
Constraint Satisfaction Problems
Look-Back

Malte Helmert and Stefan Wölfl

Albert-Ludwigs-Universität Freiburg

June 5, 2007

S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems June 5, 2007 1 / 46

Constraint Satisfaction Problems
June 5, 2007 — Look-Back

Conflict Sets

Backjumping
Gaschnig’s Backjumping
Graph-Based Backjumping
Conflict-Directed Backjumping

No-Good Learning
Concepts
Algorithms

Literature

S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems June 5, 2007 2 / 46

Look-Back Techniques

I Look-ahead techniques reduce the size of the searched part of the
state space by excluding partial assignments from consideration if
they provably lead to inconsistencies.

I This is a form of forward analysis: We avoid assignments which must
lead to dead ends in the future.

I Look-back techniques use a complementary approach: We avoid
assignments which led to dead ends in the past.

S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems June 5, 2007 3 / 46

Types of Look-Back Techniques

We will consider two classes of look-back techniques:

I Backjumping: Upon encountering a dead end, do not always return to
the parent in the search tree, but possibly to an earlier ancestor.

I No-good learning: Upon encountering a dead end, record a new
constraint to detect this type of dead end earlier in the future.

No-good learning is commonly used when solving propositional logic
satisfiability problems for CNF formulae. In this context, it is known as
clause learning.

S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems June 5, 2007 4 / 46

Conflict Sets

Conventions

I Throughout the chapter, we assume a fixed variable ordering
v1, . . . , vn.

I Partial assignments a = {v1 7→ a1, . . . , vi 7→ ai} for i ∈ {0, . . . , n} are
abbreviated as tuples: (a1, . . . , ai).

S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems June 5, 2007 5 / 46

Conflict Sets

Dead Ends

Recall:

Definition (dead end)

A dead end of a state space is a state which is not a goal state and in
which no operator is applicable.

In the context of look-back methods, we use the following terminology:

Definition (leaf dead end)

A leaf dead end is a partial solution (a1, . . . , ai) such that (a1, . . . , ai+1) is
inconsistent for all possible values of vi+1.
Variable vi+1 is called the leaf dead-end variable for the leaf dead end.

S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems June 5, 2007 6 / 46

Conflict Sets

Conflict Sets

Definition (conflict set)

Let a be a partial solution (on an arbitrary set of variables), and let vj be a
variable for which a is not defined.

We say that a is a conflict set of vj , (or: a is in conflict with vj) if no
assignment of the form a ∪ {vj 7→ aj} is consistent.

If moreover a contains no subtuple which is in conflict with vj , it is a
minimal conflict set of vj .

 A leaf dead end is a conflict set of the leaf dead-end variable, but not
every conflict set is a leaf dead end.

S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems June 5, 2007 7 / 46

Conflict Sets

No-Goods and Internal Dead Ends

Definition (no-good)

A partial solution that cannot be extended to a solution of the network is
called a no-good.

A no-good is minimal if it contains no no-good subassignments.

A no-good is called an internal dead end iff it is defined on the first i
variables, i.e., on {v1, . . . , vi} and it is not a leaf dead end. In that case,
vi+1 is called the internal dead-end variable.

Conflict sets are no-goods, but not all no-goods are conflict sets.

S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems June 5, 2007 8 / 46

Conflict Sets

Leaf Dead Ends, Conflict Sets, No-Goods: Example

r, b, g

v1

b, g

v2

r, b

v3 r, b

v4

b, g

v5

r, g, y

v6

r, b

v7

S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems June 5, 2007 9 / 46

Conflict Sets

Leaf Dead End Example

r, b, g

v1

b, g

v2

r, b

v3 r, b

v4

b, g

v5

r, g, y

v6

r, b

v7

 a leaf dead end with leaf dead-end variable v7

S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems June 5, 2007 10 / 46

Conflict Sets

Conflict Set Example

r, b, g

v1

b, g

v2

r, b

v3 r, b

v4

b, g

v5

r, g, y

v6

r, b

v7

 a conflict set of v7, but not minimal

S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems June 5, 2007 11 / 46

Conflict Sets

Conflict Set Example

r, b, g

v1

b, g

v2

r, b

v3 r, b

v4

b, g

v5

r, g, y

v6

r, b

v7

 a minimal conflict set of v7

S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems June 5, 2007 12 / 46

Conflict Sets

No-Good Example

r, b, g

v1

b, g

v2

r, b

v3 r, b

v4

b, g

v5

r, g, y

v6

r, b

v7

 a no-good, but not a minimal one

S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems June 5, 2007 13 / 46

Conflict Sets

No-Good Example

r, b, g

v1

b, g

v2

r, b

v3 r, b

v4

b, g

v5

r, g, y

v6

r, b

v7

 a minimal no-good (also an internal dead end)

S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems June 5, 2007 14 / 46

Conflict Sets

Safe Jumps

Definition (safe jump)

Let a = (a1, . . . , ai) be a (leaf or internal) dead end.
We say that vj with j ∈ {1, . . . , i} is safe (or: a safe jump) relative to a if
(a1, . . . , aj) is a no-good.

 If vj is safe for j < i , we can backtrack several times and assign a new
value to vj next.

S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems June 5, 2007 15 / 46

Backjumping

Backjumping

A backjumping algorithm is a modification of backtracking that may back
up several layers in the search tree upon detecting an assignment that
cannot be extended to a solution.

We study three variations:

I Gaschnig’s backjumping

I Graph-based backjumping

I Conflict-directed backjumping

S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems June 5, 2007 16 / 46

Backjumping Gaschnig’s Backjumping

Gaschnig’s Backjumping

We first introduce Gaschnig’s backjumping which is one of the simplest
backjumping algorithms.
It only backs up multiple layers at leaf dead ends.

Definition (culprit variable)

Let a = (a1, . . . , ai) be a leaf dead end.
The culprit index relative to a is

culp(a) := min{ j ∈ N1 | (a1, . . . , aj) conflicts with vi+1}

Gaschnig’s backjumping

When detecting the leaf dead end a, jump back to vculp(a).

S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems June 5, 2007 17 / 46

Backjumping Gaschnig’s Backjumping

Gaschnig’s Backjumping: Example

r, b, g

v1

b, g

v2

r, b

v3 r, b

v4

b, g

v5

r, g, y

v6

r, b

v7

S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems June 5, 2007 18 / 46

Backjumping Gaschnig’s Backjumping

Remarks on Gaschnig’s Backjumping

I Gaschnig’s backjumping was historically one of the first backjumping
techniques.

I It clearly performs only safe jumps.

I It also performs maximal jumps in the sense that backing up further
than Gaschnig’s backjumping at leaf dead ends can lead to missing
(potentially all) solutions.

I The algorithm is attractive because it is easy to implement efficiently
(we do not discuss this in detail).

I However, it is not very powerful: It expands strictly more states than
look-ahead search with forward checking
 exercises.

I One serious limitation is that it only jumps at leaf dead ends. The
next backjumping technique will remedy this.

S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems June 5, 2007 19 / 46

Backjumping Graph-Based Backjumping

Graph-Based Backjumping

I Graph-based backjumping can also jump back at internal dead ends.

I Unlike Gaschnig’s backjumping, it does not use information about the
values assigned to the variables in the current state when backing up.

I Instead, it only uses information about the variables themselves,
derived from the constraint graph.

S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems June 5, 2007 20 / 46

Backjumping Graph-Based Backjumping

Parents

Reminder:

Definition (parents)

The parents of vi are those variables vj with j < i for which the edge
{vi , vj} occurs in the primal constraint graph.

Definition (parents)

Let vi be a variable with at least one parent.
The latest parent of vi , in symbols par(vi), is the parent vj for which j is
maximal.

Basic idea: Jump back to the latest parent.

S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems June 5, 2007 21 / 46

Backjumping Graph-Based Backjumping

Jumping back to the latest parent

Theorem
Let a be a leaf dead end with dead-end variable vi .
Then par(vi) is a safe jump for a.

Proof.
Because a is a leaf dead end, (a1, . . . , ai−1) is consistent, but any
extension to vi is inconsistent. Thus (a1, . . . , ai−1) is a conflict set for vi .
Then (a1, . . . , apar(vi)) is already a conflict set for vi , because there are no
constraints between vi and any variables v ′ with par(vi) ≺ v ′ ≺ vi .

S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems June 5, 2007 22 / 46

Backjumping Graph-Based Backjumping

Comparison to Gaschnig’s Backjumping

I Jumping back to the latest parent of a leaf dead end is strictly worse
than Gaschnig’s Backjumping: it never jumps further, and it
sometimes jumps less far.

I However, the idea can be extended to jumping from internal dead
ends.

First idea: When encountering an internal dead end, jump back to the
latest parent of the internal dead-end variable.

Unfortunately, this is not safe.

S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems June 5, 2007 23 / 46

Backjumping Graph-Based Backjumping

Backjumping at Internal Dead Ends: Example

v1

v2

v3

v4

v5

v6

v7

I Scenario 1: Enter v4 and encounter a leaf dead end with variable v5.
Jumping back to v4, there are no further values for v4. It is then safe
to backtrack to v1.

I Scenario 2: Now encounter a leaf dead end with variable v7. Jump
back to v5 and then to v4. Is it still safe to jump back to v1 if there
are no further values for v4?

S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems June 5, 2007 24 / 46

Backjumping Graph-Based Backjumping

Sessions

Definition (invisit, session)

We say that the backtracking algorithm invisits variable vi when it
attempts to extend the assignment a = (a1, . . . , ai−1) to vi .

The current session of vi starts when vi is invisited and ends after all
possible assignments to vi have been tried, i. e., when the backtracking
algorithm backs up to variable vi−1 or earlier.

Note: A session of vi corresponds to a recursive invocation of the
backtracking procedure where values are assigned to vi .

S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems June 5, 2007 25 / 46

Backjumping Graph-Based Backjumping

Relevant Dead Ends

Definition (relevant dead ends)

The relevant dead ends of the current session of vi , in symbols rel(vi), are
computed as follows:

I When vi is invisited, set rel(vi) := {vi}.
I When vi is reached by backing up from a later variable vj , set

rel(vi) := rel(vi) ∪ rel(vj).

S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems June 5, 2007 26 / 46

Backjumping Graph-Based Backjumping

Graph-Based Backjumping: Algorithm

Graph-based backjumping

When detecting the (leaf or internal) dead end a with dead-end variable vi ,
jump back to the latest parent of any variable in rel(vi) which is earlier
than vi .

Theorem (Soundness)

Graph-based backjumping only performs safe jumps.

Proof.
 exercises

S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems June 5, 2007 27 / 46

Backjumping Graph-Based Backjumping

Graph-Based Backjumping: Example

r, b, g

v1

b, g

v2

r, b

v3 r, b

v4

b, g

v5

r, g, y

v6

r, b

v7

S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems June 5, 2007 28 / 46

Backjumping Conflict-Directed Backjumping

Conflict-Directed Backjumping

I Gaschnig’s backjumping exploits the information about a particular
minimal prefix conflict set to jump further from leaf dead ends.

I Graph-based backjumping collects and integrates information from all
dead ends in the current session to also jump back at internal dead
ends.

I These two ideas can be combined to obtain the conflict-directed
backjumping algorithm, which is better (avoids more states) than
either of the two previous backjumping styles.

S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems June 5, 2007 29 / 46

Backjumping Conflict-Directed Backjumping

Constraint Ordering

Definition (earlier constraint)

Let v1, . . . , vn be a variable ordering, and let Q and R be two constraints.
We say that Q is earlier than R according to the ordering, in symbols
Q ≺ R if

I scope(Q) ⊂ scope(R), or

I scope(Q) 6⊆ scope(R) and scope(R) 6⊆ scope(Q) and the latest
variable in scope(Q) \ scope(R) precedes the latest variable in
scope(R) \ scope(Q).

If we assume that any two constraints have different scopes, this defines a
total order on constraints.

S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems June 5, 2007 30 / 46

Backjumping Conflict-Directed Backjumping

Greedy Conflict Sets

Definition (greedy conflict set)

Let a be a (leaf or internal) dead end with dead-end variable v .
For all x ∈ dom(v), define Vx as follows:

I If a ∪ {v 7→ x} is inconsistent, let Vx be the scope of the earliest
constraint which is not satisfied by a ∪ {v 7→ x}.

I Otherwise, Vx := ∅.

The greedy conflict variable set of a, in symbols gcv(a), is defined as
gcv(a) :=

⋃
x∈dom(v)(Vx \ {v}).

The greedy conflict set of a, in symbols gc(a), is defined as
gc(a) := {v 7→ a(v) | v ∈ gcv(a)}.
In other words, gc(a) is a restricted to the greedy conflict variable set.

S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems June 5, 2007 31 / 46

Backjumping Conflict-Directed Backjumping

Greedy Conflict Sets are Conflict Sets

Theorem
Let a be a leaf dead end with dead-end variable v .
Then gc(a) is a conflict set of v .

Proof.
Since a is a leaf dead end, it is a partial solution. Moreover, gc(a) is a
sub-assignment of a, so it is not defined for v .
We show that no assignment gc(a) ∪ {v 7→ x} is consistent.
Consider an arbitrary value x ∈ dom(v). In a leaf dead-end, there must be
a constraint Rx with scope Vx which is not satisfied by a∪ {v 7→ x}. Then
gcv(a) includes all variables in Vx \ {v}, and thus gc(a) is defined and
equal to a on these variables. As a ∪ {v 7→ x} does not satisfy Rx ,
gc(a) ∪ {v 7→ x} does not satisfy Rx either. Thus, gc(a) cannot be
consistently extended to v and hence is a conflict set for v .

S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems June 5, 2007 32 / 46

Backjumping Conflict-Directed Backjumping

Minimality of Greedy Conflict Sets

I Dechter calls gc(a) the earliest minimal conflict set of a.

I However, it is not always a minimal conflict set and not always the
earliest conflict set that is a subassignment of a, so we avoid this
terminology.

Note: The greedy conflict set is only a conflict set for leaf dead ends!

S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems June 5, 2007 33 / 46

Backjumping Conflict-Directed Backjumping

Greedy Conflict Sets vs. Gaschnig’s Backjumping

Reminder:

I Gaschnig’s backjumping jumps back to vculp(a), where
culp(a) := min{ j ∈ N1 | (a1, . . . , aj) conflicts with v}

Observations:

I For the greedy variable set, the latest variable in gcv(a) always equals
culp(a).

I Thus, jumping from leaf dead ends to the latest variable in gcv(a) is
the same as Gaschnig’s backjumping.

S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems June 5, 2007 34 / 46

Backjumping Conflict-Directed Backjumping

Greedy Conflict Sets vs. Graph-Based Backjumping

Observations:

I All variables in gcv(a) are parents of the leaf dead end variable of a.

Idea:

I Instead of considering all parents of relevant dead-end variables (as in
graph-based backjumping), consider all greedy conflict sets of relevant
dead ends.

I Using this scheme, jumping from internal dead ends jumps at least as
far as graph-based backjumping.

S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems June 5, 2007 35 / 46

Backjumping Conflict-Directed Backjumping

Jump-Back Sets

Definition (jump-back set)

The jump-back set of a dead end a, in symbols Ja, is defined as follows:

I If a is a leaf dead end, Ja := gcv(a).

I If a is an internal dead end, Ja := gcv(a) ∪
⋃

a′∈succ(a) Ja′ , where
succ(a) is the set of successor states of a.

S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems June 5, 2007 36 / 46

Backjumping Conflict-Directed Backjumping

Conflict-Directed Backjumping: Algorithm

Conflict-directed backjumping

When detecting the (leaf or internal) dead end a with dead-end variable vi ,
jump back to the latest variable in Ja that is earlier than vi .

Theorem (Soundness)

Conflict-directed backjumping only performs safe jumps.

Proof idea.
Combine the proofs for Gaschnig’s backjumping and graph-based
backjumping.

S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems June 5, 2007 37 / 46

Backjumping Conflict-Directed Backjumping

Conflict-Directed Backjumping: Example

r, b, g

v1

b, g

v2

r, b

v3 r, b

v4

b, g

v5

r, g, y

v6

r, b

v7

S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems June 5, 2007 38 / 46

No-Good Learning Concepts

No-Good Learning

I Backjumping can significantly reduce the search effort by skipping
over irrelevant choice points.

I However, thrashing is still possible: essentially the same no-good can
be “rediscovered” over and over in different parts of the search tree.

I To alleviate this problem, we can make use of no-good learning or
constraint recording techniques.

S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems June 5, 2007 39 / 46

No-Good Learning Concepts

Adding No-Good Learning

Adding no-good learning to an existing (backtracking, look-ahead,
backjumping, . . .) algorithm is simple:

no-good learning

When the algorithm backtracks (or jumps back), determine a conflict set
and add a constraint to the network that rules out this conflict set.

S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems June 5, 2007 40 / 46

No-Good Learning Concepts

Variations of No-Good Learning

There are many variations:
I How to determine the no-good?

I Determine one which is easy to generate, but not necessarily minimal
 shallow learning.

I Determine one which is minimal, or even all minimal ones derivable
from the current dead end deep learning

I Which no-goods to store?
I Store all constraints.
I Store only small no-goods (constraints with arity ≤ c)
 bounded learning

I How long to store no-goods?
I Store forever.
I Discard once they differ from the current state in more than c variables
 relevance-bounded learning

S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems June 5, 2007 41 / 46

No-Good Learning Concepts

No-Good Learning: Issues

When performing no-good learning, there is a need to strike a good
compromise between:

I pruning power:
more constraints lead to fewer explored states

I constraint processing overhead:
learning many constraints increases the satisfaction tests for every
search node

I learning overhead:
expensive computations of no-goods may outweigh pruning benefits

I space overhead:
storing all no-goods eliminates the space efficiency of
backtracking-style algorithms

S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems June 5, 2007 42 / 46

No-Good Learning Algorithms

Graph-Based Learning

Graph-based learning

Augment graph-based backjumping by applying the following learning rule
when jumping back from an internal or leaf dead-end a with dead-end
variable vi :

I Let V (a) be the set of parents of some variable in the relevant
dead-end variable set rel(vi).

I Learn the no-good {(v , a(v)) | v ∈ V (a) and v ≺ vi}.

S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems June 5, 2007 43 / 46

No-Good Learning Algorithms

Conflict-Directed Backjump Learning

Conflict-directed backjump learning

Augment conflict-directed backjumping by applying the following learning
rule when jumping back from an internal or leaf dead-end a with dead-end
variable vi :

I Learn the no-good {(v , a(v)) | v ∈ gcv(a) and v ≺ vi}.

S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems June 5, 2007 44 / 46

No-Good Learning Algorithms

Nonsystematic Randomized Backtrack Learning

I Learning algorithms are not limited to minor variations of the
common systematic backtracking algorithms.

I One example of a very different algorithm is nonsystematic
randomized backtrack learning:

I Use backtracking with random variable and value orders.
I At each dead end, learn a new conflict set.
I After a certain number of dead ends, restart

(remembering the newly learned constraints).
I Terminate upon solution or when ∅ becomes a dead end.

Completeness:

I Each newly learned constraint reduces the number of states in the
state space by at least 1.

I Thus, eventually either the empty assignment will be a dead end, or
the search space will become backtrack-free.

S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems June 5, 2007 45 / 46

Literature

Literature

Rina Dechter.
Constraint Processing,
Chapter 6, Morgan Kaufmann, 2003

S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems June 5, 2007 46 / 46

	Conflict Sets
	Backjumping
	Gaschnig's Backjumping
	Graph-Based Backjumping
	Conflict-Directed Backjumping

	No-Good Learning
	Concepts
	Algorithms

	Literature

