
SA-1

Foundations of AI

5. Constraint Satisfaction 
Problems

CSPs as Search Problems, Solving 
CSPs, Problem Structure

Bernhard Nebel, Wolfram Burgard & Luc De Raedt

05/2

Contents

� What are CSPs?

� Backtracking Search for CSPs

� CSP Heuristics

� Constraint Propagation

� Problem Structure

05/3

Constraint Satisfaction Problems

� In search problems, the state does not have a 
structure (everything is in the data structure) – in 
CSPs states are explicitly represented as variable 
assignments.

� A CSP consists of

� a set of variables {x1, x2, … xn} to which

� values {d1, d2, ..,dk} can be assigned

� respecting a set of constraints over the 
variables

� A CSP is solved by a variable assignment that 
satisfies all given constraints 

� Formal representation language with associated 
general inference algorithms

05/4

Example: Map-Coloring

� Variables: WA, NT, SA, Q, NSW, V, T 

� Values: {red, green, blue}

� Constraints: adjacent regions must have 
different colors, e.g. NSW ≠ V



05/5

Australian Capital Territory (ACT)
and Canberra (inside NSW)

View of the Australian National University and Telstra Tower

05/6

One Solution

� Solution assignment:

- { WA = red, NT = green, Q = red, NSW = 
green, V = red, SA = blue, T = green }

• Perhaps in addition ACT = blue

05/7

Constraint Graph

� Works for binary CSPs (otherwise hypergraph)
� Nodes = variables, arcs = constraints
� Graph structure can be important (e.g., connected 

components)

Note: Our problem is 3-colorability for a planar graph

05/8

Variations

� Binary, ternary, or even higher arity

� Finite domains (d values) => dn possible 
variable assignments

� Infinite domains (reals, integers)

� linear constraints solvable (in P if real)

� nonlinear constraints unsolvable



05/9

Applications

� Timetabling (classes, rooms, times)

� Configuration (hardware, cars, …)

� Spreadsheets

� Scheduling

� Floor planning

� Frequency assignments

� …

05/10

Backtracking Search over 
Assignments

� Assign values to variables step by step (order 
does not matter)

� Consider only one variable per search node!

� DFS with single-variable assignments is called 
backtracking search

� Can solve n-queens for n ≈ 25 

05/11

Algorithm

05/12

Example (1)



05/13

Example (2)

05/14

Example (3)

05/15

Example (4)

05/16

Improving Efficiency:
CSP Heuristics & Pruning Techniques

� Variable ordering: Which one to assign first?

� Value ordering: Which value to try first?

� Try to detect failures early on

� Try to exploit problem structure

� Note: all this is not problem-specific!



05/17

Variable Ordering:
Most constrained first

� Most constrained variable:

� choose the variable with the fewest 
remaining legal values 

� reduces branching factor!

05/18

Variable Ordering:
Most Constraining Variable First

� Break ties among variables with the same 
number of remaining legal values:

� choose variable with the most constraints on 
remaining unassigned variables

� reduces branching factor in the next steps

05/19

Value Ordering:
Least Constraining Value First

� Given a variable, 

� choose first a value that rules out the fewest 
values in the remaining unassigned variables

� We want to find an assignment that satisfies 
the constraints (of course, does not help if 
unsat.)

05/20

Rule Out Failures Early On:
Forward Checking

� Whenever a value is assigned to a variable, 
values that are now illegal for other variables 
are removed

� Implements what the ordering heuristics 
implicitly compute

� WA = red, then NT cannot become red

� If all values are removed for one variable, we 
can stop!



05/21

Forward Checking (1)

� Keep track of remaining values

� Stop if all have been removed

05/22

Forward Checking (2)

� Keep track of remaining values

� Stop if all have been removed

05/23

Forward Checking (3)

� Keep track of remaining values

� Stop if all have been removed

05/24

Forward Checking (4)

� Keep track of remaining values

� Stop if all have been removed



05/25

Forward Checking:
Sometimes it Misses Something

� Forward Checking propagates information 
from assigned to unassigned variables

� However, there is no propagation between 
unassigned variables

05/26

Arc Consistency

� A directed arc X → Y is “consistent” iff

� for every value x of X, there exists a value 
y of Y, such that (x,y) satisfies the 
constraint between X and Y

� Remove values from the domain of X to 
enforce arc-consistency

� Arc consistency detects failures earlier

� Can be used as preprocessing technique or as 
a propagation step during backtracking

05/27

Arc Consistency Example

05/28

AC3 Algorithm



05/29

Properties of AC3

� AC3 runs in O(d3n2) time, with n being the 
number of nodes and d being the maximal 
number of elements in a domain

� Of course, AC3 does not detect all 
inconsistencies (which is an NP-hard problem)

05/30

Problem Structure (1)

� CSP has two independent components

� Identifiable as connected components of 
constraint graph

� Can reduce the search space dramatically

05/31

Problem Structure (2):
Tree-structured CSPs

� If the CSP graph is a tree, then it can be 
solved in O(nd2)
� General CSPs need in the worst case O(dn)

� Idea: Pick root, order nodes, apply arc 
consistency from leaves to root, and assign 
values starting at root

05/32

Problem Structure (2):
Tree-structured CSPs

� Apply arc-consistency to (Xi, Xk), when Xi is 
the parent of Xk, for all k=n downto 2.

� Now one can start at X1 assigning values from 
the remaining domains without creating any 
conflict in one sweep through the tree!

� Algorithm linear in n



05/33

Problem Structure (3):
Almost Tree-structured

� Conditioning: Instantiate a variable and prune 
values in neighboring variables

� Cutset conditioning: Instantiate (in all ways) a 
set of variables in order to reduce the graph to 
a tree (note: finding minimal cutset is NP-
hard)

05/34

Another Method:
Tree Decomposition (1)

� Decompose problem into a set of connected 
sub-problems, where two sub-problems are 
connected when they share a constraint

� Solve sub-problems independently and 
combine solutions

05/35

Another Method:
Tree Decomposition (2)

� A tree decomposition must satisfy the following 
conditions:
� Every variable of the original problem appears in at least 

one sub-problem
� Every constraint appears in at least one sub-problem
� If a variable appears in two sub-problems, it must appear 

in all sub-problems on the path between the two sub-
problems

� The connections form a tree

05/36

Another Method:
Tree Decomposition (3)

� Consider sub-problems as new mega-nodes, 
which have values defined by the solutions to 
the sub-problems

� Use technique for tree-structured CSP to find 
an overall solution (constraint is to have 
identical values for the same variable).

{WA=red, NT=green, SA=blue}
{WA=red, NT=blue, SA=green}
{WA=blue, NT=green, SA=red}

:
:

{NT=blue, SA=green, Q=red}
{NT=green, SA=red, Q=blue}
{NT=green, SA=blue, Q=red}

:
:



05/37

Tree Width

� Tree width of a tree decomposition = size of 
largest sub-problem minus 1

� Tree width of a graph is minimal tree width 
over all possible tree decompositions

� If a graph has tree width w and we know a 
tree decomposition with that width, we can 
solve the problem in O(ndw+1)

� Finding a tree decomposition with minimal 
tree width is NP-hard

05/38

Summary & Outlook

� CSPs are a special kind of search problem:
� states are value assignments
� goal test is defined by constraints

� Backtracking = DFS with one variable assigned per 
node. Other intelligent backtracking techniques 
possible 

� Variable/value ordering heuristics can help 
dramatically

� Constraint propagation prunes the search space
� Path-consistency is a constraint propagation 

technique for triples of variables
� Tree structure of CSP graph simplifies problem 

significantly
� Cutset conditioning and tree decomposition are two 

ways to transform part of the problem into a tree 
� CSPs can also be solved using local search


