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Sets Set-Theoretical Principles

Sets

Principles (ZF):

I Extensionality: Two sets are equal if and only if they contain the same elements.

I Empty set: There is a set, ∅, with no elements.

I Pairs: For any pair of sets x , y , {x , y} is a set.

I Union: For any set x , there exists a set,
S

x , whose elements are precisely the
elements of at least one of the elements of x .

I Separation: For any set x and any property F (y), there is a subset of x ,
{y ∈ x : F (y)}, containing precisely the elements y of x for which F (y) holds.

I Foundation: Each non-empty set x contains some element y such that x and y
are disjoint sets.

I Power set: For any set x there exists a set 2x such that the elements of 2x are
precisely the subsets of x .

I . . . (axiom of replacement, infinite set axiom, axiom of choice)
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Sets Set-Theoretical Principles

Definitions

Definition
Binary set operations:

A ∪ B := {x : x ∈ A or x ∈ B}
A ∩ B := {x ∈ A : x ∈ B}
A \ B := {x ∈ A : x 6∈ B}

A ⊆ B, A ( B, etc., are defined as usual.

(Ordered) pairs:

(x , y) := {{x}, {x , y}}
(x1, . . . , xn) := ((x1, . . . , xn−1), xn)

A× B := {(a, b) : a ∈ A and b ∈ B}
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Sets Sets and Boolean Algebras

Boolean Algebra

Definition
A Boolean algebra (with complements) is a set A with

I two binary operations ∩, ∪,

I a unary operation −, and

I two distinct elements 0 and 1

such that for all elements a, b and c of A:

a ∪ (b ∪ c) = (a ∪ b) ∪ c a ∩ (b ∩ c) = (a ∩ b) ∩ c Ass

a ∪ b = b ∪ a a ∩ b = b ∩ a Com

a ∪ (a ∩ b) = a a ∩ (a ∪ b) = a Abs

a ∪ (b ∩ c) = (a ∪ b) ∩ (a ∪ c) a ∩ (b ∪ c) = (a ∩ b) ∪ (a ∩ c) Dis

a ∪ −a = 1 a ∩ −a = 0 Compl
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Sets Sets and Boolean Algebras

Sets and Boolean Algebras

Definition
A set algebra on a set A is a non-empty subset B ⊆ 2A that is closed
under unions, intersections, and complements.

Note: a set algebra on A contains A and ∅ as elements.

Lemma
Each set algebra defines a Boolean algebra. Each finite Boolean algebra
“can be written as” (is isomorphic to) the full set algebra on some finite
set.

Theorem (Tarski)

Each Boolean algebra can be represented as a set algebra.
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Relations Relations

Relations

Definition
A relation over sets X1, . . . ,Xn is a subset

R ⊆ X1 × · · · × Xn.

The number n is referred to as arity of R.
An n-ary relation on a set X is a subset

R ⊆ X n := X × · · · × X (n times).

Since relations are sets, set-theoretical operations (union, intersection,
complement) can be applied to relations as well.
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Relations Binary Relations and Relation Algebras

Binary Relations

For binary relations on a set X we have some special operations:

Definition
Let R,S be binary relations on X .
The converse of relation R is defined by:

R−1 :=
{
(x , y) ∈ X 2 : (y , x) ∈ R

}
.

The composition of relations R and S is defined by:

R ◦ S :=
{
(x , z) ∈ X 2 : ∃y ∈ X s.t. (x , y) ∈ R and (y , z) ∈ S

}
.

The identity relation is:

∆X :=
{
(x , y) ∈ X 2 : x = y

}
.
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Relations Binary Relations and Relation Algebras

Relation Algebra
Definition (Tarski)
A relation algebra is a set A with

I binary operations ∩, ∪, and ◦
I unary operations − and −1, and

I distinct elements 0, 1, and δ such that

(a) (A,∩,∪,−, 0, 1) is a Boolean algebra.

(b) For all elements a, b and c of A:

a ◦ (b ◦ c) = (a ◦ b) ◦ c

a ◦ (b ∪ c) = (a ◦ b) ∪ (a ◦ c)

δ ◦ a = a ◦ δ = a

(a−1)
−1

= a and (−a)−1 = −(a−1)

(a ∪ b)−1 = a−1 ∪ b−1

(a ◦ b)−1 = b−1 ◦ a−1

(a ◦ b) ∩ c−1 = 0 if and only if (b ◦ c) ∩ a−1 = 0
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Relations Binary Relations and Relation Algebras

Relations and Relation Algebras

Definition
An algebra of relations (or: concrete relation algebra) on a set A is a
non-empty subset B ⊆ 2A×A that is closed under unions, intersections,
compositions, complements, and converses, and contains ∆A as an
element.

Lemma
Each concrete relation algebra defines a relation algebra.

The converse of the lemma is not true, even if we restrict to finite relation
algebras.
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Relations Binary Relations and Relation Algebras

Example: Point Algebra
Consider a Boolean algebra A with (exactly) three atoms δ, a, b,
i. e., x ∩ y = 0 for x , y ∈ {δ, a, b} and x 6= y , and 1 = δ ∪ a ∪ b.
Define converses of atoms by:

−1 : Atom(A)→ Atom(A), δ 7→ δ, a 7→ b, b 7→ a

Furthermore, define composition of atoms

◦ : Atom(A)×Atom(A)→ A

by a composition table: ◦ δ a b
δ δ a b
a a a 1
b b 1 b

Obtain a relation algebra (check it!) by extending these functions to functions
−1 : A→ A and ◦ : A× A→ A as follows:

(x ∪ y)−1 = x−1 ∪ y−1

(x1 ∪ y1) ◦ (x2 ∪ y2) = (x1 ◦ x2) ∪ (x1 ◦ y2) ∪ (x2 ∪ y1) ∪ (x2 ∪ y2)
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Relations Binary Relations and Relation Algebras

Example: Representing the Point Algebra

Task: Find a concrete relation algebra B (with 8 elements) on some set X and a
(bijective) map φ : A→ B such that for all x , y ∈ A

φ(x ∗ y) = φ(x) ∗ φ(y), for ∗ ∈ {∩,∪, ◦}
φ(−x) = (X × X ) \ φ(x)

φ(x−1) = φ(x)−1

φ(0) = ∅
φ(1) = X × X

φ(δ) = ∆X

Solution: Consider a dense linear order (X , <X ) without endpoints (e. g., the
linear order on Q). Define φ by

a 7→ <X and b 7→ >X .

The crucial point to prove is that φ(x ◦ y) = φ(x) ◦ φ(y).
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Relations Binary Relations and Relation Algebras

Example: The Pentagraph Algebra
Consider the same Boolean algebra as in the case of the point algebra.
Define converses of atoms by:

δ 7→ δ, a 7→ a, b 7→ b.

Define composition by: ◦ δ a b
δ δ a b
a a δ ∪ b a ∪ b
b b a ∪ b δ ∪ a

The resulting algebra can be
represented by a pentagraph:

0

1

a

2

a

b

3a

b

b

4

a

a

b

b

S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems April 17, 19, and 24, 2007 13 / 35



Relations Relations over Variables

Relations over Variables

Let V be a set of variables. For each v ∈ V , let dom(v) (the domain of v)
be a non-empty set (of values).

Definition
A relation over (pairwise distinct) variables v1, . . . , vn ∈ V is an n +1-tuple

Rv1,...,vn := (v1, . . . , vn,R)

where R is a relation over dom(v1), . . . ,dom(vn).

The sequence v1, . . . , vn is referred to as range of Rv1,...,vn .
R is referred to as graph of Rv1,...,vn .

We will not always distinguish between the relation and its graph, e. g., we
write

Rv1,...,vn ⊆ dom(v1)× · · · × dom(vn).

S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems April 17, 19, and 24, 2007 14 / 35



Relations Relations over Variables

Constraint Networks

Definition
A constraint network is a triple

C = 〈V ,dom,C 〉

where:

I V is a non-empty and finite set of variables.

I dom is a function that assigns a non-empty (value) set (domain) to
each variable v ∈ V .

I C is a set of relations over variables of V (constraints), i. e., each
constraint is a relation Rv1,...,vn over some variables v1, . . . , vn in V .
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Relations Relations over Variables

Solvability of Networks

Definition
A constraint network is solvable (or: satisfiable) if there exists an
assignment

a : V →
⋃
v∈V

dom(v)

such that

(a) a(v) ∈ dom(v), for each v ∈ V ,

(b) (a(v1), . . . , a(vn)) ∈ Rv1,...,vn for all constraints Rv1,...,vn .

A solution of a constraint network is an assignment that solves the
network.
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Relations Relations over Variables

Selections, . . .

Definition
Let v := (v1, . . . , vn) and let Rv be a relation over v .
Let a1 ∈ dom(vi1), . . . , ak ∈ dom(vik ) be fixed values.
Then

σvi1
=a1,...,vik

=ak
(Rv ) :=

{
(x1, . . . , xn) ∈ Rv : xij = aj , 1 ≤ j ≤ k

}
is a relation over v .

The (unary) operation σvi1
=a1,...,vik

=ak
is called selection or restriction.
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Relations Relations over Variables

. . . Projections, . . .

Let (i1, . . . , ik) be a k-tuple of pairwise distinct elements of {1, . . . , n}
(k ≤ n). For an n-tuple x = (x1, . . . , xn), define x i1,...,ik := (xi1 , . . . , xik ).

Definition
Let v := (v1, . . . , vn) and let Rv be a relation over v .
Then

πvi1
,...,vik

(Rv ) :={
y ∈

∏
1≤j≤k

dom(vij ) : y = x i1,...,ik , for some x ∈ Rv

}
is a relation over v i1,...,ik .

The (unary) operation πvi1
,...,vik

is called projection.
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Relations Relations over Variables

. . . Joins

Let Rv and Sw be relations over variables v and w , respectively.

For tuples x and y define:

I x − y : the subsequence of elements in x that do not occur in y .

I x ∩ y : the subsequence of x with elements that occur in y .

I x ∪ y : the sequence resulting from x by adding y − x .

Definition
Rv ./ Sw :=

{
x ∪ y : x ∈ Rv , y ∈ Rw , and xv∩w = y v∩w

}
is a relation over v ∪ w , the join of Rv and Sw .

Note: For binary relations R and S :

Rx ,y ◦ Ry ,z = πx ,z(Rx ,y ./ Ry ,z).
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Relations Relations over Variables

Examples

Consider relations R := Rx1,x2,x3 and R ′ := R ′
x2,x3,x4

defined by:

x1 x2 x3

b b c
c b c
c n n

x2 x3 x4

a a 1
b c 2
b c 3

Then σx3=c(R), πx2,x3(R), πx2,x1(R), and R ./ R ′ are:

x1 x2 x3

b b c
c b c

x2 x3

b c
b c
n n

x2 x1

b b
b c
n c

x1 x2 x3 x4

b b c 2
b b c 3
c b c 2
c b c 3
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Relations Normalized Constraint Networks

Normalized Constraint Networks

Let C = 〈V ,dom,C 〉 be a constraint network.
According to our definition it is possible that C contains constraints

Rvi1
,...,vik

and Svj1
,...,vjk

where (j1, . . . , jk) is just a permutation of (i1, . . . , ik).

In this case, we can simplify the network by deleting Svj1
,...,vjk

from C and
rewriting Rvi1

,...,vik
as follows:

Rvi1
,...,vik

← Rvi1
,...,vik

∩ πvi1
,...,vik

(Svj1
,...,vjk

).

Given an arbitrary order on the set of variables V , we can systematically
delete-and-refine constraints. The result is a constraint network that
contains exactly one constraint for each subset of variables. This network
is referred to as a normalized constraint network.
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Graphs Undirected Graphs

Undirected Graph

Definition
An (undirected) graph is an ordered pair

G := 〈V ,E 〉

where:

I V is a finite set (of vertices, nodes);

I E is a set of two-element subsets of (not necessarily distinct) nodes
(called edges).

The order of a graph is the number of vertices |V |. The size of a graph is
the number of edges |E |. The degree of a vertex is the number of vertices
to which it is connected by an edge.
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Graphs Undirected Graphs

Graph: Example

A

B

C

D

E F
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Graphs Undirected Graphs

Graph: Definitions

Definition
Let G = 〈V ,E 〉 be an undirected graph.

(a) If e = {u, v} ∈ E , then u and v are called adjacent (connected by e).

(b) A path in G is a sequence of edges e1, . . . , ek such that ei ∩ ei+1 6= ∅.
Sometimes, paths are defined via vertices:
A path in G is a sequence of vertices v0, . . . , vk such that
{vi−1, vi} ∈ E (1 ≤ i ≤ k). k is the length, v0 is the start vertex, and
vk is the end vertex of the path.

(c) A cycle is a path v0, . . . , vk with v0 = vk .

(d) A path v0, . . . , vk is simple if vi 6= vj for all i 6= j .

(e) A cycle v0, . . . , vk is simple if vi 6= vj for all i , j ≥ 1, i 6= j .
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Graphs Undirected Graphs

Graph: Definitions
Let G = 〈V ,E 〉 be an undirected graph.

Definition

(a) G is connected if, for each pair of vertices u and v , there exists a path
from u to v .

(b) G is a tree if G is cycle-free.

(c) G is complete if any pair of vertices is connected.

Definition
Let G = 〈V ,E 〉 be an undirected graph. Let S be a subset of V . Then
GS := 〈S ,ES〉 is called the subgraph relative to S , where

ES :=
{
{u, v} ∈ E : u, v ∈ S

}
.

Definition
A clique in a graph G is a complete subgraph of G .
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Graphs Undirected Graphs

Examples

A

B

C

D

E F

Figure: Example
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Graphs Directed Graphs

Directed Graph

Definition
A directed graph (or: digraph) is an ordered pair

G := 〈V ,A〉

where:

I V is a set (of vertices or nodes),

I A is a set of (ordered) pairs of vertices (called arcs, edges, or arrows).

The number of edges with a vertex v as start vertex is called the
outdegree of v ; the number of vertices with v as end vertex is the indegree
of v . Nodes that point to v are called parents, nodes to which an edge
from v points are called child nodes.
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Graphs Directed Graphs

Directed Graph: Definitions

Definition
Let G = 〈V ,A〉 be a directed graph.

(a) A (directed) path is a sequence of arcs e1, . . . , ek such that the end
vertex of ei is the start vertex of ei+1 (analogously, (directed) cycle).

(b) A digraph is strongly connected if each pair of nodes u, v is connected
by a directed graph from u to v .

(c) A digraph is acyclic if it has no directed cycles.
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Graphs Directed Graphs

Digraph: Example

A

B

C

D

E F

Figure: A directed graph with a strongly connected subgraph
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Graphs Graphs and Constraints

Primal Constraint Graphs

Let C = 〈V ,dom,C 〉 be a (normalized) constraint network.
For a constraint Rx1,...,xk

, the set {x1, . . . , xk} is called the scope Rx1,...,xk
.

Definition
The primal constraint graph of a network C = 〈V ,dom,C 〉 is the
undirected graph

GC := 〈V ,EC〉

where
{u, v} ∈ EC ⇐⇒ {u, v} is a subset of the scope

of some constraint in C.
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Graphs Graphs and Constraints

Primal Constraint Graph: Example

Consider a constraint network with variables v1, . . . , v5 and two ternary
constraints Rv1,v2,v3 and Sv3,v4,v5 .

Then the primal constraint graph of the network has the form:

v1 v2

v3

v4 v5

Absence of an edge between two variables/nodes means that there is no
direct constraint between these variables.
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Graphs Hypergraphs

Hypergraph

Definition
A hypergraph is a pair

H := 〈V ,E 〉

where

I V is a set (of nodes, vertices),

I E is a set of non-empty subsets of V (called hyperedges), i. e.,
E ⊆ 2V \ {∅}.

Note: Hyperedges can contain an arbitrarily many nodes.
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Graphs Hypergraphs

Constraint Hypergraph

Definition
The constraint hypergraph of a constraint network C = 〈V ,dom,C 〉 is the
hypergraph

HC := 〈V ,EC〉

with

X ∈ EC ⇐⇒ X is the scope of some constraint in C.

In the example above (constraint network with variables v1, . . . , v5 and two
ternary constraints Rv1,v2,v3 and Sv3,v4,v5) the hyperedges of the constraint
hypergraph are:

EC =
{
{v1, v2, v3}, {v3, v4, v5}

}
.
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Graphs Hypergraphs

Dual Constraint Graphs

Definition
The dual constraint graph of a constraint network C = 〈V ,dom,C 〉 is the
labeled graph

DC :=
〈
V ′,EC , l

〉
with

X ∈ V ′ ⇐⇒ X is the scope of some constraint in C
{X ,Y } ∈ EC ⇐⇒ X ∩ Y 6= ∅

l : EC → 2V , {X ,Y } 7→ X ∩ Y

In the example above, the dual constraint graph is

v1, v2, v3 v3, v4, v5
v3
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Graphs Hypergraphs
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