Constraint Satisfaction Problems

Mathematical Background: Sets, Relations, and Graphs

Malte Helmert and Stefan Wölfl

Albert-Ludwigs-Universität Freiburg
April 17, 19, and 24, 2007

Sets

Sets:

Constraint Satisfaction
Problems
S. Wölfl,
M. Helmert

Sets
Set-Theoretical
Principles
Naive understanding:
a set is a "well-defined" collection of objects.
Sets and
Boolean
Algebras
Relations
Graphs

Sets

Principles (ZF):

- Extensionality: Two sets are equal if and only if they contain the

Constraint Satisfaction
Problems
S. Wölfi,
M. Helmert same elements.

- Empty set: There is a set, \emptyset, with no elements.
- Pairs: For any pair of sets $x, y,\{x, y\}$ is a set.
- Union: For any set x, there exists a set, $\bigcup x$, whose elements are precisely the elements of at least one of the elements of x.
- Separation: For any set x and any property $F(y)$, there is a subset of $x,\{y \in x: F(y)\}$, containing precisely the elements y of x for which $F(y)$ holds.
- Foundation: Each non-empty set x contains some element y such that x and y are disjoint sets.
- Power set: For any set x there exists a set 2^{x} such that the elements of 2^{x} are precisely the subsets of x.
- ... (axiom of replacement, infinite set axiom, axiom of choice)

Definitions

Definition

Binary set operations:

Constraint
Satisfaction
Problems
S. Wölfi,
M. Helmert

$$
\begin{aligned}
A \cup B & :=\{x: x \in A \text { or } x \in B\} \\
A \cap B & :=\{x \in A: x \in B\} \\
A \backslash B & :=\{x \in A: x \notin B\}
\end{aligned}
$$

Sets
Set-Theoretical
Principles
Sets and
Boolean
Algebras
Relations
Graphs
$A \subseteq B, A \subsetneq B$, etc., are defined as usual.
(Ordered) pairs:

$$
\begin{aligned}
(x, y) & :=\{\{x\},\{x, y\}\} \\
\left(x_{1}, \ldots, x_{n}\right) & :=\left(\left(x_{1}, \ldots, x_{n-1}\right), x_{n}\right) \\
A \times B & :=\{(a, b): a \in A \text { and } b \in B\}
\end{aligned}
$$

Boolean Algebra

Definition

A Boolean algebra (with complements) is a set A with

- two binary operations \cap, \cup,
- a unary operation -, and
- two distinct elements 0 and 1
such that for all elements a, b and c of A :

Constraint
Satisfaction
Problems
S. Wölfi,
M. Helmert

Sets
Set-Theoretical
Principles
Sets and
Boolean
Algebras
Relations
Graphs

$$
\begin{array}{rlrlrl}
a \cup(b \cup c) & =(a \cup b) \cup c & & a \cap(b \cap c) & =(a \cap b) \cap c & \text { Ass } \\
a \cup b & =b \cup a & a \cap b & =b \cap a & \text { Com } \\
a \cup(a \cap b) & =a & & a \cap(a \cup b) & =a & \text { Abs } \\
a \cup(b \cap c) & =(a \cup b) \cap(a \cup c) & a \cap(b \cup c) & =(a \cap b) \cup(a \cap c) \\
a \cup(a \cup s)
\end{array}
$$

Sets and Boolean Algebras

Definition

A set algebra on a set A is a non-empty subset $B \subseteq 2^{A}$ that is closed under unions, intersections, and complements.

Note: a set algebra on A contains A and \emptyset as elements.

Lemma

Each set algebra defines a Boolean algebra. Each finite Boolean algebra "can be written as" (is isomorphic to) the full set algebra on some finite set.

Theorem (Tarski)

Each Boolean algebra can be represented as a set algebra.

Relations

Definition

A relation over sets X_{1}, \ldots, X_{n} is a subset

$$
R \subseteq X_{1} \times \cdots \times X_{n}
$$

The number n is referred to as arity of R.
An n-ary relation on a set X is a subset

$$
R \subseteq X^{n}:=X \times \cdots \times X \quad(n \text { times })
$$

Since relations are sets, set-theoretical operations (union, intersection, complement) can be applied to relations as well.

Binary Relations

For binary relations on a set X we have some special operations:

Definition

Let R, S be binary relations on X. The converse of relation R is defined by:

$$
R^{-1}:=\left\{(x, y) \in X^{2}:(y, x) \in R\right\}
$$

The composition of relations R and S is defined by:

Constraint
Satisfaction
Problems
S. Wölfl,
M. Helmert

Sets
Relations
Relations
Binary Relations and Relation
Algebras
Relations over
Variables
Normalized
Constraint
Networks
Graphs
$R \circ S:=\left\{(x, z) \in X^{2}: \exists y \in X\right.$ s.t. $(x, y) \in R$ and $\left.(y, z) \in S\right\}$
The identity relation is:

$$
\Delta_{X}:=\left\{(x, y) \in X^{2}: x=y\right\} .
$$

Relation Algebra

Definition (Tarski)

A relation algebra is a set A with

- binary operations \cap, \cup, and \circ

Constraint
Satisfaction
Problems
S. Wölfi,
M. Helmert

Sets
Relations
Relations
Binary Relations and Relation
Algebras
Relations over
Variables
Normalized
Constraint
Networks
Graphs

Relations and Relation Algebras

Definition

An algebra of relations (or: concrete relation algebra) on a set unions, intersections, compositions, complements, and converses, and contains Δ_{A} as an element.

Lemma

Relations
Binary Relations and Relation
Algebras
Relations over
Variables
Normalized
Constraint
Networks
Each concrete relation algebra defines a relation algebra.
The converse of the lemma is not true, even if we restrict to finite relation algebras.

Example: Point Algebra

Consider a Boolean algebra A with (exactly) three atoms δ, a, b, i. e., $x \cap y=0$ for $x, y \in\{\delta, a, b\}$ and $x \neq y$, and $1=\delta \cup a \cup b$. Define converses of atoms by:

$$
{ }^{-1}: \operatorname{Atom}(A) \rightarrow \operatorname{Atom}(A), \quad \delta \mapsto \delta, a \mapsto b, b \mapsto a
$$

Furthermore, define composition of atoms

$$
\circ: \operatorname{Atom}(A) \times \operatorname{Atom}(A) \rightarrow A
$$

by a composition table:

\circ	δ	a	b
δ	δ	a	b
a	a	a	1
b	b	1	b

Constraint
Satisfaction
Problems
S. Wölfl,
M. Helmert

Sets
Relations
Relations
Binary Relations
and Relation
Algebras
Relations over
Variables
Normalized
Constraint
Networks
Graphs

Obtain a relation algebra (check it!) by extending these functions to functions ${ }^{-1}: A \rightarrow A$ and $\circ: A \times A \rightarrow A$ as follows:

Example: Point Algebra

Consider a Boolean algebra A with (exactly) three atoms δ, a, b, i. e., $x \cap y=0$ for $x, y \in\{\delta, a, b\}$ and $x \neq y$, and $1=\delta \cup a \cup b$. Define converses of atoms by:

Constraint
Satisfaction
Problems
S. Wölfi,
M. Helmert

Sets
Furthermore, define composition of atoms

$$
\circ: \operatorname{Atom}(A) \times \operatorname{Atom}(A) \rightarrow A
$$

by a composition table:

\circ	δ	a	b
δ	δ	a	b
a	a	a	1
b	b	1	b

Relations
Relations
Binary Relations and Relation
Algebras
Relations over
Variables
Normalized
Constraint
Networks
Graphs

Obtain a relation algebra (check it!) by extending these functions to functions ${ }^{-1}: A \rightarrow A$ and $\circ: A \times A \rightarrow A$ as follows:

$$
\begin{aligned}
(x \cup y)^{-1} & =x^{-1} \cup y^{-1} \\
\left(x_{1} \cup y_{1}\right) \circ\left(x_{2} \cup y_{2}\right) & =\left(x_{1} \circ x_{2}\right) \cup\left(x_{1} \circ y_{2}\right) \cup\left(x_{2} \cup y_{1}\right) \cup\left(x_{2} \cup y_{2}\right)
\end{aligned}
$$

Example: Representing the Point Algebra

Task: Find a concrete relation algebra B (with 8 elements) on some set X and a (bijective) map $\phi: A \rightarrow B$ such that for all $x, y \in A$

$$
\begin{aligned}
\phi(x * y) & =\phi(x) * \phi(y), \quad \text { for } * \in\{\cap, \cup, \circ\} \\
\phi(-x) & =(X \times X) \backslash \phi(x) \\
\phi\left(x^{-1}\right) & =\phi(x)^{-1} \\
\phi(0) & =\emptyset \\
\phi(1) & =X \times X \\
\phi(\delta) & =\Delta_{X}
\end{aligned}
$$

Constraint
Satisfaction
Problems
S. Wölfi,
M. Helmert

Sets
Relations
Relations
Binary Relations and Relation
Algebras
Relations over
Variables
Normalized
Constraint
Networks
Graphs

Solution: Consider a dense linear order $\left(X,<_{X}\right)$ without endpoints (e.g., the linear order on \mathbb{Q}). Define ϕ by

Example: Representing the Point Algebra

Task: Find a concrete relation algebra B (with 8 elements) on some set X and a (bijective) map $\phi: A \rightarrow B$ such that for all $x, y \in A$

$$
\begin{aligned}
\phi(x * y) & =\phi(x) * \phi(y), \quad \text { for } * \in\{\cap, \cup, \circ\} \\
\phi(-x) & =(X \times X) \backslash \phi(x) \\
\phi\left(x^{-1}\right) & =\phi(x)^{-1} \\
\phi(0) & =\emptyset \\
\phi(1) & =X \times X \\
\phi(\delta) & =\Delta_{X}
\end{aligned}
$$

Constraint
Satisfaction
Problems
S. Wölfi,
M. Helmert

Sets
Relations
Relations
Binary Relations and Relation
Algebras
Relations over
Variables
Normalized
Constraint
Networks
Graphs

Solution: Consider a dense linear order $\left(X,<_{X}\right)$ without endpoints (e. g., the linear order on Q). Define ϕ by

$$
a \mapsto<_{X} \quad \text { and } \quad b \mapsto>_{X} .
$$

The crucial point to prove is that $\phi(x \circ y)=\phi(x) \circ \phi(y)$.

Example: The Pentagraph Algebra

Consider the same Boolean algebra as in the case of the point algebra.
Define converses of atoms by:

$$
\delta \mapsto \delta, a \mapsto a, b \mapsto b .
$$

Define composition by:

\circ	δ	a	b
δ	δ	a	b
a	a	$\delta \cup b$	$a \cup b$
b	b	$a \cup b$	$\delta \cup a$

The resulting algebra can be represented by a pentagraph:

Constraint
Satisfaction
Problems
S. Wölfi,
M. Helmert

Sets

Relations
Relations
Binary Relations
and Relation
Algebras
Relations over
Variables
Normalized
Constraint
Networks
Graphs

Relations over Variables

Let V be a set of variables. For each $v \in V$, let $\operatorname{dom}(v)$ (the domain of v) be a non-empty set (of values).

Definition

Constraint
Satisfaction
Problems
S. Wö|fl,
M. Helmert

Sets
Relations
Relations
Binary Relations and Relation
Algebras
Relations over
Variables
Normalized
Constraint
Networks
Graphs

The sequence v_{1}, \ldots, v_{n} is referred to as range of $R_{v_{1}, \ldots, v_{n}}$. R is referred to as graph of $R_{v_{1}, \ldots, v_{n}}$.

We will not always distinguish between the relation and its graph, e.g., we write

$$
R_{v_{1}, \ldots, v_{n}} \subseteq \operatorname{dom}\left(v_{1}\right) \times \cdots \times \operatorname{dom}\left(v_{n}\right)
$$

Constraint Networks

Definition

A constraint network is a triple

$$
\mathcal{C}=\langle V, \operatorname{dom}, C\rangle
$$

where:

- V is a non-empty and finite set of variables.
- dom is a function that assigns a non-empty (value) set (domain) to each variable $v \in V$.
- C is a set of relations over variables of V (constraints), i. e., each constraint is a relation $R_{v_{1}, \ldots, v_{n}}$ over some variables v_{1}, \ldots, v_{n} in V.

Solvability of Networks

Definition

A constraint network is solvable (or: satisfiable) if there exists

Constraint
Satisfaction
Problems
S. Wölfi,
M. Helmert an assignment

$$
a: V \rightarrow \bigcup_{v \in V} \operatorname{dom}(v)
$$

such that
(a) $a(v) \in \operatorname{dom}(v)$, for each $v \in V$,
(b) $\left(a\left(v_{1}\right), \ldots, a\left(v_{n}\right)\right) \in R_{v_{1}, \ldots, v_{n}}$ for all constraints $R_{v_{1}, \ldots, v_{n}}$.

A solution of a constraint network is an assignment that solves the network.

Selections, . . .

Definition

Let $\bar{v}:=\left(v_{1}, \ldots, v_{n}\right)$ and let $R_{\bar{v}}$ be a relation over \bar{v}. Let $a_{1} \in \operatorname{dom}\left(v_{i_{1}}\right), \ldots, a_{k} \in \operatorname{dom}\left(v_{i_{k}}\right)$ be fixed values. Then

$$
\begin{aligned}
\sigma_{v_{i_{1}}=a_{1}, \ldots, v_{i_{k}}=a_{k}} & \left(R_{\bar{v}}\right):= \\
& \left\{\left(x_{1}, \ldots, x_{n}\right) \in R_{\bar{v}}: x_{i_{j}}=a_{j}, 1 \leq j \leq k\right\}
\end{aligned}
$$

Constraint
Satisfaction
Problems
S. Wölfi,
M. Helmert

Sets

Relations
Relations
Binary Relations
and Relation
Algebras
Relations over
Variables
Normalized
Constraint
Networks
Graphs
is a relation over \bar{v}.
The (unary) operation $\sigma_{v_{i_{1}}=a_{1}, \ldots, v_{i_{k}}=a_{k}}$ is called selection or restriction.

Projections, . . .

Let $\left(i_{1}, \ldots, i_{k}\right)$ be a k-tuple of pairwise distinct elements of $\{1, \ldots, n\}(k \leq n)$. For an n-tuple $\bar{x}=\left(x_{1}, \ldots, x_{n}\right)$, define $\bar{x}_{i_{1}, \ldots, i_{k}}:=\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)$.

Constraint
Satisfaction
Problems
S. Wölfi,
M. Helmert

Sets
Relations
Relations
Binary Relations
and Relation
Algebras
Relations over
Variables
Normalized
Constraint
Networks
Graphs
is a relation over $\bar{v}_{i_{1}, \ldots, i_{k}}$.
The (unary) operation $\pi_{v_{i_{1}}, \ldots, v_{i_{k}}}$ is called projection.

... Joins

Let $R_{\bar{v}}$ and $S_{\bar{w}}$ be relations over variables \bar{v} and \bar{w}, respectively. For tuples \bar{x} and \bar{y} define:

- $\bar{x}-\bar{y}$: the subsequence of elements in \bar{x} that do not occur in \bar{y}.
- $\bar{x} \cap \bar{y}$: the subsequence of \bar{x} with elements that occur in \bar{y}.
- $\bar{x} \cup \bar{y}$: the sequence resulting from \bar{x} by adding $\bar{y}-\bar{x}$.

Definition

$$
R_{\bar{v}} \bowtie S_{\bar{w}}:=\left\{\bar{x} \cup \bar{y}: \bar{x} \in R_{\bar{v}}, \bar{y} \in R_{\bar{w}}, \text { and } \bar{x}_{\bar{v} \cap \bar{w}}=\bar{y}_{\bar{v} \cap \bar{w}}\right\}
$$

Constraint
Satisfaction
Problems
S. Wölfi,
M. Helmert

Sets
Relations
Relations
Binary Relations
and Relation
Algebras
Relations over
Variables
Normalized
Constraint
Networks
Graphs is a relation over $\bar{v} \cup \bar{w}$, the join of $R_{\bar{v}}$ and $S_{\bar{w}}$.

Note: For binary relations R and S :

$$
R_{x, y} \circ R_{y, z}=\pi_{x, z}\left(R_{x, y} \bowtie R_{y, z}\right) .
$$

Examples

Consider relations $R:=R_{x_{1}, x_{2}, x_{3}}$ and $R^{\prime}:=R_{x_{2}, x_{3}, x_{4}}^{\prime}$ defined by:

x_{1}	x_{2}	x_{3}
b	b	c
c	b	c
c	n	n

x_{2}	x_{3}	x_{4}
a	a	1
b	c	2
b	c	3

Then $\sigma_{x_{3}=c}(R), \pi_{x_{2}, x_{3}}(R), \pi_{x_{2}, x_{1}}(R)$, and $R \bowtie R^{\prime}$ are:

x_{1}	x_{2}	x_{3}	x_{2}	x_{3}	x_{2}	x_{1}	x_{1}	x_{2}	x_{3}	x_{4}
							b	b	c	2
b	b	c	b	c	b	b	b	b	c	3
c	b	c	b	c	b	c	c	b	c	2
			n	n	n	c	c	b	c	3

Normalized Constraint Networks

Let $\mathcal{C}=\langle V$, dom, $C\rangle$ be a constraint network.
According to our definition it is possible that C contains constraints
$R_{v_{i_{1}}, \ldots, v_{i_{k}}}$ and $S_{v_{j_{1}}, \ldots, v_{j_{k}}}$
where $\left(j_{1}, \ldots, j_{k}\right)$ is just a permutation of $\left(i_{1}, \ldots, i_{k}\right)$.
In this case, we can simplify the network by deleting S_{r}
from C and rewriting $R_{v_{i_{1}}, \ldots, v_{i}}$ as follows:

Constraint
Satisfaction
Problems
S. Wölfi,
M. Helmert

Sets
Relations
Relations
Binary Relations
and Relation
Algebras
Relations over
Variables
Normalized
Constraint
Networks
Graphs

Given an arbitrary order on the set of variables V, we can systematically delete-and-refine constraints. The result is a constraint network that contains exactly one constraint for each subset of variables. This network is referred to as a normalized constraint network

Normalized Constraint Networks

Let $\mathcal{C}=\langle V$, dom, $C\rangle$ be a constraint network.
According to our definition it is possible that C contains constraints

$$
R_{v_{i_{1}}, \ldots, v_{i_{k}}} \quad \text { and } \quad S_{v_{j_{1}}, \ldots, v_{j_{k}}}
$$

where $\left(j_{1}, \ldots, j_{k}\right)$ is just a permutation of $\left(i_{1}, \ldots, i_{k}\right)$.
In this case, we can simplify the network by deleting $S_{v_{j_{1}}, \ldots, v_{j_{k}}}$ from C and rewriting $R_{v_{i_{1}}, \ldots, v_{i_{k}}}$ as follows:

$$
R_{v_{i_{1}}, \ldots, v_{i_{k}}} \leftarrow R_{v_{i_{1}}, \ldots, v_{i_{k}}} \cap \pi_{v_{i_{1}}, \ldots, v_{i_{k}}}\left(S_{v_{j_{1}}, \ldots, v_{j_{k}}}\right) .
$$

Constraint
Satisfaction
Problems
S. Wölfl
M. Helmert

Sets
Relations
Relations
Binary Relations
and Relation
Algebras
Relations over
Variables
Normalized
Constraint
Networks
Graphs

Given an arbitrary order on the set of variables V, we can systematically delete-and-refine constraints. The result is a constraint network that contains exactly one constraint for each subset of variables. This network is referred to as a normalized constraint network

Normalized Constraint Networks

Let $\mathcal{C}=\langle V$, dom, $C\rangle$ be a constraint network.
According to our definition it is possible that C contains constraints

$$
R_{v_{i_{1}}, \ldots, v_{i_{k}}} \quad \text { and } \quad S_{v_{j_{1}}, \ldots, v_{j_{k}}}
$$

where $\left(j_{1}, \ldots, j_{k}\right)$ is just a permutation of $\left(i_{1}, \ldots, i_{k}\right)$.
In this case, we can simplify the network by deleting $S_{v_{j_{1}}, \ldots, v_{j_{k}}}$ from C and rewriting $R_{v_{i_{1}}, \ldots, v_{i_{k}}}$ as follows:

$$
R_{v_{i_{1}}, \ldots, v_{i_{k}}} \leftarrow R_{v_{i_{1}}, \ldots, v_{i_{k}}} \cap \pi_{v_{i_{1}}, \ldots, v_{i_{k}}}\left(S_{v_{j_{1}}, \ldots, v_{j_{k}}}\right)
$$

Constraint
Satisfaction
Problems
S. Wö|fl,
M. Helmert

Sets
Relations
Relations
Binary Relations
and Relation
Algebras
Relations over
Variables
Normalized
Constraint
Networks
Graphs

Given an arbitrary order on the set of variables V, we can systematically delete-and-refine constraints. The result is a constraint network that contains exactly one constraint for each subset of variables. This network is referred to as a normalized constraint network.

Undirected Graph

Definition

An (undirected) graph is an ordered pair

$$
G:=\langle V, E\rangle
$$

Constraint Satisfaction
Problems
S. Wölfi,
M. Helmert

Sets

Relations
Graphs
where:
Undirected Graphs

- V is a finite set (of vertices, nodes);
- E is a set of two-element subsets of (not necessarily distinct) nodes (called edges).

The order of a graph is the number of vertices $|V|$. The size of a graph is the number of edges $|E|$. The degree of a vertex is the number of vertices to which it is connected by an edge.

Undirected Graph

Definition

An (undirected) graph is an ordered pair

$$
G:=\langle V, E\rangle
$$

where:

- V is a finite set (of vertices, nodes);

Directed Graphs
Graphs and
Constraints
Hypergraphs

- E is a set of two-element subsets of (not necessarily distinct) nodes (called edges).

The order of a graph is the number of vertices $|V|$. The size of a graph is the number of edges $|E|$. The degree of a vertex is the number of vertices to which it is connected by an edge.

Graph: Example

Sets

Relations
Graphs
Undirected
Graphs
Directed Graphs
Graphs and
Constraints
Hypergraphs

Graph: Definitions

Definition

Let $G=\langle V, E\rangle$ be an undirected graph.

Constraint
Satisfaction
Problems
S. Wölfl,
M. Helmert
(a) If $e=\{u, v\} \in E$, then u and v are called adjacent (connected by e).
(b) A path in G is a sequence of edges e_{1}, \ldots, e_{k} such that $e_{i} \cap e_{i+1} \neq \emptyset$.
Sometimes, paths are defined via vertices:
A path in G is a sequence of vertices v_{0}, \ldots, v_{k} such that $\left\{v_{i-1}, v_{i}\right\} \in E(1 \leq i \leq k) . k$ is the length, v_{0} is the start vertex, and v_{k} is the end vertex of the path.
(c) A cycle is a path v_{0}, \ldots, v_{k} with $v_{0}=v_{k}$.
(d) A path v_{0}, \ldots, v_{k} is simple if $v_{i} \neq v_{j}$ for all $i \neq j$.
(e) A cycle v_{0}, \ldots, v_{k} is simple if $v_{i} \neq v_{j}$ for all $i, j \geq 1, i \neq j$.

Graph: Definitions

Let $G=\langle V, E\rangle$ be an undirected graph.

Definition

(a) G is connected if, for each pair of vertices u and v, there exists a path from u to v.

Constraint Satisfaction
Problems
S. Wölfi,
M. Helmert

Sets
Relations
Graphs
Undirected Graphs
Directed Graphs
Graphs and
Constraints
Hypergraphs

Definition
Let $G=\langle V, E\rangle$ be an undirected graph. Let S be a subset of V. Then $G_{S}:=\left\langle S, E_{S}\right\rangle$ is called the subgraph relative to S where

Graph: Definitions

Let $G=\langle V, E\rangle$ be an undirected graph.

Definition

(a) G is connected if, for each pair of vertices u and v, there exists a path from u to v.
(b) G is a tree if G is cycle-free.
(c) G is complete if any pair of vertices is connected.

Definition

Let $G=\langle V, E\rangle$ be an undirected graph. Let S be a subset of V. Then $G_{S}:=\left\langle S, E_{S}\right\rangle$ is called the subgraph relative to S, where

$$
E_{S}:=\{\{u, v\} \in E: u, v \in S\} .
$$

Definition

A clique in a graph G is a complete subgraph of G.

Graph: Definitions

$$
\text { Let } G=\langle V, E\rangle \text { be an undirected graph. }
$$

Definition

(a) G is connected if, for each pair of vertices u and v, there exists a path from u to v.
(b) G is a tree if G is cycle-free.
(c) G is complete if any pair of vertices is connected.

Definition

Constraint
Satisfaction
Problems
S. WölfI,
M. Helmert

Sets
Relations
Graphs
Undirected
Graphs
Directed Graphs
Graphs and
Constraints
Hypergraphs

Let $G=\langle V, E\rangle$ be an undirected graph. Let S be a subset of V. Then $G_{S}:=\left\langle S, E_{S}\right\rangle$ is called the subgraph relative to S, where

$$
E_{S}:=\{\{u, v\} \in E: u, v \in S\} .
$$

Definition

A clique in a graph G is a complete subgraph of G.

Examples

Constraint
Satisfaction
Problems
S. Wölfl,
M. Helmert

Sets
Relations
Graphs
Undirected
Graphs
Directed Graphs
Graphs and
Constraints
Hypergraphs

Figure: Example

Examples

Constraint
Satisfaction
Problems
S. Wölfl,
M. Helmert

Sets
Relations
Graphs
Undirected
Graphs
Directed Graphs
Graphs and
Constraints
Hypergraphs

Figure: A path A,B,C,D,F

Examples

Constraint Satisfaction
Problems
S. Wölfl,
M. Helmert

Sets
Relations
Graphs
Undirected
Graphs
Directed Graphs
Graphs and
Constraints
Hypergraphs

Figure: A non-connected and incomplete graph

Examples

Constraint Satisfaction
Problems
S. Wölfi,
M. Helmert

Sets
Relations
Graphs
Undirected
Graphs
Directed Graphs
Graphs and
Constraints
Hypergraphs

Figure: A subgraph

Examples

Constraint
Satisfaction
Problems
S. Wölfi,
M. Helmert

Sets
Relations
Graphs
Undirected
Graphs
Directed Graphs
Graphs and
Constraints
Hypergraphs

Figure: A clique

Directed Graph

Definition

A directed graph (or: digraph) is an ordered pair

$$
G:=\langle V, A\rangle
$$

Constraint
Satisfaction
Problems
S. Wölfl
M. Helmert

Sets
Relations
Graphs
Undirected
Graphs
Directed Graphs
Graphs and
Constraints
Hypergraphs

The number of edges with a vertex v as start vertex is called the outdegree of v; the number of vertices with v as end vertex is the indegree of v. Nodes that point to v are called parents, nodes to which an edge from v points are called child nodes.

Directed Graph

Definition

A directed graph (or: digraph) is an ordered pair

Constraint
Satisfaction
Problems
S. Wölfl,
M. Helmert

Sets
Relations
Graphs
Undirected
Graphs
Directed Graphs
Graphs and
Constraints
Hypergraphs

The number of edges with a vertex v as start vertex is called the outdegree of v; the number of vertices with v as end vertex is the indegree of v. Nodes that point to v are called parents, nodes to which an edge from v points are called child nodes.

Directed Graph: Definitions

Definition

Let $G=\langle V, A\rangle$ be a directed graph.
(a) A (directed) path is a sequence of arcs e_{1}, \ldots, e_{k} such that the end vertex of e_{i} is the start vertex of e_{i+1} (analogously, (directed) cycle).
(b) A digraph is strongly connected if each pair of nodes u, v is connected by a directed graph from u to v.
(c) A digraph is acyclic if it has no directed cycles.

Digraph: Example

Relations
Graphs
Undirected
Graphs
Directed Graphs
Graphs and
Constraints
Hypergraphs

Figure: A directed graph with a strongly connected subgraph

Primal Constraint Graphs

Let $\mathcal{C}=\langle V$, dom, $C\rangle$ be a (normalized) constraint network. For a constraint $R_{x_{1}, \ldots, x_{k}}$, the set $\left\{x_{1}, \ldots, x_{k}\right\}$ is called the scope $R_{x_{1}, \ldots, x_{k}}$.

Sets

Definition

Relations
The primal constraint graph of a network $\mathcal{C}=\langle V$, dom, $C\rangle$ is

$$
G_{\mathcal{C}}:=\left\langle V, E_{\mathcal{C}}\right\rangle
$$

where

$$
\begin{aligned}
\{u, v\} \in E_{\mathcal{C}} \Longleftrightarrow & \{u, v\} \text { is a subset of the scope } \\
& \text { of some constraint in } \mathcal{C} .
\end{aligned}
$$

Primal Constraint Graph: Example

Consider a constraint network with variables v_{1}, \ldots, v_{5} and two ternary constraints $R_{v_{1}, v_{2}, v_{3}}$ and $S_{v_{3}, v_{4}, v_{5}}$.

Constraint
Satisfaction
Problems
S. Wölfl,
M. Helmert

Then the primal constraint graph of the network has the form:

Absence of an edge between two variables/nodes means that there is no direct constraint between these variables.

Hypergraph

Definition

Constraint
Satisfaction
Problems
S. Wölfi,
M. Helmert

Sets
Relations

$$
H:=\langle V, E\rangle
$$

where

- V is a set (of nodes, vertices),
- E is a set of non-empty subsets of V (called hyperedges), i. e., $E \subseteq 2^{V} \backslash\{\emptyset\}$.

Note: Hyperedges can contain an arbitrarily many nodes.

Constraint Hypergraph

Definition

The constraint hypergraph of a constraint network
$\mathcal{C}=\langle V$, dom, $C\rangle$ is the hypergraph

$$
H_{\mathcal{C}}:=\left\langle V, E_{\mathcal{C}}\right\rangle
$$

with

$X \in E_{\mathcal{C}} \Longleftrightarrow X$ is the scope of some constraint in \mathcal{C}.

In the example above (constraint network with variables v_{1}, \ldots, v_{5} and two ternary constraints $R_{v_{1}, v_{2}, v_{3}}$ and $S_{v_{3}, v_{4}, v_{5}}$) the hyperedges of the constraint hypergraph are:

$$
E_{\mathcal{C}}=\left\{\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{3}, v_{4}, v_{5}\right\}\right\} .
$$

Dual Constraint Graphs

Definition

The dual constraint graph of a constraint network $\mathcal{C}=\langle V, \operatorname{dom}, C\rangle$ is the labeled graph

$$
D_{\mathcal{C}}:=\left\langle V^{\prime}, E_{\mathcal{C}}, l\right\rangle
$$

Constraint
Satisfaction
Problems
S. Wölfl,
M. Helmert

Sets
Relations
Graphs
Undirected
Graphs
Directed Graphs
Graphs and
Constraints
Hypergraphs

$$
\{X, Y\} \in E_{\mathcal{C}} \Longleftrightarrow X \cap Y \neq \emptyset
$$

$$
l: E_{\mathcal{C}} \rightarrow 2^{V}, \quad\{X, Y\} \mapsto X \cap Y
$$

In the example above, the dual constraint graph is

Literature

R Rina Dechter.
Constraint Processing, Chapter 1 and 2, Morgan Kaufmann, 2003

R Roger D. Maddux.
Introductory course on relation algebras, finite-dimensional cylindric algebras, and their interconnections,
in: H. Andrka, J. Monk, I. Nmeti (eds.), Algebraic Logic, North-Holland, Amsterdam, 1991, pp. 361-392.
Dikipedia contributors,
Graph theory, Graph (mathematics), Boolean Algebra, Relational Algebra, (2007, April),
In Wikipedia, The Free Encyclopedia. Wikipedia.

