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Motivation

We can already do a lot with propositional logic. It 
is, however, annoying that there is no structure in 
the atomic propositions.

Example:

“All blocks are red”
“There is a block A”
It should follow that “A is red”

But propositional logic cannot handle this.

Idea: We introduce individual variables, 
predicates, functions, … .

� First-Order Predicate Logic (PL1)
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The Alphabet of First-Order Predicate 
Logic

Symbols:

� Operators: 

� Variables: 

� Brackets:   

� Function symbols (e.g.,                       )

� Predicate symbols (e.g.,                   )

� Predicate and function symbols have an arity (number of 
arguments).

0-ary predicate: propositional logic atoms
0-ary function: constant

� We suppose a countable set of predicates and functions of any 
arity.

� “=“ is usually not considered a predicate, but a logical symbol
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The Grammar of First-Order 
Predicate Logic (1)

Terms (represent objects):

1. Every variable is a term.

2. If are terms and    is an n-ary function, 
then

is also a term.
Terms without variables: ground terms.

Atomic Formulae (represent statements about objects)

1. If are terms and is an n-ary predicate, 
then is an atomic formula.

2. If and are terms, then is an atomic 
formula.
Atomic formulae without variables: ground atoms.
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The Grammar of First-Order 
Predicate Logic (2)

Formulae:

1. Every atomic formula is a formula.

2. If  and     are formulae and is a 
variable, then 

are also formulae.
are as strongly binding as     .

Propositional logic is part of the PL1 language:

1. Atomic formulae: only 0-ary predicates

2. Neither variables nor quantifiers.
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Alternative Notation

Here        Elsewhere
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Meaning of PL1-Formulae

Our example: 

For all objects : If is a block, then is red and is 

a block.

Generally:

• Terms are interpreted as objects.

• Universally-quantified variables denote all objects in 
the universe.

• Existentially-quantified variables represent one of the
objects in the universe (made true by the quantified 
expression).

• Predicates represent subsets of the universe.

Similar to propositional logic, we define interpretations,
satisfiability, models, validity, …
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Semantics of PL1-Logic

Interpretation: where     is an arbitrary, 
non-empty set and is a function that

• maps n-ary function symbols to functions over     :

• maps individual constants to elements of    : 

• maps n-ary predicate symbols to relations over     : 

Interpretation of ground terms: 

Satisfaction of ground atoms P(t1,…,tn):
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Example (1)
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Example (2)
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Semantics of PL1: Variable Assignment

Set of all variables V. Function 

Notation: is the same as apart from point . 

For

Interpretation of terms under :

Satisfaction of atomic formulae: 
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Example
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Semantics of PL1: Satisfiability

A formula is satisfied by an interpretation
and a variable assignment , i.e.,            :

and all other propositional rules as well as
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Example

Questions:
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Free and Bound Variables

The boxed appearances of y and z are free. All other 
appearances of x,y,z are bound.

Formulae with no free variables are called closed formulae 
or sentences. We form theories from closed formulae.

Note: With closed formulae, the concepts logical 
equivalence, satisfiability, and implication, etc. are not 
dependent on the variable assignment (i.e., we can 
always ignore all variable assignments).

With closed formulae, can be left out on the left side of 
the model relationship symbol:
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Terminology

An interpretation I is called a model of     under if

A PL1 formula     can, as in propositional logic, be 
satisfiable, unsatisfiable, falsifiable, or valid.

Analogously, two formulae are logically equivalent
.         if for all :

Note:  

Logical Implication is also analogous to propositional 
logic.

Question: How can we define derivation?
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Prenex Normal Form

Because of the quantifiers, we cannot produce 
the CNF form of a formula directly.

First step: Produce the prenex normal form

quantifier prefix + (quantifier-free) matrix
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Equivalences for the Production of 
Prenex Normal Form

… and propositional logic equivalents
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1. Eliminate     and 
2. Move    inwards
3. Move quantifiers outwards

Example:

And now? 

Production of Prenex Normal Form
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is obtained from   by replacing all free 
appearances of   in   by  .

Lemma: Let   be a variable that does not appear 
in   . Then it holds that

and

Theorem: There exists an algorithm that 
calculates the prenex normal form of any 
formula. 

Renaming of Variables
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Derivation in PL1

Why is prenex normal form useful?

Unfortunately, there is no simple law as in 
propositional logic that allows us to determine 
satisfiability or general validity (by transformation 
into DNF or CNF).

But: We can reduce the satisfiability problem in
predicate logic to the satisfiability problem in 
propositional logic. In general, however, this 
produces a very large number of propositional 
formulae (perhaps infinitely many)

Then: Apply resolution.
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Skolemization

Idea: Elimination of existential quantifiers by applying 
a function that produces the “right” element.

Theorem (Skolem Normal Form): Let be a closed 
formula in prenex normal form such that all quantified 
variables are pair-wise distinct and the function 
symbols       do not appear in   . Let

then    is satisfiable iff

is satisfiable.

Example:  
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Skolem Normal Form

Skolem Normal Form: Prenex normal form without 
existential quantifiers. Notation: ϕ* is the SNF of ϕ.

Theorem: It is possible to calculate the skolem normal 
form of every closed formula ϕ.

Example: develops as follows:

Note: This transformation is not an equivalence 
transformation; it only preserves satisfiability!

Note: … and is not unique.



09/25

Ground Terms & Herbrand Expansion

The set of ground terms (or Herbrand Universe) over a 
set of SNF formulae is the (infinite) set of all ground 
terms formed from the symbols of      (in case there is 
no constant symbol, one is added). This set is denoted 
by D(    ).

The Herbrand expansion E(     ) is the instantiation of the 
Matrix      of all formulae in      through all terms  

Theorem (Herbrand): Let      be a set of formulae in SNF. 
Then      is satisfiable iff E(     ) is satisfiable.

Note: If D(    ) and      are finite, then the Herbrand 
expansion is finite � finite propositional logic theory.

Note: This is used heavily in AI and works well most of 
the time!
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Infinite Propositional Logic Theories

Can a finite proof exist when the set is infinite?

Theorem (compactness of propositional logic): A 
(countable) set of formulae of propositional logic is 
satisfiable if and only if every finite subset is 
satisfiable.

Corollary: A (countable) set of formulae in 
propositional logic is unsatisfiable if and only if a 
finite subset is unsatisfiable.

Corollary: (compactness of PL1): A (countable) set 
of formulae in predicate logic is satisfiable if and 
only if every finite subset is satisfiable.
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Recursive Enumeration and
Decidability

We can construct a semi-decision procedure for validity, i.e., we 
can give a (rather inefficient) algorithm that enumerates all valid 
formulae step by step.

Theorem: The set of valid (and unsatisfiable) formulae in PL1 is 
recursively enumerable.

What about satisfiable formulae?

Theorem (undecidability of PL1): It is undecidable, whether a 
formula of PL1 is valid.

(Proof by reduction from PCP)

Corollary: The set of satisfiable formulae in PL1 is not recursively 
enumerable.

In other words: If a formula is valid, we can effectively confirm 
this fact. Otherwise, we can end up in an infinite loop.
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Derivation in PL1

Clausal Form instead of Herbrand Expansion.

Clauses are universally quantified disjunctions of 

literals; all variables are universally quantified

written as

or
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Production of Clausal Form from SNF

Skolem Normal Form

quantifier prefix + (quantifier-free) matrix

1. Put Matrix into CNF using distribution rule 

2. Eliminate universal quantifiers

3. Eliminate conjunction symbol

4. Rename variables so that no variable appears 
in more than one clause.

Theorem: It is possible to calculate the clausal form 

of every closed formula   .

Note:  Same remarks as for SNF
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Conversion to CNF (1)

Everyone who loves all animals is loved by someone:

1. Eliminate biconditionals and implications

2. Move      inwards:                          ,
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Conversion to CNF (2)

3. Standardize variables: each quantifier should use a 
different one

4. Skolemize: a more general form of existential 
instantiation. Each existential variable is replaced by 
a Skolem function of the enclosing universally 
quantified variables:  

5. Drop universal quantifiers:

6. Distribute      over      :
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Clauses and Resolution

Assumption: All formulae in the KB are clauses.

Equivalently, we can assume that the KB is a set of clauses.

Due to commutativity, associativity, and idempotence of , 
clauses can also be understood as sets of literals. The empty 
set of literals is denoted by .

Set of clauses: 

Set of literals: C, D

Literal: 

Negation of a literal: 
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are called resolvents of the parent clauses
and . and are the resolution 

literals.

Example:              resolves with             to                  
.

Note: The resolvent is not equivalent to the parent 
clauses, but it follows from them!

Notation: is a resolvent of two 
clauses from 

–

–

Propositional Resolution
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What Changes?

Examples

We need unification, a way to make literals identical. 

Based on the notion of substitution, e.g., .



09/35

Substitutions

A substitution substitutes 
variables for terms (   does NOT contain   ).

Applying a substitution    to an expression    
yields the expression      which is    with all 
occurrences of    replaced by    for all  .
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Substitution Examples

no subsitution
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Composing Substitutions

Composing substitutions and      gives
which is that substitution obtained by first 
applying     to the terms in     and adding 
remaining term/variable pairs (not occurring in   ) 
to    .

Example:

Application example: 
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Properties of substitutions

For a formula     and substitutions    , 

associativity

no commutativity!
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Unification

Unifying a set of expressions  

Find substitution   such that               for all

Example

The most general unifier, the mgu, g of       has the 
property that if is any unifier of       then there 
exists a substitution    such that  

Property: The common instance produced is unique 
up to alphabetic variants (variable renaming)

not the simplest unifier

most general unifier (mgu)
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Subsumption Lattice

a)

b)
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Disagreement Set

The disagreement set of a set of

expressions         is the set of 

sub-terms        of         at the first position

in         for which the        disagree

Examples

gives

gives

gives
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Unification Algorithm

Unify(Terms):

Initialize           ;

Initialize      = Terms;

Initialize      =     ;

*If       is a singleton, then output     . Otherwise continue.

Let      be the disagreement set of      .

If there exists a var and a term      in      such that      
does not occur in    , continue. Otherwise, exit with failure.  

Goto *.



09/43

Example
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Binary Resolution

where s=mgu( ), the most general unifier

is the resolvent of the parent 
clauses and .

and do not share variables

and are the resolution literals.

Examples: 
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Some Further Examples

Resolve                          and            

Standardizing the variables apart gives                         
and                            

Substitution                           Resolvent

Resolve                         and

Standardizing the variables apart

Substitution                  and Resolvent 
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Factoring

where s=mgu( , ) is the most general 
unifier.

Needed because:

but    cannot be derived by binary resolution

Factoring yields:

and               whose resolvent is   .
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Derivations

Notation:                              is a resolvent or a 
factor of two clauses from 

We say can be derived from , i.e.,

If there exist such that 

for 1 ≤ i ≤ n.
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Example

From Russell and Norvig :

The law says it is a crime for an American to 
sell weapons to hostile nations. The country 
Nono, an enemy of America, has some 
missiles, and all of its missiles were sold to it 
by Colonel West, who is American.

Prove that Col. West is a criminal.
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Example

… it is a crime for an American to sell weapons to hostile nations:

Nono … has some missiles, i.e.,                                     :

and

… all of its missiles were sold to it by Colonel West.

Missiles are weapons:

An enemy of America counts as “hostile”:

West, who is American …

The country Nono, an enemy of America
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An Example
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Another Example
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Properties of Resolution

Lemma: (soundness) If           , then .

Lemma: resolution is refutation-complete:

is unsatisfiable implies     .

Theorem: is unsatisfiable iff .

Technique:

to prove that 

negate     and prove that                    .
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The Lifting Lemma

Lemma: 

Let      and      be two clauses with no shared 
variables, and let       and        be ground 
instances of      and       . If      is a resolvent
of       and      , then there exists a clause such 
that     

(1)     is a resolvent of      and       

(2)     is a ground instance of  

Can be easily generalized to derivations
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The general picture

Any set of sentences S is representable in clausal form

Assume S is unsatisfiable, and in clausal form

Some set S’ of ground instances is unsatisfiable

Resolution can find a contradiction in S’

There is a resolution proof for the contradiction in S

Herbrand’s theorem

Ground resolution theorem

Lifting lemma
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Closing Remarks: Processing

� PL1-Resolution: forms the basis of 

� most state of the art theorem provers for PL1

� the programming language Prolog

� only Horn clauses

� considerably more efficient methods.

� not dealt with : search/resolution strategies

� Finite theories: In applications, we often have 
to deal with a fixed set of objects. Domain 
closure axiom:

�

� Translation into finite propositional theory is possible.
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Closing Remarks: Possible Extensions

� PL1 is definitely very expressive, but in some  
circumstances we would like more …

� Second-Order Logic: Also over predicate quantifiers

�

� Validity is no longer semi-decidable (we have lost 
compactness)

� Lambda Calculus: Definition of predicates, e.g.,
defines a new predicate of arity 2

� Reducible to PL1 through Lambda-Reduction

� Uniqueness quantifier:               – there is exactly one    …

� Reduction to PL1:

�
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Summary

� PL1 makes it possible to structure statements, thereby 
giving us considerably more expressive power than 
propositional logic.

� Formulae consist of terms and atomic formulae, which, 
together with connectors and quantifiers, can be put 
together to produce formulae.

� Interpretations in PL1 consist of a universe and an 
interpretation function.

� The Herbrand Theory shows that satisfiability in PL1 can 
be reduced to satisfiability in propositional logic 
(although infinite sets of formulae can arise under 
certain circumstances).

� Resolution is refutation complete

� Validity in PL1 is not decidable (it is only semi-
decidable)


