21.05.2004

(Anm: Erinnerung: Lösen von Nullsummenspielen durch lineare Programme.

Für jedes α von Spieler 1 bestimme schlimmste Antwort des Gegners, dann maximiere darüber

$$U_1(\alpha, b_j) = \sum_{i=1}^m \alpha(a_i) \cdot u_1(a_i, b_j) \ge u$$
 für alle $1 \le j \le n$

Maximiere u!

Für β entsprechend.

Wegen: Maximin = Minimax für Nullsummenspiele, die ein Nash-Gleichgewicht besitzen:

$$U_1(a_i, \beta) \le u \quad \forall i: \ 1 \le i \le m$$

Minimiere U.

Für β entsprechend.

Mit
$$A = \{a_1, \dots, a_m\}$$
 und $B = \{b_1, \dots, b_n\}$)

3.2. Algorithmen für allgemeine Zweipersonenspiele

Für allgemeine Spiele funktioniert die LP-Methode nicht.

Stattdessen LCP (Linear complementarity problem):

Lineare Constraints und einen Typ zusätzlicher Bedingungen. Zwei Gruppen von Variablen $\{x_1, \ldots, x_k\}$, $\{y_1, \ldots, y_k\}$

mit Constraints: $x_i \cdot y_i = 0 \quad \forall i: \ 1 \leq i \leq k$ oder äquivalent

$$x_i = 0 \lor y_i = 0$$

und keine Optimierungsbedingung.

Damit sind Nash-Gleichgewichte für beliebige zwei Personenspiel beschreibbar.

Seien (u,v) die Auszahlungen im gemischten Nash-Gleichgewicht (α,β)

Dann muß gelten:

- (1) $u U_1(a_i, \beta) \ge 0 \quad \forall i : 1 \le i \le m$
- (2) $v U_2(\alpha, b_i) \ge 0 \quad \forall j : 1 \le i \le n$
- (3) Weiter muß gelten:

$$\underbrace{\alpha(a_i)} \cdot \underbrace{(u - U_1(a_i, \beta))} = 0 \quad \forall i$$

- (a) $\alpha(a_i) = 0$ gilt, falls a_i nicht im Support der Gleichgewichtsstrategie
- (b) $u U_1(a_i, \beta) = 0$ gilt, falls a_i eine beste Antwort auf β ist (wegen (1))

 \rightsquigarrow gilt, falls a_i im Support der Gleichgewichtsstrategie ist.

[Kann in LCP-Normalform umgeformt werden, mit zusätzlichen Variablen.]

(4)
$$\beta(b_i) \cdot (v - U_2(\alpha, b_i)) = 0 \quad \forall j$$

(5)
$$\alpha(a_i) \geq 0, \sum_{i=1}^{m} \alpha(a_i) = 1$$

(6)
$$\beta(b_j) \ge 0, \sum_{j=1}^n \beta(b_j) = 1$$

Satz 1:

Ein Profil in gemischten Strategien (α, β) mit Auszahlung (u, v) ist Nash-Gleichgewicht gdw. eine Lösung des LCPs (1)-(6) (α, β) , (u, v) ist.

Nash-Gleichgewicht \Rightarrow "Lösung des LCPs" \checkmark

"LCP-Lösung" \Rightarrow Nash-Gleichgewicht:

- 1. α , β sind gemischte Strategien folgt aus (5)+(6)
- 2. Wenn reine Strategie a_i gespielt wird $(\alpha(a_i) > 0)$, dann ist die Auszahlung (als Reaktion auf β) u wegen (3).
- 3. u ist das Maximum aller möglichen reinen Antworten, wegen (1).
- 4. D.h. (α, β) sind beste Antworten aufeinander mit Auszahlung (u, v)
 - \leadsto Nash-Gleichgewicht.