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Quantitative vs. Qualitative Representations

Spatio-temporal configurations
can be described quantitatively
by specifying the coordinates of
the relevant objects:

Example: At time point 10.0

object A is at position

(11.0, 1.0, 23.7), at time point 11.0

at position (15.2, 3.5, 23.7). From

time point 0.0 to 11.0, object B is

at position (15.2, 3.5, 23.7). Object

C is at time point 11.0 at position

(300.9, 25.6, 200.0) and at time

point 35.0 at (11.0, 1.0, 23.7).

Often, however, a qualitative
description (using a finite
vocabulary) is more adequate:

Example: Object A hit object

B. Afterwards, object C arrived.

Sometimes we want to reason
with such descriptions.

Example: Object C was not

close to object A, when it hit

object B.
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Representation of Qualitative Knowledge

Intention: describe configurations in an infinite (continuous)
domain using a finite vocabulary and reason about these
descriptions

Specification of a vocabulary: usually a finite set of
relations (often binary) that are pairwise disjoint and
jointly exhaustive

Specification of a language: often sets of atomic formulae
(constraint networks), perhaps restricted disjunction

Specification of a formal semantics

Analysis of computational properties and design of
reasoning methods (often constraint propagation)

Perhaps, specification of operational semantics for
verifying whether a relation holds in a given quantitative
configuration
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Applications in . . .

Natural language processing

Specification of abstract spatio-temporal configurations

Query languages for spatio-temporal information systems

Layout descriptions of documents (and learning of such
layouts)

Action planning

. . .
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Example: Qualitative Temporal Relations

Suppose, we want to talk about time instants (points) and
binary relations over them.

Vocabulary: X = Y (X equals Y ), X < Y (X before Y ),
and X > Y (X after Y ).

Language:
Allow for disjunctions of basic relations to express
indefinite information. Use unions of relations to express
that. For instance, < ∪ = expresses ≤.
23 different relations (including the impossible and the
universal relation)
Use sets of atomic formulae with these relations to
describe configurations. For example:{

x = y, y (< ∪ >) z
}

Semantics: Interpret the time point symbols and relation
symbols over the rational (or real) numbers.
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Some Reasoning Problems

{
x (< ∪ =) y, y (< ∪ =) z, v (< ∪ =) y, w > y, z (< ∪ =)x

}
Satisfiability: Are there values for all time points such that
all formulae are satisfied?

Satisfiability with v = w?

Finding a satisfying instantiation of all time points

Deduction: Does x{=}y follow logically?
Does v ≤ w follow?

Finding a minimal description: What are the most
constrained relations that describe the same set of
instantiations?



Constraint
Satisfaction

Problems

S. Wölfl,
M. Helmert

Motivation

Qualitative CSP

Qualitative
Constraint
Languages

Allen’s
Interval
Algebra

RCC8

Literature

From a Logical Point of View . . .

In general, qualitatively described configurations are simple
logical theories:

Only sets of atomic formulae to describe the configuration

Only existentially quantified variables (or constants)

A fixed background theory that describes the semantics of
the relations (e.g., dense linear orders)

We are interested in satisfiability, model finding, and
deduction
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Let B be a finite set of (binary) relations on some (infinite)
domain D (elements of B are called base relations).
We require:

The relations in B are JEPD, i. e., jointly exhaustive and
pairwise disjoint.
B is closed under converses.

Then:

Let A be the set of relations that can be built by taking
the unions of relations from B ( 2|B| different relations).
A is closed under converse, complement, intersection and
union.

Often, A is closed under composition of base relations,
i. e., for all B,B′ ∈ B,

B ◦B′ ∈ A.
Then, A is closed under composition of arbitrary relations.

But often this condition is not satisfied.



Constraint
Satisfaction

Problems

S. Wölfl,
M. Helmert

Motivation

Qualitative CSP

Qualitative
Constraint
Languages

Allen’s
Interval
Algebra

RCC8

Literature

Computing Operations on Relations

Let A be the system of relations over a set of base relations B that
satisfies all the conditions above.
We may write relations as sets of base relations:

B1 ∪ · · · ∪Bn
∼= {B1, . . . , Bn}

Then the operations on the relations can be computed as follows:

Composition:

{B1, . . . Bn} ◦ {B′1, . . . , B′m} =
n⋃

i=1

m⋃
j=1

Bi ◦B′j

Converse:
{B1, . . . , Bn}−1 = {B−1

1 , . . . , B−1
n }

Complement:
{B1, . . . , Bn} = {B ∈ B : B 6= Bi, for each 1 ≤ i ≤ n}

Intersection and union are defined in the usual set-theoretical way.



Constraint
Satisfaction

Problems

S. Wölfl,
M. Helmert

Motivation

Qualitative CSP

Qualitative
Constraint
Languages

Allen’s
Interval
Algebra

RCC8

Literature

Computing Operations on Relations

Let A be the system of relations over a set of base relations B that
satisfies all the conditions above.
We may write relations as sets of base relations:

B1 ∪ · · · ∪Bn
∼= {B1, . . . , Bn}

Then the operations on the relations can be computed as follows:

Composition:

{B1, . . . Bn} ◦ {B′1, . . . , B′m} =
n⋃

i=1

m⋃
j=1

Bi ◦B′j

Converse:
{B1, . . . , Bn}−1 = {B−1

1 , . . . , B−1
n }

Complement:
{B1, . . . , Bn} = {B ∈ B : B 6= Bi, for each 1 ≤ i ≤ n}

Intersection and union are defined in the usual set-theoretical way.



Constraint
Satisfaction

Problems

S. Wölfl,
M. Helmert

Motivation

Qualitative CSP

Qualitative
Constraint
Languages

Allen’s
Interval
Algebra

RCC8

Literature

Computing Operations on Relations

Let A be the system of relations over a set of base relations B that
satisfies all the conditions above.
We may write relations as sets of base relations:

B1 ∪ · · · ∪Bn
∼= {B1, . . . , Bn}

Then the operations on the relations can be computed as follows:

Composition:

{B1, . . . Bn} ◦ {B′1, . . . , B′m} =
n⋃

i=1

m⋃
j=1

Bi ◦B′j

Converse:
{B1, . . . , Bn}−1 = {B−1

1 , . . . , B−1
n }

Complement:
{B1, . . . , Bn} = {B ∈ B : B 6= Bi, for each 1 ≤ i ≤ n}

Intersection and union are defined in the usual set-theoretical way.



Constraint
Satisfaction

Problems

S. Wölfl,
M. Helmert

Motivation

Qualitative CSP

Qualitative
Constraint
Languages

Allen’s
Interval
Algebra

RCC8

Literature

Computing Operations on Relations

Let A be the system of relations over a set of base relations B that
satisfies all the conditions above.
We may write relations as sets of base relations:

B1 ∪ · · · ∪Bn
∼= {B1, . . . , Bn}

Then the operations on the relations can be computed as follows:

Composition:

{B1, . . . Bn} ◦ {B′1, . . . , B′m} =
n⋃

i=1

m⋃
j=1

Bi ◦B′j

Converse:
{B1, . . . , Bn}−1 = {B−1

1 , . . . , B−1
n }

Complement:
{B1, . . . , Bn} = {B ∈ B : B 6= Bi, for each 1 ≤ i ≤ n}

Intersection and union are defined in the usual set-theoretical way.



Constraint
Satisfaction

Problems

S. Wölfl,
M. Helmert

Motivation

Qualitative CSP

Qualitative
Constraint
Languages

Allen’s
Interval
Algebra

RCC8

Literature

Reasoning Problems

Given a qualitative CSP:

CSP-Satisfiability (CSAT):

Is the CSP satisfiable/solvable?

CSP-Entailment (CENT):

Given in addition xRy: Is xRy satisfied in each solution of
the CSP?

Computation of an equivalent minimal CSPs (CMIN):

Compute for each pair x, y of variables the strongest
constrained (minimal) relation entailed by the CSP.
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Reductions between CSP Problems

Theorem

CSAT, CENT and CMIN are equivalent under polynomial
Turing reductions.

Proof.

CSAT ≤T CENT and CENT ≤T CMIN are obvious.

CENT ≤T CSAT: We solve CENT (CSP |= xRy?) by testing
satisfiability of the CSP extended by x{B}y where B ranges over all
base relations. Let B1, . . . , Bk be the relations for which we get a
positive answer. Then x{B1, . . . , Bk}y is entailed by the CSP.

CMIN ≤T CENT: We use entailment for computing the minimal
constraint for each pair of variables. Starting with the universal
relation, we remove one base relation until we have a minimal
relation that is still entailed.
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The Path Consistency Method

Given a qualitative CSP with Rv1,v2 = R−1
v2,v1

. Then the path
consistency method is to apply the operation

Rv1,v2 ← Rv1,v2 ∩ (Rv1,v3 ◦Rv3,v2).

on all the constraints of the network until a fixpoint is reached.

The path consistency method guarantees . . .

sometimes minimality

sometimes satisfiability

however sometimes the CSP is not satisfiable, even if the
CSP contains only base relations
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Example: Point Relations

Composition table:

< = >

< < < <,=, >
= < = >

> <,=, > > >

Figure: Composition table for the point algebra. For example:
{<} ◦ {=} = {<}

{<,=} ◦ {<} = {<}
{<,>} ◦ {<} = {<,=, >}
{<,=}−1 = {>,=}
{<,=} ∩ {>,=} = {=}
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Some Properties of the Point Relations

Theorem

A path consistent CSP over the point relations is consistent.

In particular, the path consistency method decides consistency.

Theorem

A path consistent CSP over all point relations without {<,>}
is minimal.

Proofs later . . .
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A Pathological Relation System

Let e, d, i be (self-converse) base relations between points on a
circle:

e: Rotation by 72 degrees (left or right)

d: Rotation by 144 degrees (left or right)

i: Identity

Composition table:

e ◦ e = {i, d}
d ◦ d = {i, e}
e ◦ d = {e, d}
d ◦ e = {e, d}

The following CSP is path
consistent and contains only
base relations, but it is not
satisfiable:

e
d

d

a b

cd

e

e

e
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Qualitative Constraint Languages

From now on, let D be a finite or infinite domain.

Definition

A partition scheme on D is any non-empty, finite set Γ of
binary relations on D such that:

Γ defines a partition of D ×D.

Γ contains the binary identity relation idD.

Γ is closed under converses.

Definition

A constraint language of binary relations on D, Γ, is said to be
generated from a partition scheme ∆, if Γ consists of all finite
unions of relations in ∆.

Constraint languages in this sense will be referred to as
qualitative constraint languages.
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Qualitative Constraint Network

Let Γ be a subset of a qualitative constraint language with
partition scheme ∆.

Definition

A qualitative constraint network over Γ is a triple

P = 〈V,D,C〉 ,

where:

V is a non-empty and finite set of variables,

D is an arbitrary non-empty set (domain),

C is a finite set of constraints C1, . . . , Cq, i. e., each
constraint Ci is a pair (si, Ri), where si is a pair of
variables and Ri is a binary relation contained in Γ.
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Weak Composition

Let Γ be a qualitative constraint language with partition
scheme ∆. For R,S ∈ Γ, define:

R ◦w S :=
⋃
{T ∈ ∆ : T ∩ (R ◦ S) 6= ∅}

— ◦w is called weak composition of R and S.

Lemma

For all relations R,S, T ∈ Γ,

R ◦ S ⊆ R ◦w S;

T ∩ (R ◦ S) = ∅ if and only if T ∩ (R ◦w S) = ∅;
(R ◦w S)−1 = S−1 ◦w R−1;

R ◦w (S ∪ T ) = (R ◦w S) ∪ (R ◦w T ).
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Weak Composition: Examples

Example:
Consider a linear order on a domain with 2 elements a < b. The
relations R<, R=, R> define a partition schema on D. It holds:

R< ◦R< = R> ◦R> = ∅, R< ◦R> = {(a, a)}, R> ◦R< = {(b, b)}

but

R< ◦w R< = R> ◦w R> = ∅, R< ◦w R> = R=, R> ◦w R< = R=

Moreover,

(R<◦wR>)◦wR> = R=◦wR> = R> 6= ∅ = R<◦w∅ = R<◦w(R>◦wR>).

Example:
Consider a linear order on a domain with 3 elements a < b < c. Then

R< ◦R< = {(a, c)} but R< ◦w R< = R<.
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Non-Associative Relation Algebras

Definition

A non-associative relation algebra is a set A with

binary operations u, t, and ;,

unary operations − and −, and

distinct elements 0, 1, and δ such that

(a) (A,u,t,−, 0, 1) is a Boolean algebra.

(b) For all elements a, b and c of A:

a ; (b t c) = (a ; b) t (a ; c)
δ ; a = a ; δ = a

(a−)− = a and (−a)− = −(a−)

(a t b)− = a− t b−

(a ; b)− = b− ; a−

(a ; b) u c− = 0 if and only if (b ; c) u a− = 0



Constraint
Satisfaction

Problems

S. Wölfl,
M. Helmert

Motivation

Qualitative
Constraint
Languages

Constraint
Propagation

Tractability

Allen’s
Interval
Algebra

RCC8

Literature

Qualitative Languages and Algebras

Let Γ be a qualitative constraint language with partition
scheme ∆. As spelled out before, each relation R in Γ can be
represented by a finite disjunction of “base relations”
B1, . . . , Bk ∈ ∆. In what follows we identify R with the set of
its base relations

{B1, . . . , Bk} .

Lemma

For each partition scheme ∆, the tuple〈
2∆,∩,∪, ◦w,C∆,

−1, ∅,∆, id∆

〉
defines a non-associative relation algebra.
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Algebraically Closed Networks

A qualitative network P = 〈V,D,C〉 is normalized, if

for each pair of variables x, y, C contains at least one
constraint ((x, y), R);
for each constraint ((x, x), R) in C, R = idD;
for constraints ((x, y), R) and ((y, x), S) in C, R = S−1.

In what follows we will always assume that constraint networks
are normalized.

Definition

A qualitative constraint network P is algebraically closed (or:
a-closed), if for all constraints ((x, y), R), ((x, z), S), and
((z, y), T ) of P , it holds:

R ⊆ S ◦w T.

Note: If P is algebraically closed, then R = R ∩ (S ◦w T ).
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Constraint Propagation

Following, we present two constraint propagation algorithms.
The path consistency algorithm can only be used if the
underlying partition scheme is closed under composition, i. e., if
for each pair of relations R,S ∈ ∆, R ◦ S is a (finite) union of
a subset of ∆.
The algebraic closure algorithm is a variant of the path
consistency algorithm. Instead of ordinary composition of
relations, we use weak composition.
Since weak composition is an upper approximation of
composition only, the algebraic closure algorithm may not
result in a path-consistent network.

Let P = 〈V,D,C〉 be a (normalized) qualitative constraint
network.
Let Table [i, j] be a n× n-matrix (n: number of variables), in
which we record the constraints between the variables.
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Path Consistency Algorithm

EnforcePathConsistency (P ):
Input: a qualitative network P = 〈V,D,C〉
Output: “inconsistent”, or an equivalent, path-consistent network P ′

Paths(i, j) = {(i, j, k) : 1 ≤ k ≤ n, k 6= i, j} ∪
{(k, i, j) : 1 ≤ k ≤ n, k 6= i, j}

Queue :=
⋃

i,j Paths(i, j)

while Q 6= ∅
select and delete (i, k, j) from Q
T := Table [i, j] ∩ (Table [i, k] ◦ Table [k, j])
if T = ∅

return “inconsistent”
elseif T 6= Table [i, j]

Table [i, j] := T
Table [j, i] := T−1

Queue := Queue ∪ Paths(i, j)
return P ′ with the refined constraints as recorded in Table
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Algebraic Closure Algorithm

EnforceAlgClosure (P ):
Input: a qualitative network P = 〈V,D,C〉
Output: “inconsistent”, or an equivalent algebraically closed network P ′

Paths(i, j) = {(i, j, k) : 1 ≤ k ≤ n, k 6= i, j} ∪
{(k, i, j) : 1 ≤ k ≤ n, k 6= i, j}

Queue :=
⋃

i,j Paths(i, j)

while Q 6= ∅
select and delete (i, k, j) from Q
T := Table [i, j] ∩ (Table [i, k] ◦w Table [k, j])
if T = ∅

return “inconsistent”
elseif T 6= Table [i, j]

Table [i, j] := T
Table [j, i] := T−1

Queue := Queue ∪ Paths(i, j)
return P ′ with the refined constraints as recorded in Table
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Computing on the Symbolic Level

Let Γ be a qualitative constraint language with partition
scheme ∆.
We suppose that we have determined (by some formal proof or
some computation) the (weak) composition table for ∆, i. e.,

◦(w) : ∆×∆→ 2∆.

Let now B be a finite set of symbols (bijective with ∆).
Then 2B is a Boolean algebra, from which we obtain a
(non-associative) relation algebra, if we extend ◦(w) to a
function

◦(w) : 2B × 2B → 2B.

Now we can perform all the operations needed in the path
consistency/a-closure algorithm on the symbolic level.
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Path Consistency and Tractability

Let Γ be a subset of a qualitative constraint language with a
partition scheme ∆ that is closed under composition.
Let Γ̂ be smallest superset of Γ that is closed under
intersection, converses, and composition.

Lemma

There exists a polynomial time reduction from CbΓ to CΓ.
In particular, it holds:

Γ is tractable if and only if Γ̂ is tractable.

Enforcing path consistency decides consistency over Γ̂ if
and only if it does so over Γ.

Proof idea.

Each relation in Γ̂ stems from a finite number of compositions,
intersections, and conversions applied to relations in Γ. Hence each
constraint network over Γ̂ can be transformed step-by-step into an
equivalent network over Γ. In the case where a relation results from
composing other relations, we need to introduce some fresh
variables.
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Algebraic Closure and Tractability

Let now Γ be a subset of a qualitative constraint language with
a partition scheme ∆ (not necessarily closed under
composition).
From now on, let Γ̂ always be smallest superset of Γ that is
closed under intersection, converses, and weak composition.

Lemma (Ligozat & Renz 2005)

If enforcing a-closure decides consistency for atomic networks
(i. e., for qualitative networks over ∆), then CbΓ is
polynomial-time reducible to CΓ.
In particular, if a-closure decides consistency for atomic
networks, then

Γ is tractable if and only if Γ̂ is so;

enforcing a-closure decides consistency over Γ if and only
if a-closure decides consistency over Γ̂.
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Allen’s Interval Calculus

Allen’s interval calculus (IA): time intervals and binary
relations over them

Let 〈R, <〉 be the linear order on the real numbers
(conceived of as the flow of time).
Then, the domain D of Allen’s calculus is the set of all
intervals

X = (X−, X+) ∈ R2, where X− < X+

(näıve approach)

Relations between concrete intervals, e. g.:

(1.0,2.0) strictly before (3.0,5.5)
(1.0,3.0) meets (3.0,5.5)
(1.0,4.0) overlaps (3.0,5.5)
. . .
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IA: The Base Relations

To determine all possible relation between Allen intervals, we
determine how one can order the four points of two intervals:

Relation Symbol Name

{(X,Y ) : X− < X+ < Y − < Y +} ≺ before

{(X,Y ) : X− < X+ = Y − < Y +} m meets

{(X,Y ) : X− < Y − < X+ < Y +} o overlaps

{(X,Y ) : X− = Y − < X+ < Y +} s starts

{(X,Y ) : Y − < X− < X+ = Y +} f finishes

{(X,Y ) : Y − < X− < X+ < Y +} d during

{(X,Y ) : Y − = X− < X+ = Y +} ≡ equal

and the converse relations (obtained by exchanging X and Y )
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IA: The 13 Base Relations Graphically

X

Y before

Y
meets

Y
overlaps

Y
during

Y
starts

Y finishes

Y
equals

Y before−1

Y meets−1

Y overlaps−1

Y during−1

Y starts−1

Y finishes−1
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IA: Partition Scheme and Composition

Lemma

The 13 base relations of Allen’s interval calculus define a
partition scheme on the set of all Allen intervals.

In what follows:

IA: the qualitative constraint language generated from all
base relations of Allen’s interval calculus (contains
213 = 8192 relations)

IA-B: the subclass of IA containing base relations only

Lemma

The set of base relations of Allen’s interval calculus is closed
under composition.



≺ � d d−1 o o−1 m m−1 s s−1 f f−1

≺ o ≺ o ≺ o ≺ o
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IA: An Example
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6

?

Compose the constraints: I4 {d, f} I2 and I2 {d} I1: I4 {d} I1.
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IA: Example for Incompleteness
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IA: NP-Hardness

Theorem (Kautz & Vilain)

Deciding satisfiability over IA is NP-hard.

Proof.

Reduction from 3-colorability (the original proof uses 3Sat).

Let G = (V,E), V = {v1, . . . , vn} be an instance of 3-colorability.
Then we use the intervals {v1, . . . , vn, 1, 2, 3} with the following
constraints:

1 {m} 2
2 {m} 3
vi {m,≡, m−1} 2 ∀vi ∈ V
vi {m, m−1,≺,�} vj ∀(vi, vj) ∈ E

This constraint system is satisfiable iff G can be colored with 3
colors.
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IA: Clause Representation

Following, we will look at polynomial special cases, i. e.,
subclasses of the qualitative constraint language IA.

For this we start from a natural translation of interval
relations/constraints (of the form X RY ) into clause formulas
over atoms of the form a op b, where:

a, b ∈ {X−, X+, Y −, Y +}; and

op ∈ {<,>,=,≤,≥}.
Example: All base relations can be expressed as unit clauses.

Lemma

Let P be a constraint network over IA, and let π(P ) be the
translation of P into clause form.
P is satisfiable iff π(P ) is satisfiable over the rational numbers.
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IA: The Continuous Endpoint Class

Continuous Endpoint Class IA-C: the subset of IA consisting of
those relations with a clause form containing only unit clauses,
where ¬(a = b) is forbidden.

Example: All basic relations and, e.g., {d, o, s}, because

π(X {d, o, s} Y ) = {X− < X+, Y − < Y +,
X− < Y +, X+ > Y −,
X+ < Y +}

� -

� -� ....� ...

Y

X

The set IA-C contains 83 relations. It is closed under
intersection, composition, and converses (it is a sub-algebra
wrt. these three operations on relations). This can be shown by
using a computer program.
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IA: Consistency for IA-C

Following we prove:

Lemma

Each 3-consistent interval CSP over IA-C is globally consistent.

From this we can conclude:

Theorem (van Beek)

Applied to networks over IA-C, enforcing path consistency decides
satisfiability and solves the minimal label problem.

Corollary

A path-consistent interval constraint network containing base
relations only is satisfiable.



Constraint
Satisfaction

Problems

S. Wölfl,
M. Helmert

Motivation

Qualitative
Constraint
Languages

Allen’s
Interval
Algebra

Intervals and
Relations
Between Them

IA: Examples

IA: Example for
Incompleteness

The Continuous
Endpoint Class

The Continuous
Endpoint Class

The Endpoint
Subclass

The ORD-Horn
Subclass

Solving Arbitrary
Allen CSPs

RCC8

Literature

Helly’s Theorem

Definition

A set M ⊆ Rn is convex iff for all pairs of points a, b ∈M , all
points on the line connecting a and b belong to M .

Theorem (Helly)

Let F be a family of at least n+ 1 convex sets in Rn. If all
sub-families of F with n+ 1 sets have a non-empty
intersection, then

⋂
F 6= ∅.
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IA: Strong n-Consistency (1)

Proof of the lemma.

We prove the claim by induction over k with k ≤ n.

Base case: k = 1, 2, 3
√

Induction assumption: Assume strong k − 1-consistency (and
non-emptiness of all relations)

Induction step: From the assumption, it follows that there is an
instantiation of k − 1 variables Xi to pairs (si, ei) ∈ R2

satisfying the constraints Rij between the k − 1 variables.

We have to show that we can extend the instantiation to any
kth variable.
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IA: Strong n-Consistency (2): Instantiating the kth
Variable

Proof (Part 2).

The instantiation of the k − 1 variables Xi to (si, ei) restricts
the instantiation of Xk.

Note: Since Rij ∈ IA-C by assumption, these restrictions can
be expressed by inequalities of the form:

si < X+
k ∧ ej ≥ X−k ∧ . . .

Such inequalities define convex subsets in R2.

 Consider sets of 3 inequalities (= 3 convex sets).
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IA: Strong n-Consistency (3): Using Helly’s
Theorem

Proof (Part 3).

Case 1: All 3 inequalities mention only X−k (or mention only
X+

k ). Then it suffices to consider only 2 of these inequalities
(the strongest). Because of 3-consistency, there exists at least
1 common point satisfying these 3 inequalities.

Case 2: The inequalities mention X−k and X+
k , but it does not

contain the inequality X−k < X+
k . Then there are at most 2

inequalities with the same variable and we have the same
situation as in Case 1.

Case 3: The set contains the inequality X−k < X+
k . In this

case, only three intervals (incl. Xk) can be involved and by the
same argument as above there exists a common point.

 With Helly’s Theorem, it follows that there exists a
consistent instantiation for all subsets of variables.

 Strong k-consistency for all k ≤ n.
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IA: The Endpoint Subclass

Endpoint Subclass: IA-P is the subclass that permits a clause
form containing only unit clauses (a 6= b is now allowed).

Example: all basic relations and {d, o} since

π(X {d, o} Y ) = {X− < X+, Y − < Y +,
X− < Y +, X+ > Y −, X− 6= Y −,
X+ < Y +}

� -

� -X ....� ...

Y

X

Theorem (Vilain & Kautz 86, Ladkin & Maddux 88)

The path consistency method decides satisfiability over IA-P.
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IA: The ORD-Horn Subclass

ORD-Horn Subclass: IA-H is the subclass of IA that permits a
clause form containing only Horn clauses, where only the
following literals are allowed:

a ≤ b, a = b, a 6= b

¬a ≤ b is not allowed!

Example: all R ∈ IA-P and {o, s, f−1}:

π(X{o, s, f−1}Y ) =
{
X− ≤ X+,X− 6= X+,
Y − ≤ Y +, Y − 6= Y +,
X− ≤ Y −,
X− ≤ Y +,X− 6= Y +,
Y − ≤ X+,X+ 6= Y −,
X+ ≤ Y +,

X− 6= Y − ∨X+ 6= Y +
}
.
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IA: The ORD-Horn Subclass (2)

Lemma

IA-H is closed under intersection, composition, and converses.

Theorem

The path consistency method decides satisfiability over IA-H.

IA-H contains 886 relations.
Question: Is IA-H a maximal subalgebra?
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IA: The ORD-Horn Subclass (3)

A computer-aided case analysis leads to the following result:

Lemma

There are only two minimal sub-algebras that strictly contain IA-H:
X1,X2

N1 = {d, d−1, o−1, s−1, f} ∈ X1

N2 = {d−1, o, o−1, s−1, f−1} ∈ X2

The clause forms of these relations contain “proper” disjunctions!

Theorem

The satisfiability problem over IA-H ∪ {Ni} is NP-complete.

Lemma

IA-H is the only maximal tractable subclass that contains all base
relations of IA.
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IA: Solving General Allen CSPs

Backtracking algorithm using path consistency as a
forward-checking method

Method works on tractable fragments of Allen’s calculus:
split relations into relations of a tractable fragment, and
backtrack over these.

Refinements and evaluation of different heuristics

 Which tractable fragment should one use?
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IA: Branching Factors

If the labels are split into base relations, then on average a
label is split into

6.5 relations

If the labels are split into pointizable relations (P), then
on average a label is split into

2.955 relations

If the labels are split into ORD-Horn relations (H), then
on average a label is split into

2.533 relations

 A difference of 0.422 which becomes significant, when
applied to extremely hard instances
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RCC8: Motivation

We may want to state qualitative relationships between regions
in space, for example:

“Region X touches region Y ”

“Germany and Switzerland have a common border”

“Freiburg is located in Baden-Württemberg”
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RCC8: Possible Applications

This can be useful when only partial information is
available:

We may know that region X is not connected with region
Y without knowing the shape and location of X and Y .

We may want to query a database:

Show me all countries bordering the Mediterranean!

We may want to state integrity constraints:

An island has to be located in the interior of a sea.
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RCC8: Qualitative Relations Between Regions

Eight relations between regions:

u u

DC(X,Y)

X

Y

PO(X,Y) TPP(X,Y) NTPP(X,Y)

X

Y X

Y
X

Y

X

Y
X Y X

Y

X
Y

EC(X,Y) EQ(X,Y) TPP (X,Y) NTPP (X,Y)
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RCC8: Intuition

Regions are some “reasonable” non-empty subsets of
space.

DC (disconnected) means that the two regions do not
share any point at all.

EC (externally connected) means that they only share
borders.

PO (partially overlapping) means that the two regions
share interior points.

TPP (tangential proper part) means that one region is a
subset of the other sharing some points on the borders.

NTPP (non-tangential proper part) same, but without
sharing any bordering points.
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Point-Set Topology

Point-set topology is a mathematical theory that deals with
properties of space independent of size and shape.

In topology, we can define notions such as

interior and exterior points of regions,

isolated points of regions,

boundaries of regions,

connected components of regions,

connected regions,

. . .
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Point-Set Topology

Point-set topology is a mathematical theory that deals with
properties of space independent of size and shape.

In topology, we can define notions such as

interior and exterior points of regions,
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connected regions,
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Topology

Definition

A topological space is a pair T = (S,O), where

S is a non-empty set (the universe), and

O is a set of subsets of S (the open sets)

such that the following conditions hold:

∅ ∈ O and S ∈ O.

If O1 ∈ O and O2 ∈ O, then O1 ∩O2 ∈ O.

If (Oi)i∈I is a (possibly infinite) family of elements from
O, then ⋃

i∈I

Oi ∈ O.

Example: In Euclidean space, a set O is open if for each point
x ∈ O there is a ball surrounding x that is contained in O.
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Terminology & Notation

Definition

Let X ⊆ S and x ∈ S.

A set N ⊆ S is a neighborhood of a point x if there is an
open set O ∈ O such that x ∈ O ⊆ N .

x ∈ S is an interior point of X if there is a neighborhood
N of x such that N ⊆ X.

x ∈ S is a touching point of X if every neighborhood of x
has a non-empty intersection with X.

Notation:

int(X) is the set of interior points of X (the interior of X).

cls(X) is the set of touching points of X (the closure of X).

A set is closed if X = cls(X).
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Interior and Closure Operators

The function int(·) is an interior operator:

1 int(S) = S

2 int(X) ∩ int(Y ) = int(X ∩ Y )
3 int(X) ⊆ X
4 int(int(X)) = int(X)

Note:

X is open iff X = int(X)
cls(X) = S \ int(S \X)
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RCC8: What Is a Region?

EA B D
DC

A and D are reasonable regions, B, C, and E are not

In other words, X is a region iff it is non-empty

X 6= ∅

and regular closed, i. e., the closure of an open set:

X = cls(int(X)).

It is not necessary that a region is internally connected.
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Defining the RCC8-Relations

Let S be a topological space. Then define the following
relations on Reg:

DC(X,Y ) := X ∩ Y = ∅
EC(X,Y ) := X ∩ Y 6= ∅ ∧ intX ∩ intY = ∅
PO(X,Y ) := intX ∩ intY 6= ∅ ∧X 6⊆ Y ∧ Y 6⊆ X
EQ(X,Y ) := X = Y

TPP(X,Y ) := X ⊆ Y ∧X 6⊆ intY

NTPP(X,Y ) := X ⊆ intY

 It can be seen that these relations define a partition
scheme.
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RCC8: From Regions to Boolean Algebras

Let Reg denote the set of all regular closed set of some fixed
topological space.
For X,Y ∈ Reg ∪ {∅} define:

−X := cls(S \X)
X t Y := X ∪ Y
X u Y := cls(int(X ∩ Y ))

By these definition, we obtain a Boolean algebra.
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Boolean Connection Algebras

Definition

A connection algebra is a Boolean algebra B together with a
binary relation C on B such that the following conditions are
satisfied:

x 6= 0⇔ x C x

x C y ⇒ y C x

x 6= 0, 1⇒ x C −x
x C y ∪ z ⇔ x C y or x C z

x 6= 0, 1⇒ not x C y, for some y 6= 0, 1
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RCC8: From Topologies to Connection Algebras

If the underlying topological space is regular and connected,
i. e.,

Hausdorff and for each x ∈ S and closed subset A ⊂ S
with x /∈ A, there exist disjoint open neighborhoods of x
and A;

the only sets that are open and closed are ∅ and S;

then
x C y ⇐⇒ x ∩ y 6= ∅

defines a connection algebra on Reg ∪ {∅}.
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Defining the RCC8-Relations (2)

Let B be a connection algebra. Then we can define the RCC8
relations on B \ {0} as follows:

X DC Y := not X C Y

X P Y := (X,Y ) /∈ C ◦DC
X PP Y := X P Y ∧X 6= Y

X O Y := (X,Y ) ∈ P−1 ◦ P
X PO Y := X O Y ∧ not X P Y ∧ not Y P X

X EC Y := X C Y ∧ not X O Y

X TPP Y := X PP Y ∧ (X,Y ) ∈ EC ◦ EC
X NTPP Y := X PP Y ∧ not X TPP Y

. . .
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RCC8: Complexity

Using a reduction from 3-SAT, it can be shown:

Theorem

Testing satisfiability over arbitrary RCC8 relations is NP-hard.

Using a translation into S4-modal logics, one can show:

Theorem

Testing satisfiability over arbitrary RCC8 relations is
NP-complete.
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RCC8: Constraint Propagation

As in Allen’s interval algebra, we may want to use
constraint propagation instead of translating everything to
modal logic.

We need a composition table . . .

. . . which could be computed using the modal logic
encoding (and in fact, this has been done).

Based on this table, we can then apply the algebraic
closure algorithm

. . . and ask ourselves for which fragment of RCC8 it is
complete.



RCC8: Composition Table

◦ DC EC PO TPP NTPP TPP−1 NTPP−1 EQ

DC,EC DC,EC DC,EC DC,EC
DC * PO,TPP PO,TPP PO,TPP PO,TPP DC DC DC

NTPP NTPP NTPP NTPP
DC,EC DC,EC DC,EC EC,PO PO

EC PO,TPP−1 PO,TPP PO,TPP TPP TPP DC,EC DC EC

NTPP−1 TPP−1,EQ NTPP NTPP NTPP
DC,EC DC,EC PO PO DC,EC DC,EC

PO PO,TPP−1 PO,TPP−1 * TPP TPP PO, TPP−1 PO,TPP−1 PO

NTPP−1 NTPP−1 NTPP NTPP NTPP−1 NTPP−1

DC,EC
TPP

DC,EC DC,EC

TPP DC DC,EC PO,TPP
NTPP

NTPP PO,TPP PO,TPP−1 TPP

NTPP TPP−1,EQ NTPP−1

DC,EC DC,EC
NTPP DC DC PO,TPP NTPP NTPP PO,TPP * NTPP

NTPP NTPP
DC,EC EC,PO PO PO,EQ PO

TPP−1

TPP−1 PO,TPP−1 TPP−1 TPP−1 TPP TPP
NTPP−1 NTPP−1 TPP−1

NTPP−1 NTPP−1 NTPP−1 TPP−1 NTPP

DC,EC PO PO PO PO,TPP−1

NTPP−1 PO,TPP−1 TPP−1 TPP−1 TPP−1 TPP,NTPP NTPP−1 NTPP−1 NTPP−1

NTPP−1 NTPP−1 NTPP−1 NTPP−1 NTPP−1,EQ

EQ DC EC PO TPP NTPP TPP−1 NTPP−1 EQ



Constraint
Satisfaction

Problems

S. Wölfl,
M. Helmert

Motivation

Qualitative
Constraint
Languages

Allen’s
Interval
Algebra

RCC8

RCC8:
Motivation

RCC8: Base
Relations

Topology

Complexity

Constraint
Reasoning

Tractable
Fragments

Literature

RCC8: Is the Composition Table Extensional?

It can easily be verified that already in the 2-dimensional case,
the set of base relations is not closed under composition:

Consider EC ◦ TPP and X NTPP S, where S denotes the
universal region.

Consider EC ◦ EC and a donut-like region X with “hole”
Y .

Lemma (Düntsch et al. 2001)

In each connection algebra, the relation algebra generated by
the RCC8 base relations contains at least 25 atomic relations.

Lemma (Li et al. 2006)

In each model associated to some Euclidean space Rn, the
relation algebra generated by the RCC8 base relations contains
an infinite strictly decreasing sequence of relations.
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RCC8: Tractable Fragments?

Theorem (Li 2006)

Enforcing algebraic closure on atomic RCC8 constraint network
decides satisfiability.

As in the case of Allen’s interval calculus, we may ask for
maximal tractable subsets . . .

Again, one can identify relations that can be encoded by
Horn formulae . . .

148 Horn relations H8, which forms again a maximal
subset.

There are 2 additional maximal subsets that allow for poly.
satisfiability testing!
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