14.05.2004

Lemma 2:

Sei $G = \langle N, (A_i), (u_i) \rangle$ ein endliches strategisches Spiel.

Dann ist $\alpha^* \in \times_{i \in N} \Delta(A_i)$ ein Nash-Gleichgewicht in gemischten Strategien gdw. für jeden Spieler $i \in N$ jede reine Strategie aus der Unterstützungsmenge von α_i^* eine beste Antwort auf α_{-i}^* ist.

(Anm: Für den einzelnen Spieler ist es egal, ob er die gemischte Strategie spielt oder eine Einzelaktion daraus spielt.)

Beweis:

 \Rightarrow :

Sei α^* Nash-Gleichgewicht mit $a_i \in supp(\alpha_i^*)$ aber a_i ist keine beste Antwort auf α_{-i}^* . Wegen der Linearität von U_i kann Spieler i seine Auszahlung verbessern, wenn er Gewicht von a_i auf andere Aktionen in $supp(\alpha_i^*)$ verteilt.

 \rightsquigarrow D.h. α_i^* war keine beste Antwort.

 \rightsquigarrow D.h. α^* war kein Nash-Gleichgewicht \rightsquigarrow Widerspruch.

⇐:

(wir zeigen Kontraposition):

Sei α_i' eine Strategie mit der Eigenschaft $U_i(\alpha_{-i}^*, \alpha_i') > U_i(\alpha_{-i}^*, \alpha_i^*)$ für ein $i \in N$. Wegen der Linearität von U_i muss es eine Aktion $a_i' \in supp(\alpha_i')$ geben, die höheren Nutzen als eine Aktion $a_i'' \in supp(\alpha_i^*)$ hat.

D.h., dass $supp(\alpha_i^*)$ nicht nur beste Antworten auf α_{-i}^* besitzt.

Beispiel:

Strawinsky-Fan

 $\begin{array}{c|cccc} & \text{Bach} & \text{Strawinsky} \\ & 1 & 0 \\ 2 & 0 \\ \hline \text{Strawinsky} & 0 & 2 \\ 0 & 1 \end{array}$

Bach-Fan

Abbildung 3.1: Bach oder Strawinsky

Allgemein: Vier mögliche Nash-Gleichgewichte in reinen Strategien.

mögliche echte gemischte Strategien: $\{B\}$ vs. $\{B,S\}$ vs. $\{B,S\}$ vs. $\{B,S\}$ vs. $\{B\}$ $\{B,S\}$ vs. $\{S\}$ $\{B,S\}$ vs. $\{S\}$ $\{B,S\}$ vs. $\{B,S\}$

Wenn Nash-Gleichgewicht in gemischter Strategie $\{B\}$ vs. $\{B,S\}$ dann müssten in reinen B,B und B,S auch Nash-Gleichgewichte sein. Also ist nur $\{B,S\}$ vs $\{B,S\}$ interessant.

Bei "Bach oder Strawinsky" gibt es zwei Nash-Gleichgewichte in reinen Strategien, nämlich $B,\,B$ und $S,\,S.$

Wie sieht ein (echtes) gemischtes Nash-Gleichgewicht für "Bach oder Strawinsky" aus?

Annahme: (α_1, α_2) ist das Nash-Gleichgewicht mit $0 < \alpha_1(B) < 1$ und mit $0 < \alpha_2(B) < 1$.

$$U_1((1,0),(\alpha_2(B),\alpha_2(S))) = U_1((0,1),(\alpha_2(B),\alpha_2(S)))$$

Wenn Spieler 1 B spielt:

$$2 \cdot \alpha_2(B) + 0 \cdot \alpha_2(S)$$

Wenn Spieler 1 S spielt:

$$0 \cdot \alpha_2(B) + 1 \cdot \alpha_2(S) = 1 \cdot (1 - \alpha_2(B))$$

$$\Rightarrow 2 \cdot \alpha_2(B) = 1 - \alpha_2(B)$$

$$\Rightarrow \alpha_2(B) = \frac{1}{3}$$

$$\Rightarrow \alpha_2(S) = \frac{2}{3}$$

Analog für Spieler 1:

$$\alpha_1(B) = \frac{2}{3}$$

$$\alpha_1(S) = \frac{1}{3}$$

Man kann leicht überprüfen, dass es sich tatsächlich um ein Nash-Gleichgewicht handelt.