Foundations of Al

5. Constraint Satisfaction
Problems

CSPs as Search Problems, Solving

CSPs, Problem Structure
Bernhard Nebel, Wolfram Burgard & Luc De Raedt

Contents

= What are CSPs?

=« Backtracking Search for CSPs
« CSP Heuristics

« Constraint Propagation

« Problem Structure

05/2

Constraint Satisfaction Problems

= In search problems, the state does not have a
structure (everything is in the data structure) - in
CSPs states are explicitly represented as variable
assignments.

= A CSP consists of
= a set of variables {x1, x2, ... xn} to which
= values {d1, d2, ..,dk} can be assigned

= respecting a set of constraints over the
variables

= A CSP is solved by a variable assignment that
satisfies all given constraints

= Formal representation language with associated
general inference algorithms

05/3

Example: Map-Coloring

Tasmania

m Variables: WA, NT, SA, Q, NSW, V, T
m Values: {red, green, blue}

s Constraints: adjacent regions must have
different colors, e.g. NSW # V

05/4

Australian Capital Territory (ACT)
and Canberra (inside NSW)

View of the Australian National University and Telstra Tower
05/5

One Solution

m Solution assignment:
- { WA =red, NT = green, Q = red, NSW =
green, V = red, SA = blue, T = green }
e Perhaps in addition ACT = blue

05/6

Constraint Graph

o 1%

s Works for binary CSPs (otherwise hypergraph)
= Nodes = variables, arcs = constraints

s Graph structure can be important (e.g., connected
components)

Note: Our problem is 3-colorability for a planar graph

05/7

Variations

s Binary, ternary, or even higher arity

s Finite domains (d values) => d" possible
variable assignments

s Infinite domains (reals, integers)
» linear constraints solvable (in P if real)
= nonlinear constraints unsolvable

05/8

Applications

s Timetabling (classes, rooms, times)
s Configuration (hardware, cars, ...)

s Spreadsheets

s Scheduling

= Floor planning

s Frequency assignments

05/9

Backtracking Search over
Assignments

= Assign values to variables step by step (order
does not matter)

= Consider only one variable per search node!

= DFS with single-variable assignments is called
backtracking search

= Can solve n-queens for n = 25

05/10

Algorithm

function BACKTRACKING-SEARCH(csp) returns solution /failure
return RECURSIVE-BACKTRACKING([], csp)

function RECURSIVE-BACKTRACKING(assigned, csp) returns solution /failure
if’ assigned is complete then return assigned
var4— SELECT-UNASSIGNED- VARIABLE(VARIABLES| csp|, assigned, csp)
for each value in ORDER-DOMAIN-VALUES(var, assigned, csp) do
if value is consistent with assigned according to CONSTRAINTS[csp] then
result +— RECURSIVE-BACKTRACKING([var = value| assigned), esp)
if resull # failure then return result
end
return failure

05/11

Example (1)

05/12

Example (2)

05/13

Example (3)

Example (4)

05/15

Improving Efficiency:
CSP Heuristics & Pruning Techniques

s Variable ordering: Which one to assign first?
s Value ordering: Which value to try first?

s Try to detect failures early on

s [ry to exploit problem structure

> Note: all this is not problem-specific!

05/16

Variable Ordering:
Most constrained first

m Most constrained variable:

s choose the variable with the fewest
remaining legal values

> reduces branching factor!

SRS

"‘-..._‘.

05/17

Variable Ordering:
Most Constraining Variable First

s Break ties among variables with the same
number of remaining legal values:

m choose variable with the most constraints on
remaining unassigned variables

> reduces branching factor in the next steps

R R R

05/18

Value Ordering:
Least Constraining Value First

m Given a variable,

m choose first a value that rules out the fewest
values in the remaining unassigned variables

> We want to find an assignment that satisfies
the constraints (of course, does not help if

unsat.)
t_% Allows 1 value for SA
_L': _h‘l_l]: _.-‘_L]:<‘l_%_ Allows D values for SA

05/19

Rule Out Failures Early On:
Forward Checking

s Whenever a value is assigned to a variable,
values that are now illegal for other variables
are removed

s Implements what the ordering heuristics
implicitly compute
m WA = red, then NT cannot become red

m If all values are removed for one variable, we
can stop!

05/20

Forward Checking (1)

s Keep track of remaining values

s Stop if all have been removed

WA

NT

Q

NSW

v

SA

T

05/21

Forward Checking (2)

s Keep track of remaining values
s Stop if all have been removed

WA NT Q NSW Vv SA

T

05/22

Forward Checking (3)

s Keep track of remaining values

s Stop if all have been removed

WA NT Q NSW v SA T
ENfEEfEIETEEfEIEf EIENET"EIETDEH
B "EENEEfFEETE] "EIEYEH
] BTN EIETE 1L B

05/23

Forward Checking (4)

s Keep track of remaining values
s Stop if all have been removed

SN S~ Seie S

WA NT Q NSW v SA T
(HEEEPE(ETE/E /RN B E (BN
(| "EECEECE[ECE] TE|EDE]
[— | Hjpoowie EE0E]| HEEN]|
[— 1 | — |]

05/24

Forward Checking:
Sometimes it Misses Something

s Forward Checking propagates information
from assigned to unassigned variables

= However, there is no propagation between
unassigned variables

WA

NT

Q

NSW

v

SA

T

05/25

Arc Consistency

A directed arc X — Y is “consistent” iff

= for every value x of X, there exists a value
y of Y, such that (x,y) satisfies the
constraint between X and Y

Remove values from the domain of X to
enforce arc-consistency

Arc consistency detects failures earlier

Can be used as preprocessing technique or as
a propagation step during backtracking

05/26

Arc Consistency Example

WA

NT

NSW

SEA SSha S~

v

05/27

AC3 Algorithm

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables {X;, X», X, }
local variables: gueue, a queue of arcs, initially all the arcs in cap

while gueue is not empty do
(X, X;)— REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(X;. X;) then
for each X; in NEIGHBORS[.X;] do
add (X, X;)to queue

function REMOVE-INCONSISTENT- VALUES(X, X,) returns true iff we remove
a value

removed «— false

for each zin DoMAIN[X;] do

if no value y in DOMAIN[X] allows (z,¥) to satisfy the constraint between X
and X
then delete = from DOMAIN[X,]; removed — true
return removed

05/28

Properties of AC3

= AC3 runs in O(d?n?) time, with n being the
number of nodes and d being the maximal
number of elements in a domain

= Of course, AC3 does not detect all
iInconsistencies (which is an NP-hard problem)

05/29

Problem Structure (1)

O—
@@'éo@

Q,

= CSP has two independent components

= Identifiable as connected components of
constraint graph

= Can reduce the search space dramatically

05/30

Problem Structure (2):
Tree-structured CSPs

(A (E)
Om0
© ()

= If the CSP graph is a tree, then it can be
solved in O(nd?)
= General CSPs need in the worst case O(d")

= [dea: Pick root, order nodes, apply arc
consistency from leaves to root, and assign
values starting at root

05/31

Problem Structure (2):
Tree-structured CSPs

(A (E)
OG QG (ABROHKEE

= Apply arc-consistency to (X, X,), when X is
the parent of X,, for all k=n downto 2.

= Now one can start at X, assigning values from
the remaining domains without creating any
conflict in one sweep through the tree!

= Algorithm linear in n

05/32

Problem Structure (3):
Almost Tree-structured

= Conditioning: Instantiate a variable and prune
values in neighboring variables

o D—@
‘2.@ = c
G

@ @

= Cutset conditioning: Instantiate (in all ways) a
set of variables in order to reduce the graph to
a tree (note: finding minimal cutset is NP-
hard)

05/33

Another Method:
Tree Decomposition (1)

= Decompose problem into a set of connected
sub-problems, where two sub-problems are
connected when they share a constraint

= Solve sub-problems independently and
combine solutions

05/34

Another Method:
Tree Decomposition (2)

m A tree decomposition must satisfy the following
conditions:

m Every variable of the original problem appears in at least
one sub-problem

m Every constraint appears in at least one sub-problem

m If a variable appears in two sub-problems, it must appear
in all sub-problems on the path between the two sub-
problems

m The connections form a tree

05/35

Another Method:
Tree Decomposition (3)

= Consider sub-problems as new mega-nodes,
which have values defined by the solutions to

the sub-problems

= Use technique for tree-structured CSP to find
an overall solution (constraint is to have
identical values for the same variable).

{WA=red, NT=green, SA=blue}
{WA=red, NT=blue, SA=green}
{WA=blue, NT=green, SA=red}

{NT=blue, SA=green, Q=red}
{NT=green, SA=red, Q=blue}
{NT=green, SA=blue, Q=red}

05/36

Tree Width

= [ree width of a tree decomposition = size of
largest sub-problem minus 1

= [ree width of a graph is minimal tree width
over all possible tree decompositions

= If a graph has tree width w and we know a
tree decomposition with that width, we can
solve the problem in O(nd"”+1)

= Finding a tree decomposition with minimal
tree width is NP-hard

05/37

Summary & Outlook

CSPs are a special kind of search problem:
= states are value assignments
= goal test is defined by constraints

Backtracking = DFS with one variable assigned per
node. Other intelligent backtracking techniques
possible

Variable/value ordering heuristics can help
dramatically

Constraint propagation prunes the search space

Path-consistency is a constraint propagation
technique for triples of variables

Tree structure of CSP graph simplifies problem
significantly

Cutset conditioning and tree decomposition are two
ways to transform part of the problem into a tree

CSPs can also be solved using local search

05/38

