
09/1

Foundations of AI

9. Predicate Logic

Syntax and Semantics, Normal Forms,
Herbrand Expansion, Resolution

Wolfram Burgard, Bernhard Nebel, and Luc De Raedt

09/2

Contents

� Motivation

� Syntax and Semantics

� Normal Forms

� Reduction to Propositional Logic: Herbrand
Expansion

� Resolution & Unification

� Closing Remarks

09/3

Motivation

We can already do a lot with propositional logic. It
is, however, annoying that there is no structure in
the atomic propositions.

Example:

“All blocks are red”
“There is a block A”
It should follow that “A is red”

But propositional logic cannot handle this.

Idea: We introduce individual variables,
predicates, functions, … .

� First-Order Predicate Logic (PL1)

09/4

The Alphabet of First-Order Predicate
Logic

Symbols:

� Operators:

� Variables:

� Brackets:

� Function symbols (e.g.,)

� Predicate symbols (e.g.,)

� Predicate and function symbols have an arity (number of
arguments).

0-ary predicate: propositional logic atoms
0-ary function: constant

� We suppose a countable set of predicates and functions of any
arity.

� “=“ is usually not considered a predicate, but a logical symbol

09/5

The Grammar of First-Order
Predicate Logic (1)

Terms (represent objects):

1. Every variable is a term.

2. If are terms and is an n-ary function,
then

is also a term.
Terms without variables: ground terms.

Atomic Formulae (represent statements about objects)

1. If are terms and is an n-ary predicate,
then is an atomic formula.

2. If and are terms, then is an atomic
formula.
Atomic formulae without variables: ground atoms.

09/6

The Grammar of First-Order
Predicate Logic (2)

Formulae:

1. Every atomic formula is a formula.

2. If and are formulae and is a
variable, then

are also formulae.
are as strongly binding as .

Propositional logic is part of the PL1 language:

1. Atomic formulae: only 0-ary predicates

2. Neither variables nor quantifiers.

09/7

Alternative Notation

Here Elsewhere

09/8

Meaning of PL1-Formulae

Our example:

For all objects : If is a block, then is red and is

a block.

Generally:

• Terms are interpreted as objects.

• Universally-quantified variables denote all objects in
the universe.

• Existentially-quantified variables represent one of the
objects in the universe (made true by the quantified
expression).

• Predicates represent subsets of the universe.

Similar to propositional logic, we define interpretations,
satisfiability, models, validity, …

09/9

Semantics of PL1-Logic

Interpretation: where is an arbitrary,
non-empty set and is a function that

• maps n-ary function symbols to functions over :

• maps individual constants to elements of :

• maps n-ary predicate symbols to relations over :

Interpretation of ground terms:

Satisfaction of ground atoms P(t1,…,tn):

09/10

Example (1)

09/11

Example (2)

09/12

Semantics of PL1: Variable Assignment

Set of all variables V. Function

Notation: is the same as apart from point .

For

Interpretation of terms under :

Satisfaction of atomic formulae:

09/13

Example

09/14

Semantics of PL1: Satisfiability

A formula is satisfied by an interpretation
and a variable assignment , i.e., :

and all other propositional rules as well as

09/15

Example

Questions:

09/16

Free and Bound Variables

The boxed appearances of y and z are free. All other
appearances of x,y,z are bound.

Formulae with no free variables are called closed formulae
or sentences. We form theories from closed formulae.

Note: With closed formulae, the concepts logical
equivalence, satisfiability, and implication, etc. are not
dependent on the variable assignment (i.e., we can
always ignore all variable assignments).

With closed formulae, can be left out on the left side of
the model relationship symbol:

09/17

Terminology

An interpretation I is called a model of under if

A PL1 formula can, as in propositional logic, be
satisfiable, unsatisfiable, falsifiable, or valid.

Analogously, two formulae are logically equivalent
. if for all :

Note:

Logical Implication is also analogous to propositional
logic.

Question: How can we define derivation?

09/18

Prenex Normal Form

Because of the quantifiers, we cannot produce
the CNF form of a formula directly.

First step: Produce the prenex normal form

quantifier prefix + (quantifier-free) matrix

09/19

Equivalences for the Production of
Prenex Normal Form

… and propositional logic equivalents

09/20

1. Eliminate and
2. Move inwards
3. Move quantifiers outwards

Example:

And now?

Production of Prenex Normal Form

09/21

is obtained from by replacing all free
appearances of in by .

Lemma: Let be a variable that does not appear
in . Then it holds that

and

Theorem: There exists an algorithm that
calculates the prenex normal form of any
formula.

Renaming of Variables

09/22

Derivation in PL1

Why is prenex normal form useful?

Unfortunately, there is no simple law as in
propositional logic that allows us to determine
satisfiability or general validity (by transformation
into DNF or CNF).

But: We can reduce the satisfiability problem in
predicate logic to the satisfiability problem in
propositional logic. In general, however, this
produces a very large number of propositional
formulae (perhaps infinitely many)

Then: Apply resolution.

09/23

Skolemization

Idea: Elimination of existential quantifiers by applying
a function that produces the “right” element.

Theorem (Skolem Normal Form): Let be a closed
formula in prenex normal form such that all quantified
variables are pair-wise distinct and the function
symbols do not appear in . Let

then is satisfiable iff

is satisfiable.

Example:

09/24

Skolem Normal Form

Skolem Normal Form: Prenex normal form without
existential quantifiers. Notation: ϕ* is the SNF of ϕ.

Theorem: It is possible to calculate the skolem normal
form of every closed formula ϕ.

Example: develops as follows:

Note: This transformation is not an equivalence
transformation; it only preserves satisfiability!

Note: … and is not unique.

09/25

Ground Terms & Herbrand Expansion

The set of ground terms (or Herbrand Universe) over a
set of SNF formulae is the (infinite) set of all ground
terms formed from the symbols of (in case there is
no constant symbol, one is added). This set is denoted
by D().

The Herbrand expansion E() is the instantiation of the
Matrix of all formulae in through all terms

Theorem (Herbrand): Let be a set of formulae in SNF.
Then is satisfiable iff E() is satisfiable.

Note: If D() and are finite, then the Herbrand
expansion is finite � finite propositional logic theory.

Note: This is used heavily in AI and works well most of
the time!

09/26

Infinite Propositional Logic Theories

Can a finite proof exist when the set is infinite?

Theorem (compactness of propositional logic): A
(countable) set of formulae of propositional logic is
satisfiable if and only if every finite subset is
satisfiable.

Corollary: A (countable) set of formulae in
propositional logic is unsatisfiable if and only if a
finite subset is unsatisfiable.

Corollary: (compactness of PL1): A (countable) set
of formulae in predicate logic is satisfiable if and
only if every finite subset is satisfiable.

09/27

Recursive Enumeration and
Decidability

We can construct a semi-decision procedure for validity, i.e., we
can give a (rather inefficient) algorithm that enumerates all valid
formulae step by step.

Theorem: The set of valid (and unsatisfiable) formulae in PL1 is
recursively enumerable.

What about satisfiable formulae?

Theorem (undecidability of PL1): It is undecidable, whether a
formula of PL1 is valid.

(Proof by reduction from PCP)

Corollary: The set of satisfiable formulae in PL1 is not recursively
enumerable.

In other words: If a formula is valid, we can effectively confirm
this fact. Otherwise, we can end up in an infinite loop.

09/28

Derivation in PL1

Clausal Form instead of Herbrand Expansion.

Clauses are universally quantified disjunctions of

literals; all variables are universally quantified

written as

or

09/29

Production of Clausal Form from SNF

Skolem Normal Form

quantifier prefix + (quantifier-free) matrix

1. Put Matrix into CNF using distribution rule

2. Eliminate universal quantifiers

3. Eliminate conjunction symbol

4. Rename variables so that no variable appears
in more than one clause.

Theorem: It is possible to calculate the clausal form

of every closed formula .

Note: Same remarks as for SNF

09/30

Conversion to CNF (1)

Everyone who loves all animals is loved by someone:

1. Eliminate biconditionals and implications

2. Move inwards: ,

09/31

Conversion to CNF (2)

3. Standardize variables: each quantifier should use a
different one

4. Skolemize: a more general form of existential
instantiation. Each existential variable is replaced by
a Skolem function of the enclosing universally
quantified variables:

5. Drop universal quantifiers:

6. Distribute over :

09/32

Clauses and Resolution

Assumption: All formulae in the KB are clauses.

Equivalently, we can assume that the KB is a set of clauses.

Due to commutativity, associativity, and idempotence of ,
clauses can also be understood as sets of literals. The empty
set of literals is denoted by .

Set of clauses:

Set of literals: C, D

Literal:

Negation of a literal:

09/33

are called resolvents of the parent clauses
and . and are the resolution

literals.

Example: resolves with to
.

Note: The resolvent is not equivalent to the parent
clauses, but it follows from them!

Notation: is a resolvent of two
clauses from

–

–

Propositional Resolution

09/34

What Changes?

Examples

We need unification, a way to make literals identical.

Based on the notion of substitution, e.g., .

09/35

Substitutions

A substitution substitutes
variables for terms (does NOT contain).

Applying a substitution to an expression
yields the expression which is with all
occurrences of replaced by for all .

09/36

Substitution Examples

no subsitution

09/37

Composing Substitutions

Composing substitutions and gives
which is that substitution obtained by first
applying to the terms in and adding
remaining term/variable pairs (not occurring in)
to .

Example:

Application example:

09/38

Properties of substitutions

For a formula and substitutions ,

associativity

no commutativity!

09/39

Unification

Unifying a set of expressions

Find substitution such that for all

Example

The most general unifier, the mgu, g of has the
property that if is any unifier of then there
exists a substitution such that

Property: The common instance produced is unique
up to alphabetic variants (variable renaming)

not the simplest unifier

most general unifier (mgu)

09/40

Subsumption Lattice

a)

b)

09/41

Disagreement Set

The disagreement set of a set of

expressions is the set of

sub-terms of at the first position

in for which the disagree

Examples

gives

gives

gives

09/42

Unification Algorithm

Unify(Terms):

Initialize ;

Initialize = Terms;

Initialize = ;

*If is a singleton, then output . Otherwise continue.

Let be the disagreement set of .

If there exists a var and a term in such that
does not occur in , continue. Otherwise, exit with failure.

Goto *.

09/43

Example

09/44

Binary Resolution

where s=mgu(), the most general unifier

is the resolvent of the parent
clauses and .

and do not share variables

and are the resolution literals.

Examples:

09/45

Some Further Examples

Resolve and

Standardizing the variables apart gives
and

Substitution Resolvent

Resolve and

Standardizing the variables apart

Substitution and Resolvent

09/46

Factoring

where s=mgu(,) is the most general
unifier.

Needed because:

but cannot be derived by binary resolution

Factoring yields:

and whose resolvent is .

09/47

Derivations

Notation: is a resolvent or a
factor of two clauses from

We say can be derived from , i.e.,

If there exist such that

for 1 ≤ i ≤ n.

09/48

Example

From Russell and Norvig :

The law says it is a crime for an American to
sell weapons to hostile nations. The country
Nono, an enemy of America, has some
missiles, and all of its missiles were sold to it
by Colonel West, who is American.

Prove that Col. West is a criminal.

09/49

Example

… it is a crime for an American to sell weapons to hostile nations:

Nono … has some missiles, i.e., :

and

… all of its missiles were sold to it by Colonel West.

Missiles are weapons:

An enemy of America counts as “hostile”:

West, who is American …

The country Nono, an enemy of America

09/50

An Example

09/51

Another Example

09/52

Properties of Resolution

Lemma: (soundness) If , then .

Lemma: resolution is refutation-complete:

is unsatisfiable implies .

Theorem: is unsatisfiable iff .

Technique:

to prove that

negate and prove that .

09/53

The Lifting Lemma

Lemma:

Let and be two clauses with no shared
variables, and let and be ground
instances of and . If is a resolvent
of and , then there exists a clause such
that

(1) is a resolvent of and

(2) is a ground instance of

Can be easily generalized to derivations

09/54

The general picture

Any set of sentences S is representable in clausal form

Assume S is unsatisfiable, and in clausal form

Some set S’ of ground instances is unsatisfiable

Resolution can find a contradiction in S’

There is a resolution proof for the contradiction in S

Herbrand’s theorem

Ground resolution theorem

Lifting lemma

09/55

Closing Remarks: Processing

� PL1-Resolution: forms the basis of

� most state of the art theorem provers for PL1

� the programming language Prolog

� only Horn clauses

� considerably more efficient methods.

� not dealt with : search/resolution strategies

� Finite theories: In applications, we often have
to deal with a fixed set of objects. Domain
closure axiom:

�

� Translation into finite propositional theory is possible.

09/56

Closing Remarks: Possible Extensions

� PL1 is definitely very expressive, but in some
circumstances we would like more …

� Second-Order Logic: Also over predicate quantifiers

�

� Validity is no longer semi-decidable (we have lost
compactness)

� Lambda Calculus: Definition of predicates, e.g.,
defines a new predicate of arity 2

� Reducible to PL1 through Lambda-Reduction

� Uniqueness quantifier: – there is exactly one …

� Reduction to PL1:

�

09/57

Summary

� PL1 makes it possible to structure statements, thereby
giving us considerably more expressive power than
propositional logic.

� Formulae consist of terms and atomic formulae, which,
together with connectors and quantifiers, can be put
together to produce formulae.

� Interpretations in PL1 consist of a universe and an
interpretation function.

� The Herbrand Theory shows that satisfiability in PL1 can
be reduced to satisfiability in propositional logic
(although infinite sets of formulae can arise under
certain circumstances).

� Resolution is refutation complete

� Validity in PL1 is not decidable (it is only semi-
decidable)

