Constraint Satisfaction Problems

Constraint Networks

Malte Helmert and Stefan Wölfl

Albert-Ludwigs-Universität Freiburg

April 24, 2007

S. Wölfl, M. Helmert (Universität Freiburg)

Constraint Satisfaction Problems

April 24, 2007

1 / 14

Constraint Networks Reminder

Constraint Networks

Recall:

Definition

A constraint network is a triple

 $\mathcal{C} = \langle V, \text{dom}, C \rangle$

where:

- ▶ *V* is a non-empty and finite set of variables.
- ▶ dom is a function that assigns a non-empty (value) set (domain) to each variable $v \in V$.
- ▶ C is a set of relations over variables of V (constraints), i. e., each constraint is a relation $R_{v_1,...,v_n}$ over some variables $v_1,...,v_n$ in V.

Without loss of generality, we can assume that, for each subset S of variables, C contains only one constraint with scope S. The set of scopes $\{S_1, \dots S_t\}$ is called network scheme.

Constraint Satisfaction Problems

April 24, 2007 — Constraint Networks

Constraint Networks

Reminder

Deduction

Minimal Networks

Projection Networks

S. Wölfl, M. Helmert (Universität Freiburg)

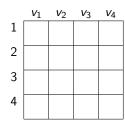
Constraint Satisfaction Problems

April 24, 2007

Constraint Networks

Example: 4-Queens Problem

Consider variables v_1, \ldots, v_4 (associated to the columns of a 4 × 4-chess board). Each of these variables v_i has as its domain $\{1, \dots, 4\}$ (conceived of as the row positions of a queen in column i).



Define then binary constraints (thus encoding possible queen movements):

$$R_{\nu_1,\nu_2} := \{(1,3), (1,4), (2,4), (3,1), (4,1), (4,2)\}$$

$$R_{\nu_1,\nu_3} := \{(1,2), (1,4), (2,1), (2,3), (3,2), (3,4), (4,1), (4,3)\}$$

4 / 14

3 / 14

Instantiation, Solution

Let $C = \langle V, \text{dom}, C \rangle$ be a constraint network.

Definition

- (a) An instantiation of a subset V' of V is an assignment $a: V' \to \bigcup_{v \in V'} \operatorname{dom}(v_i)$ with $a(v_i) \in \operatorname{dom}(v_i)$.
- (b) An instantiation a is a partial solution if a satisfies each constraint with scope $S \subseteq V'$ (we also say: a is consistent relative to C).
- (c) For an instantiation a of a subset $V' = \{v_1, \dots, v_k\}$ and a constraint *R* with scope $S \subseteq V'$, let

$$\overline{a}[S] := (a(v_1), \ldots, a(v_k)).$$

(d) A solution is an instantiation of all variables in V that is consistent relative to C.

S. Wölfl, M. Helmert (Universität Freiburg)

Constraint Satisfaction Problems

April 24, 2007

Constraint Networks

Instantiation, Solution

Note:

(a) An instantiation of variables in $V' \subseteq V$, a, is consistent relative to \mathcal{C} iff

$$\overline{a}[S] \in R$$
, for each constraint R with $S \subseteq V'$.

(b) Not each partial solution is part of a (full) solution, i. e., there may be partial solutions of a constraint network that cannot be extended to a solution. For the 4-queens problem, for example,

	v_1	v_2	<i>V</i> 3	<i>V</i> ₄
1	q			
2			q	
3				
4		q		

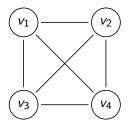
S. Wölfl, M. Helmert (Universität Freiburg)

April 24, 2007

Constraint Networks Reminder

Example: Primal Constraint Graph

The primal constraint graph for the 4-queens problem is a complete graph:



Its dual constraint graph? Its hypergraph?

Constraint Networks

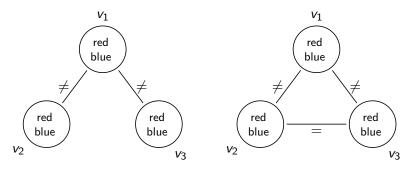
Equivalence

Let \mathcal{C} and \mathcal{C}' be constraint networks on the same set of variables and on the same domains for each variable.

Definition

 \mathcal{C} and \mathcal{C}' are equivalent if each solution of \mathcal{C} is a solution of \mathcal{C}' , and vice versa.

Example:



Tighter Networks and Equivalence

Let \mathcal{C} and \mathcal{C}' be constraint networks on the same set of variables and on the same domains for each variable. We assume that for each set of variables S, both networks contain at most one constraint with scope S.

Definition

 \mathcal{C}' is at least as tight as \mathcal{C} if for each constraint R' of \mathcal{C}' with scope S, it holds:

- (a) C has no constraint with scope S, or
- (b) $R' \subseteq R$, where R is the constraint of C with scope S.

Note: C' may be at least as tight as C although |C'| > |C|.

S. Wölfl, M. Helmert (Universität Freiburg)

Constraint Satisfaction Problems

April 24, 2007

9 / 14

Intersection of Networks

Let \mathcal{C} and \mathcal{C}' be constraint networks as above.

Definition

The intersection of C and C', $C \cap C'$, is the network defined by intersecting for each scope S of constraints $R_S \in C$ and $R'_S \in C'$ the respective relations, i.e.,

$$R_S'':=R_S\cap R_S'$$
.

If for a scope S only one of the networks contains a constraint, then we set:

$$R_S'':=R_S$$
 (or $:=R_S'$, resp.)

Lemma

If C and C' are equivalent networks, then $C \cap C'$ is equivalent to both networks and at least as tight as both networks.

S. Wölfl, M. Helmert (Universität Freiburg)

Constraint Satisfaction Problems

April 24, 2007 10 / 14

Constraint Networks Minimal Networks

Minimal Network

Definition

Let C_0 be a constraint network and let $C_1 \dots, C_k$ be the set of *all* constraint network (defined on the same set of variables and the same domains) that are equivalent to C_0 .

$$\bigcap_{1\leq i\leq k} \mathcal{C}_i$$

is the minimal network of C_0 .

The minimal network is equivalent to and as least as tight as all the constraint networks C_i . There is no network equivalent to C_0 that is tighter than the minimal network.

Constraint Networks Projection Networks

Projecting Relations

Let R_S be a relation with scope $S = \{v_1, \dots, v_k\}$ (we can conceive of R_S as a constraint network ...).

Definition

The projection network of R_S , $Proj(R_S)$, is the constraint network defined by

$$V := S$$

$$\operatorname{dom}(v_i) := \pi_{v_i}(R_S)$$

$$R_{v_i,v_j} := \pi_{v_i,v_j}(R_S)$$

Note: The projection network is an upper approximation by binary networks in the following sense:

Lemma

Any solution of R_S (as a network) defines a solution of $Proj(R_S)$.

11 / 14

12 / 14

Constraint Networks Projection Networks

Binary Representation

Definition

A relation R_S with scope S has a binary representation if the relation (conceived of as a network) is equivalent to $Proj(R_S)$.

From the fact that a relation has a binary representation, it does not follow that all its projections have binary representations as well (Exercise!).

Definition

A relation R_S with scope S is binary decomposable if the relation itself and all its projections to subsets of S (with at least 3 elements) have a binary representation.

S. Wölfl, M. Helmert (Universität Freiburg)

Constraint Satisfaction Problems

April 24, 2007

13 / 14

Literature

Rina Dechter.

Constraint Processing,

Chapter 2, Morgan Kaufmann, 2003

S. Wölfl, M. Helmert (Universität Freiburg)

Constraint Satisfaction Problems

Constraint Networks Projection Networks

April 24, 2007

14 / 14