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Motivation

Quantitative vs. Qualitative Representations

Spatio-temporal configurations
can be described quantitatively
by specifying the coordinates of
the relevant objects:

Example: At time point 10.0

object A is at position

(11.0, 1.0, 23.7), at time point 11.0

at position (15.2, 3.5, 23.7). From

time point 0.0 to 11.0, object B is

at position (15.2, 3.5, 23.7). Object

C is at time point 11.0 at position

(300.9, 25.6, 200.0) and at time

point 35.0 at (11.0, 1.0, 23.7).

Often, however, a qualitative
description (using a finite
vocabulary) is more adequate:

Example: Object A hit object

B. Afterwards, object C arrived.

Sometimes we want to reason
with such descriptions.

Example: Object C was not

close to object A, when it hit

object B.
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Motivation

Representation of Qualitative Knowledge

Intention: describe configurations in an infinite (continuous) domain using
a finite vocabulary and reason about these descriptions

I Specification of a vocabulary: usually a finite set of relations (often
binary) that are pairwise disjoint and jointly exhaustive

I Specification of a language: often sets of atomic formulae (constraint
networks), perhaps restricted disjunction

I Specification of a formal semantics

I Analysis of computational properties and design of reasoning methods
(often constraint propagation)

I Perhaps, specification of operational semantics for verifying whether a
relation holds in a given quantitative configuration

S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems July 3/5/10/12/17, 2007 4 / 73



Motivation

Applications in . . .

I Natural language processing

I Specification of abstract spatio-temporal configurations

I Query languages for spatio-temporal information systems

I Layout descriptions of documents (and learning of such layouts)

I Action planning

I . . .
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Motivation

Example: Qualitative Temporal Relations
Suppose, we want to talk about time instants (points) and binary relations
over them.

I Vocabulary: X = Y (X equals Y ), X < Y (X before Y ), and X > Y
(X after Y ).

I Language:
I Allow for disjunctions of basic relations to express indefinite

information. Use unions of relations to express that. For instance,
< ∪ = expresses ≤.

I 23 different relations (including the impossible and the universal
relation)

I Use sets of atomic formulae with these relations to describe
configurations. For example:{

x = y , y (< ∪ >) z
}

I Semantics: Interpret the time point symbols and relation symbols
over the rational (or real) numbers.
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Motivation

Some Reasoning Problems

{
x (< ∪ =) y , y (< ∪ =) z , v (< ∪ =) y ,w > y , z (< ∪ =) x

}
I Satisfiability: Are there values for all time points such that all

formulae are satisfied?

I Satisfiability with v = w?

I Finding a satisfying instantiation of all time points

I Deduction: Does x{=}y follow logically?
Does v ≤ w follow?

I Finding a minimal description: What are the most constrained
relations that describe the same set of instantiations?
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Motivation

From a Logical Point of View . . .

In general, qualitatively described configurations are simple logical theories:

I Only sets of atomic formulae to describe the configuration

I Only existentially quantified variables (or constants)

I A fixed background theory that describes the semantics of the
relations (e.g., dense linear orders)

I We are interested in satisfiability, model finding, and deduction
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Motivation Qualitative CSP

Let B be a finite set of (binary) relations on some (infinite) domain D
(elements of B are called base relations).
We require:

I The relations in B are JEPD, i. e., jointly exhaustive and pairwise
disjoint.

I B is closed under converses.

Then:

I Let A be the set of relations that can be built by taking the unions of
relations from B ( 2|B| different relations).

I A is closed under converse, complement, intersection and union.

I Often, A is closed under composition of base relations, i. e., for all
B,B ′ ∈ B,

B ◦ B ′ ∈ A.

Then, A is closed under composition of arbitrary relations.

But often this condition is not satisfied.
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Motivation Qualitative CSP

Computing Operations on Relations
Let A be the system of relations over a set of base relations B that satisfies all
the conditions above.
We may write relations as sets of base relations:

B1 ∪ · · · ∪ Bn
∼= {B1, . . . ,Bn}

Then the operations on the relations can be computed as follows:

Composition:

{B1, . . .Bn} ◦ {B ′1, . . . ,B ′m} =
n⋃

i=1

m⋃
j=1

Bi ◦ B ′j

Converse:
{B1, . . . ,Bn}−1 = {B−1

1 , . . . ,B−1
n }

Complement:
{B1, . . . ,Bn} = {B ∈ B : B 6= Bi , for each 1 ≤ i ≤ n}

Intersection and union are defined in the usual set-theoretical way.
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Motivation Qualitative CSP

Reasoning Problems

Given a qualitative CSP:

CSP-Satisfiability (CSAT):

I Is the CSP satisfiable/solvable?

CSP-Entailment (CENT):

I Given in addition xRy : Is xRy satisfied in each solution of the CSP?

Computation of an equivalent minimal CSPs (CMIN):

I Compute for each pair x , y of variables the strongest constrained
(minimal) relation entailed by the CSP.
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Motivation Qualitative CSP

Reductions between CSP Problems

Theorem
CSAT, CENT and CMIN are equivalent under polynomial Turing
reductions.

Proof.
CSAT ≤T CENT and CENT ≤T CMIN are obvious.

CENT ≤T CSAT: We solve CENT (CSP |= xRy?) by testing satisfiability of the
CSP extended by x{B}y where B ranges over all base relations. Let B1, . . . ,Bk

be the relations for which we get a positive answer. Then x{B1, . . . ,Bk}y is
entailed by the CSP.

CMIN ≤T CENT: We use entailment for computing the minimal constraint for
each pair of variables. Starting with the universal relation, we remove one base
relation until we have a minimal relation that is still entailed.
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Motivation Qualitative CSP

The Path Consistency Method

Given a qualitative CSP with Rv1,v2 = R−1
v2,v1

. Then the path consistency
method is to apply the operation

Rv1,v2 ← Rv1,v2 ∩ (Rv1,v3 ◦ Rv3,v2).

on all the constraints of the network until a fixpoint is reached.

The path consistency method guarantees . . .

I sometimes minimality

I sometimes satisfiability

I however sometimes the CSP is not satisfiable, even if the CSP
contains only base relations

S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems July 3/5/10/12/17, 2007 13 / 73



Motivation Qualitative CSP

Example: Point Relations

Composition table:

< = >

< < < <,=, >

= < = >

> <,=, > > >

Figure: Composition table for the point algebra. For example: {<} ◦ {=} = {<}

I {<,=} ◦ {<} = {<}
I {<,>} ◦ {<} = {<,=, >}
I {<,=}−1 = {>,=}
I {<,=} ∩ {>,=} = {=}
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Motivation Qualitative CSP

Some Properties of the Point Relations

Theorem
A path consistent CSP over the point relations is consistent.

In particular, the path consistency method decides consistency.

Theorem
A path consistent CSP over all point relations without {<,>} is minimal.

Proofs later . . .
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Motivation Qualitative CSP

A Pathological Relation System

Let e, d , i be (self-converse) base relations between points on a circle:

I e: Rotation by 72 degrees (left or right)

I d : Rotation by 144 degrees (left or right)

I i : Identity

Composition table:

e ◦ e = {i , d}
d ◦ d = {i , e}
e ◦ d = {e, d}
d ◦ e = {e, d}

The following CSP is path
consistent and contains only
base relations, but it is not
satisfiable:

e
d

d

a b

cd

e

e

e
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Qualitative Constraint Languages

Qualitative Constraint Languages

From now on, let D be a finite or infinite domain.

Definition
A partition scheme on D is any non-empty, finite set Γ of binary relations
on D such that:

I Γ defines a partition of D × D.

I Γ contains the binary identity relation idD .

I Γ is closed under converses.

Definition
A constraint language of binary relations on D, Γ, is said to be generated
from a partition scheme ∆, if Γ consists of all finite unions of relations in
∆.

Constraint languages in this sense will be referred to as qualitative
constraint languages.

S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems July 3/5/10/12/17, 2007 17 / 73



Qualitative Constraint Languages

Qualitative Constraint Network

Let Γ be a subset of a qualitative constraint language with partition
scheme ∆.

Definition
A qualitative constraint network over Γ is a triple

P = 〈V ,D,C 〉 ,

where:

I V is a non-empty and finite set of variables,

I D is an arbitrary non-empty set (domain),

I C is a finite set of constraints C1, . . . ,Cq, i. e., each constraint Ci is a
pair (si ,Ri ), where si is a pair of variables and Ri is a binary relation
contained in Γ.
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Qualitative Constraint Languages

Weak Composition

Let Γ be a qualitative constraint language with partition scheme ∆. For
R, S ∈ Γ, define:

R ◦w S :=
⋃
{T ∈ ∆ : T ∩ (R ◦ S) 6= ∅}

— ◦w is called weak composition of R and S .

Lemma
For all relations R, S ,T ∈ Γ,

I R ◦ S ⊆ R ◦w S;

I T ∩ (R ◦ S) = ∅ if and only if T ∩ (R ◦w S) = ∅;
I (R ◦w S)−1 = S−1 ◦w R−1;

I R ◦w (S ∪ T ) = (R ◦w S) ∪ (R ◦w T ).
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Qualitative Constraint Languages

Weak Composition: Examples

Example:
Consider a linear order on a domain with 2 elements a < b. The relations
R<,R=,R> define a partition schema on D. It holds:

R< ◦ R< = R> ◦ R> = ∅, R< ◦ R> = {(a, a)}, R> ◦ R< = {(b, b)}

but
R< ◦w R< = R> ◦w R> = ∅, R< ◦w R> = R=, R> ◦w R< = R=

Moreover,

(R< ◦w R>) ◦w R> = R= ◦w R> = R> 6= ∅ = R< ◦w ∅ = R< ◦w (R> ◦w R>).

Example:
Consider a linear order on a domain with 3 elements a < b < c . Then

R< ◦ R< = {(a, c)} but R< ◦w R< = R<.
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Qualitative Constraint Languages

Non-Associative Relation Algebras
Definition
A non-associative relation algebra is a set A with

I binary operations u, t, and ;,

I unary operations − and −, and

I distinct elements 0, 1, and δ such that

(a) (A,u,t,−, 0, 1) is a Boolean algebra.

(b) For all elements a, b and c of A:

a ; (b t c) = (a ; b) t (a ; c)

δ ; a = a ; δ = a

(a−)− = a and (−a)− = −(a−)

(a t b)− = a− t b−

(a ; b)− = b− ; a−

(a ; b) u c− = 0 if and only if (b ; c) u a− = 0
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Qualitative Constraint Languages

Qualitative Languages and Algebras

Let Γ be a qualitative constraint language with partition scheme ∆. As
spelled out before, each relation R in Γ can be represented by a finite
disjunction of “base relations” B1, . . . ,Bk ∈ ∆. In what follows we identify
R with the set of its base relations

{B1, . . . ,Bk} .

Lemma
For each partition scheme ∆, the tuple〈

2∆,∩,∪, ◦w ,C∆,
−1, ∅,∆, id∆

〉
defines a non-associative relation algebra.
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Qualitative Constraint Languages

Algebraically Closed Networks
A qualitative network P = 〈V ,D,C 〉 is normalized, if

I for each pair of variables x , y , C contains at least one constraint
((x , y),R);

I for each constraint ((x , x),R) in C , R = idD ;

I for constraints ((x , y),R) and ((y , x),S) in C , R = S−1.

In what follows we will always assume that constraint networks are
normalized.

Definition
A qualitative constraint network P is algebraically closed (or: a-closed), if
for all constraints ((x , y),R), ((x , z),S), and ((z , y),T ) of P, it holds:

R ⊆ S ◦w T .

Note: If P is algebraically closed, then R = R ∩ (S ◦w T ).
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Qualitative Constraint Languages Constraint Propagation

Constraint Propagation

Following, we present two constraint propagation algorithms.
The path consistency algorithm can only be used if the underlying
partition scheme is closed under composition, i. e., if for each pair of
relations R, S ∈ ∆, R ◦ S is a (finite) union of a subset of ∆.
The algebraic closure algorithm is a variant of the path consistency
algorithm. Instead of ordinary composition of relations, we use weak
composition.
Since weak composition is an upper approximation of composition only, the
algebraic closure algorithm may not result in a path-consistent network.

Let P = 〈V ,D,C 〉 be a (normalized) qualitative constraint network.
Let Table [i , j ] be a n × n-matrix (n: number of variables), in which we
record the constraints between the variables.
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Qualitative Constraint Languages Constraint Propagation

Path Consistency Algorithm

EnforcePathConsistency (P):
Input: a qualitative network P = 〈V ,D,C 〉
Output: “inconsistent”, or an equivalent, path-consistent network P ′

Paths(i , j) = {(i , j , k) : 1 ≤ k ≤ n, k 6= i , j} ∪
{(k , i , j) : 1 ≤ k ≤ n, k 6= i , j}

Queue :=
⋃

i,j Paths(i , j)

while Q 6= ∅
select and delete (i , k , j) from Q
T := Table [i , j ] ∩ (Table [i , k] ◦ Table [k , j ])

if T = ∅
return “inconsistent”

elseif T 6= Table [i , j ]
Table [i , j ] := T
Table [j , i ] := T−1

Queue := Queue ∪ Paths(i , j)
return P ′ with the refined constraints as recorded in Table
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Qualitative Constraint Languages Constraint Propagation

Algebraic Closure Algorithm

EnforceAlgClosure (P):
Input: a qualitative network P = 〈V ,D,C 〉
Output: “inconsistent”, or an equivalent algebraically closed network P ′

Paths(i , j) = {(i , j , k) : 1 ≤ k ≤ n, k 6= i , j} ∪
{(k , i , j) : 1 ≤ k ≤ n, k 6= i , j}

Queue :=
⋃

i,j Paths(i , j)

while Q 6= ∅
select and delete (i , k , j) from Q
T := Table [i , j ] ∩ (Table [i , k] ◦w Table [k , j ])

if T = ∅
return “inconsistent”

elseif T 6= Table [i , j ]
Table [i , j ] := T
Table [j , i ] := T−1

Queue := Queue ∪ Paths(i , j)
return P ′ with the refined constraints as recorded in Table
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Qualitative Constraint Languages Constraint Propagation

Computing on the Symbolic Level

Let Γ be a qualitative constraint language with partition scheme ∆.
We suppose that we have determined (by some formal proof or some
computation) the (weak) composition table for ∆, i. e.,

◦(w) : ∆×∆→ 2∆.

Let now B be a finite set of symbols (bijective with ∆).
Then 2B is a Boolean algebra, from which we obtain a (non-associative)
relation algebra, if we extend ◦(w) to a function

◦(w) : 2B × 2B → 2B .

Now we can perform all the operations needed in the path
consistency/a-closure algorithm on the symbolic level.
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Qualitative Constraint Languages Tractability

Path Consistency and Tractability
Let Γ be a subset of a qualitative constraint language with a partition
scheme ∆ that is closed under composition.
Let Γ̂ be smallest superset of Γ that is closed under intersection, converses,
and composition.

Lemma
There exists a polynomial time reduction from CbΓ to CΓ.
In particular, it holds:

I Γ is tractable if and only if Γ̂ is tractable.

I Enforcing path consistency decides consistency over Γ̂ if and only if it
does so over Γ.

Proof idea.
Each relation in Γ̂ stems from a finite number of compositions, intersections, and
conversions applied to relations in Γ. Hence each constraint network over Γ̂ can
be transformed step-by-step into an equivalent network over Γ. In the case where
a relation results from composing other relations, we need to introduce some
fresh variables.
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Qualitative Constraint Languages Tractability

Algebraic Closure and Tractability

Let now Γ be a subset of a qualitative constraint language with a partition
scheme ∆ (not necessarily closed under composition).
From now on, let Γ̂ always be smallest superset of Γ that is closed under
intersection, converses, and weak composition.

Lemma (Ligozat & Renz 2005)

If enforcing a-closure decides consistency for atomic networks (i. e., for
qualitative networks over ∆), then CbΓ is polynomial-time reducible to CΓ.
In particular, if a-closure decides consistency for atomic networks, then

I Γ is tractable if and only if Γ̂ is so;

I enforcing a-closure decides consistency over Γ if and only if a-closure
decides consistency over Γ̂.
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Allen’s Interval Algebra Intervals and Relations Between Them

Allen’s Interval Calculus

I Allen’s interval calculus (IA): time intervals and binary relations over
them

I Let 〈R, <〉 be the linear order on the real numbers (conceived of as
the flow of time).
Then, the domain D of Allen’s calculus is the set of all intervals

X = (X−,X +) ∈ R2, where X− < X +

(näıve approach)

I Relations between concrete intervals, e. g.:

(1.0,2.0) strictly before (3.0,5.5)
(1.0,3.0) meets (3.0,5.5)
(1.0,4.0) overlaps (3.0,5.5)
. . .
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Allen’s Interval Algebra Intervals and Relations Between Them

IA: The Base Relations

To determine all possible relation between Allen intervals, we determine
how one can order the four points of two intervals:

Relation Symbol Name

{(X ,Y ) : X− < X + < Y− < Y +} ≺ before

{(X ,Y ) : X− < X + = Y− < Y +} m meets

{(X ,Y ) : X− < Y− < X + < Y +} o overlaps

{(X ,Y ) : X− = Y− < X + < Y +} s starts

{(X ,Y ) : Y− < X− < X + = Y +} f finishes

{(X ,Y ) : Y− < X− < X + < Y +} d during

{(X ,Y ) : Y− = X− < X + = Y +} ≡ equal

and the converse relations (obtained by exchanging X and Y )
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Allen’s Interval Algebra Intervals and Relations Between Them

IA: The 13 Base Relations Graphically

X

Y before

Y
meets

Y
overlaps

Y
during

Y
starts

Y finishes

Y
equals

Y before−1

Y meets−1

Y overlaps−1

Y during−1

Y starts−1

Y finishes−1
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Allen’s Interval Algebra Intervals and Relations Between Them

IA: Partition Scheme and Composition

Lemma
The 13 base relations of Allen’s interval calculus define a partition scheme
on the set of all Allen intervals.

In what follows:

I IA: the qualitative constraint language generated from all base
relations of Allen’s interval calculus (contains 213 = 8192 relations)

I IA-B: the subclass of IA containing base relations only

Lemma
The set of base relations of Allen’s interval calculus is closed under
composition.
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Allen’s Interval Algebra IA: Examples

IA: An Example

Z
Z
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Z
Z

Z
ZZ}

�
�
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�
��>

Z
Z

Z
Z
Z

Z
ZZ}

-

I1

I4

I3I2

d,f

d d

≺,m

6

?

Compose the constraints: I4 {d, f} I2 and I2 {d} I1: I4 {d} I1.
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Allen’s Interval Algebra IA: Example for Incompleteness

IA: Example for Incompleteness
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Allen’s Interval Algebra IA: Example for Incompleteness

IA: NP-Hardness

Theorem (Kautz & Vilain)

Deciding satisfiability over IA is NP-hard.

Proof.
Reduction from 3-colorability (the original proof uses 3Sat).

Let G = (V ,E ), V = {v1, . . . , vn} be an instance of 3-colorability.
Then we use the intervals {v1, . . . , vn, 1, 2, 3} with the following constraints:

1 {m} 2
2 {m} 3

vi {m,≡, m−1} 2 ∀vi ∈ V
vi {m, m−1,≺,�} vj ∀(vi , vj) ∈ E

This constraint system is satisfiable iff G can be colored with 3 colors.
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Allen’s Interval Algebra The Continuous Endpoint Class

IA: Clause Representation

Following, we will look at polynomial special cases, i. e., subclasses of the
qualitative constraint language IA.

For this we start from a natural translation of interval relations/constraints
(of the form X R Y ) into clause formulas over atoms of the form a op b,
where:

I a, b ∈ {X−,X +,Y−,Y +}; and

I op ∈ {<,>,=,≤,≥}.
Example: All base relations can be expressed as unit clauses.

Lemma
Let P be a constraint network over IA, and let π(P) be the translation of
P into clause form.
P is satisfiable iff π(P) is satisfiable over the rational numbers.
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Allen’s Interval Algebra The Continuous Endpoint Class

IA: The Continuous Endpoint Class
Continuous Endpoint Class IA-C: the subset of IA consisting of those
relations with a clause form containing only unit clauses, where ¬(a = b)
is forbidden.

Example: All basic relations and, e.g., {d, o, s}, because

π(X {d, o, s} Y ) = {X− < X +,Y− < Y +,
X− < Y +,X + > Y−,
X + < Y +}

� -

� -� ....� ...

Y

X

The set IA-C contains 83 relations. It is closed under intersection,
composition, and converses (it is a sub-algebra wrt. these three operations
on relations). This can be shown by using a computer program.
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Allen’s Interval Algebra The Continuous Endpoint Class

IA: Consistency for IA-C

Following we prove:

Lemma
Each 3-consistent interval CSP over IA-C is globally consistent.

From this we can conclude:

Theorem (van Beek)
Applied to networks over IA-C, enforcing path consistency decides satisfiability
and solves the minimal label problem.

Corollary
A path-consistent interval constraint network containing base relations only is
satisfiable.
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Allen’s Interval Algebra The Continuous Endpoint Class

Helly’s Theorem

Definition
A set M ⊆ Rn is convex iff for all pairs of points a, b ∈ M, all points on
the line connecting a and b belong to M.

Theorem (Helly)

Let F be a family of at least n + 1 convex sets in Rn. If all sub-families of
F with n + 1 sets have a non-empty intersection, then

⋂
F 6= ∅.
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Allen’s Interval Algebra The Continuous Endpoint Class

IA: Strong n-Consistency (1)

Proof of the lemma.
We prove the claim by induction over k with k ≤ n.

Base case: k = 1, 2, 3
√

Induction assumption: Assume strong k − 1-consistency (and
non-emptiness of all relations)

Induction step: From the assumption, it follows that there is an
instantiation of k − 1 variables Xi to pairs (si , ei ) ∈ R2 satisfying the
constraints Rij between the k − 1 variables.

We have to show that we can extend the instantiation to any kth variable.
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Allen’s Interval Algebra The Continuous Endpoint Class

IA: Strong n-Consistency (2): Instantiating the kth
Variable

Proof (Part 2).

The instantiation of the k − 1 variables Xi to (si , ei ) restricts the
instantiation of Xk .

Note: Since Rij ∈ IA-C by assumption, these restrictions can be expressed
by inequalities of the form:

si < X +
k ∧ ej ≥ X−k ∧ . . .

Such inequalities define convex subsets in R2.

 Consider sets of 3 inequalities (= 3 convex sets).
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Allen’s Interval Algebra The Continuous Endpoint Class

IA: Strong n-Consistency (3): Using Helly’s Theorem

Proof (Part 3).

Case 1: All 3 inequalities mention only X−k (or mention only X +
k ). Then it

suffices to consider only 2 of these inequalities (the strongest). Because of
3-consistency, there exists at least 1 common point satisfying these 3
inequalities.

Case 2: The inequalities mention X−k and X +
k , but it does not contain the

inequality X−k < X +
k . Then there are at most 2 inequalities with the same

variable and we have the same situation as in Case 1.

Case 3: The set contains the inequality X−k < X +
k . In this case, only three

intervals (incl. Xk) can be involved and by the same argument as above
there exists a common point.

 With Helly’s Theorem, it follows that there exists a consistent
instantiation for all subsets of variables.

 Strong k-consistency for all k ≤ n.
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Allen’s Interval Algebra The Endpoint Subclass

IA: The Endpoint Subclass
Endpoint Subclass: IA-P is the subclass that permits a clause form
containing only unit clauses (a 6= b is now allowed).

Example: all basic relations and {d, o} since

π(X {d, o} Y ) = {X− < X +,Y− < Y +,
X− < Y +,X + > Y−,X− 6= Y−,
X + < Y +}

� -

� -X ....� ...

Y

X

Theorem (Vilain & Kautz 86, Ladkin & Maddux 88)

The path consistency method decides satisfiability over IA-P.
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Allen’s Interval Algebra The ORD-Horn Subclass

IA: The ORD-Horn Subclass

ORD-Horn Subclass: IA-H is the subclass of IA that permits a clause form
containing only Horn clauses, where only the following literals are allowed:

a ≤ b, a = b, a 6= b

¬a ≤ b is not allowed!

Example: all R ∈ IA-P and {o, s, f−1}:

π(X{o, s, f−1}Y ) =
{

X− ≤ X +,X− 6= X +,
Y− ≤ Y +,Y− 6= Y +,
X− ≤ Y−,
X− ≤ Y +,X− 6= Y +,
Y− ≤ X +,X + 6= Y−,
X + ≤ Y +,

X− 6= Y− ∨ X + 6= Y +
}
.
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Allen’s Interval Algebra The ORD-Horn Subclass

IA: The ORD-Horn Subclass (2)

Lemma
IA-H is closed under intersection, composition, and converses.

Theorem
The path consistency method decides satisfiability over IA-H.

IA-H contains 886 relations.
Question: Is IA-H a maximal subalgebra?
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Allen’s Interval Algebra The ORD-Horn Subclass

IA: The ORD-Horn Subclass (3)

A computer-aided case analysis leads to the following result:

Lemma
There are only two minimal sub-algebras that strictly contain IA-H: X1,X2

N1 = {d, d−1, o−1, s−1, f} ∈ X1

N2 = {d−1, o, o−1, s−1, f−1} ∈ X2

The clause forms of these relations contain “proper” disjunctions!

Theorem
The satisfiability problem over IA-H ∪ {Ni} is NP-complete.

Lemma
IA-H is the only maximal tractable subclass that contains all base relations of IA.
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Allen’s Interval Algebra Solving Arbitrary Allen CSPs

IA: Solving General Allen CSPs

I Backtracking algorithm using path consistency as a forward-checking
method

I Method works on tractable fragments of Allen’s calculus: split
relations into relations of a tractable fragment, and backtrack over
these.

I Refinements and evaluation of different heuristics

 Which tractable fragment should one use?
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Allen’s Interval Algebra Solving Arbitrary Allen CSPs

IA: Branching Factors

I If the labels are split into base relations, then on average a label is
split into

6.5 relations

I If the labels are split into pointizable relations (P), then on average a
label is split into

2.955 relations

I If the labels are split into ORD-Horn relations (H), then on average a
label is split into

2.533 relations

 A difference of 0.422 which becomes significant, when applied to
extremely hard instances
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RCC8 RCC8: Motivation

RCC8: Motivation

We may want to state qualitative relationships between regions in space,
for example:

I “Region X touches region Y ”

I “Germany and Switzerland have a common border”

I “Freiburg is located in Baden-Württemberg”
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RCC8 RCC8: Motivation

RCC8: Possible Applications

I This can be useful when only partial information is available:
I We may know that region X is not connected with region Y without

knowing the shape and location of X and Y .

I We may want to query a database:
I Show me all countries bordering the Mediterranean!

I We may want to state integrity constraints:
I An island has to be located in the interior of a sea.
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RCC8 RCC8: Base Relations

RCC8: Qualitative Relations Between Regions

Eight relations between regions:

u u

DC(X,Y)

X

Y

PO(X,Y) TPP(X,Y) NTPP(X,Y)

X

Y X

Y
X

Y

X

Y
X Y X

Y

X
Y

EC(X,Y) EQ(X,Y) TPP (X,Y) NTPP (X,Y)
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RCC8 RCC8: Base Relations

RCC8: Intuition

I Regions are some “reasonable” non-empty subsets of space.

I DC (disconnected) means that the two regions do not share any point
at all.

I EC (externally connected) means that they only share borders.

I PO (partially overlapping) means that the two regions share interior
points.

I TPP (tangential proper part) means that one region is a subset of the
other sharing some points on the borders.

I NTPP (non-tangential proper part) same, but without sharing any
bordering points.
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RCC8 Topology

Point-Set Topology

Point-set topology is a mathematical theory that deals with properties of
space independent of size and shape.

In topology, we can define notions such as

I interior and exterior points of regions,

I isolated points of regions,

I boundaries of regions,

I connected components of regions,

I connected regions,

I . . .
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RCC8 Topology

Topology

Definition
A topological space is a pair T = (S ,O), where

I S is a non-empty set (the universe), and

I O is a set of subsets of S (the open sets)

such that the following conditions hold:

I ∅ ∈ O and S ∈ O.

I If O1 ∈ O and O2 ∈ O, then O1 ∩ O2 ∈ O.

I If (Oi )i∈I is a (possibly infinite) family of elements from O, then⋃
i∈I

Oi ∈ O.

Example: In Euclidean space, a set O is open if for each point x ∈ O there
is a ball surrounding x that is contained in O.
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RCC8 Topology

Terminology & Notation

Definition
Let X ⊆ S and x ∈ S .

I A set N ⊆ S is a neighborhood of a point x if there is an open set
O ∈ O such that x ∈ O ⊆ N.

I x ∈ S is an interior point of X if there is a neighborhood N of x such
that N ⊆ X .

I x ∈ S is a touching point of X if every neighborhood of x has a
non-empty intersection with X .

Notation:

I int(X ) is the set of interior points of X (the interior of X ).

I cls(X ) is the set of touching points of X (the closure of X ).

I A set is closed if X = cls(X ).
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RCC8 Topology

Interior and Closure Operators

The function int(·) is an interior operator:

1. int(S) = S

2. int(X ) ∩ int(Y ) = int(X ∩ Y )

3. int(X ) ⊆ X

4. int(int(X )) = int(X )

Note:

I X is open iff X = int(X )

I cls(X ) = S \ int(S \ X )
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RCC8 Topology

RCC8: What Is a Region?

EA B D
DC

A and D are reasonable regions, B, C, and E are not

In other words, X is a region iff it is non-empty

X 6= ∅

and regular closed, i. e., the closure of an open set:

X = cls(int(X )).

It is not necessary that a region is internally connected.
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RCC8 Topology

Defining the RCC8-Relations

Let S be a topological space. Then define the following relations on Reg:

DC(X ,Y ) := X ∩ Y = ∅
EC(X ,Y ) := X ∩ Y 6= ∅ ∧ int X ∩ int Y = ∅
PO(X ,Y ) := int X ∩ int Y 6= ∅ ∧ X 6⊆ Y ∧ Y 6⊆ X

EQ(X ,Y ) := X = Y

TPP(X ,Y ) := X ⊆ Y ∧ X 6⊆ int Y

NTPP(X ,Y ) := X ⊆ int Y

 It can be seen that these relations define a partition scheme.
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RCC8 Topology

RCC8: From Regions to Boolean Algebras

Let Reg denote the set of all regular closed set of some fixed topological
space.
For X ,Y ∈ Reg ∪ {∅} define:

−X := cls(S \ X )

X t Y := X ∪ Y

X u Y := cls(int(X ∩ Y ))

By these definition, we obtain a Boolean algebra.
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RCC8 Topology

Boolean Connection Algebras

Definition
A connection algebra is a Boolean algebra B together with a binary
relation C on B such that the following conditions are satisfied:

I x 6= 0⇔ x C x

I x C y ⇒ y C x

I x 6= 0, 1⇒ x C −x

I x C y ∪ z ⇔ x C y or x C z

I x 6= 0, 1⇒ not x C y , for some y 6= 0, 1
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RCC8 Topology

RCC8: From Topologies to Connection Algebras

If the underlying topological space is regular and connected, i. e.,

I Hausdorff and for each x ∈ S and closed subset A ⊂ S with x /∈ A,
there exist disjoint open neighborhoods of x and A;

I the only sets that are open and closed are ∅ and S ;

then
x C y ⇐⇒ x ∩ y 6= ∅

defines a connection algebra on Reg ∪ {∅}.
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RCC8 Topology

Defining the RCC8-Relations (2)

Let B be a connection algebra. Then we can define the RCC8 relations on
B \ {0} as follows:

X DC Y := not X C Y

X P Y := (X ,Y ) /∈ C ◦DC
X PP Y := X P Y ∧ X 6= Y

X O Y := (X ,Y ) ∈ P−1 ◦ P
X PO Y := X O Y ∧ not X P Y ∧ not Y P X

X EC Y := X C Y ∧ not X O Y

X TPP Y := X PP Y ∧ (X ,Y ) ∈ EC ◦ EC
X NTPP Y := X PP Y ∧ not X TPP Y

. . .
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RCC8 Complexity

RCC8: Complexity

Using a reduction from 3-SAT, it can be shown:

Theorem
Testing satisfiability over arbitrary RCC8 relations is NP-hard.

Using a translation into S4-modal logics, one can show:

Theorem
Testing satisfiability over arbitrary RCC8 relations is NP-complete.
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RCC8 Constraint Reasoning

RCC8: Constraint Propagation

I As in Allen’s interval algebra, we may want to use constraint
propagation instead of translating everything to modal logic.

I We need a composition table . . .

I . . . which could be computed using the modal logic encoding (and in
fact, this has been done).

I Based on this table, we can then apply the algebraic closure algorithm

I . . . and ask ourselves for which fragment of RCC8 it is complete.
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RCC8: Composition Table

◦ DC EC PO TPP NTPP TPP−1 NTPP−1 EQ

DC,EC DC,EC DC,EC DC,EC
DC * PO,TPP PO,TPP PO,TPP PO,TPP DC DC DC

NTPP NTPP NTPP NTPP
DC,EC DC,EC DC,EC EC,PO PO

EC PO,TPP−1 PO,TPP PO,TPP TPP TPP DC,EC DC EC

NTPP−1 TPP−1,EQ NTPP NTPP NTPP
DC,EC DC,EC PO PO DC,EC DC,EC

PO PO,TPP−1 PO,TPP−1 * TPP TPP PO, TPP−1 PO,TPP−1 PO

NTPP−1 NTPP−1 NTPP NTPP NTPP−1 NTPP−1

DC,EC
TPP

DC,EC DC,EC

TPP DC DC,EC PO,TPP
NTPP

NTPP PO,TPP PO,TPP−1 TPP

NTPP TPP−1,EQ NTPP−1

DC,EC DC,EC
NTPP DC DC PO,TPP NTPP NTPP PO,TPP * NTPP

NTPP NTPP
DC,EC EC,PO PO PO,EQ PO

TPP−1

TPP−1 PO,TPP−1 TPP−1 TPP−1 TPP TPP
NTPP−1 NTPP−1 TPP−1

NTPP−1 NTPP−1 NTPP−1 TPP−1 NTPP

DC,EC PO PO PO PO,TPP−1

NTPP−1 PO,TPP−1 TPP−1 TPP−1 TPP−1 TPP,NTPP NTPP−1 NTPP−1 NTPP−1

NTPP−1 NTPP−1 NTPP−1 NTPP−1 NTPP−1,EQ

EQ DC EC PO TPP NTPP TPP−1 NTPP−1 EQ



RCC8 Constraint Reasoning

RCC8: Is the Composition Table Extensional?

It can easily be verified that already in the 2-dimensional case, the set of
base relations is not closed under composition:

I Consider EC ◦ TPP and X NTPP S , where S denotes the universal
region.

I Consider EC ◦ EC and a donut-like region X with “hole” Y .

Lemma (Düntsch et al. 2001)

In each connection algebra, the relation algebra generated by the RCC8
base relations contains at least 25 atomic relations.

Lemma (Li et al. 2006)

In each model associated to some Euclidean space Rn, the relation algebra
generated by the RCC8 base relations contains an infinite strictly
decreasing sequence of relations.
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RCC8 Tractable Fragments

RCC8: Tractable Fragments?

Theorem (Li 2006)

Enforcing algebraic closure on atomic RCC8 constraint network decides
satisfiability.

I As in the case of Allen’s interval calculus, we may ask for maximal
tractable subsets . . .

I Again, one can identify relations that can be encoded by Horn
formulae . . .

I 148 Horn relations H8, which forms again a maximal subset.

I There are 2 additional maximal subsets that allow for poly.
satisfiability testing!
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