cycles, which means
the length of the histories is potentially infinite.

Solution: Use

where Ut(s) is the utility of state s after t iterations.

Remark: As t → ∞, the utilities of the individual states
converge to stable values.

12/26

� The Bellman equation is the basis of value
iteration.

� Because of the max-Operator the n equations
for the n states are nonlinear.

� We can apply an iterative approach in which
we replace the equality by an assignment:

Value Iteration (4)

12/27

The Value Iteration Algorithm

12/28

� Since the algorithm is iterative we need a criterion
to stop the process if we are close enough to the
correct utility.

� In principle we want to limit the policy loss
||U

πi -U|| that is the most the agent can lose by
executing πi.

� It can be shown that value iteration converges and
that

if ||Ui+1 − Ui|| < ∈(1−γ)/γ then ||Ui+1 − U|| < ∈
if ||Ui − U|| < ∈ then ||U

π − U|| < 2∈γ/(1−γ)

� The value iteration algorithm yields the optimal
policy π*.

Convergence of Value Iteration

12/29

In practice the policy often becomes optimal before
the utility has converged.

Application Example

12/30

Policy Iteration

� Value iteration computes the optimal policy even at a
stage when the utility function estimate has not yet
converged.

� If one action is better than all others, then the exact
values of the states involved need not to be known.

� Policy iteration alternates the following two steps
beginning with an initial policy π0:
- Policy evaluation: given a policy πi, calculate Ui= U

πi,
the utility of each state if πi were executed.

- Policy improvement: calculate a new maximum
expected utility policy πi+1 according to

12/31

The Policy Iteration Algorithm

12/32

Summary

� Rational agents can be developed on the basis
of a probability theory and a utility theory.

� Agents that make decisions according to the
axioms of utility theory possess a utility
function.

� Sequential problems in uncertain
environments (MDPs) can be solved by
calculating a policy.

� Value iteration is a process for calculating
optimal policies.

