Beweis:

(a) Sei (x^*, y^*) ein Nash-Gleichgewicht.

$$\Rightarrow u_{2}(x^{*}, y^{*}) \geq u_{2}(x^{*}, y)$$
 für alle $y \in A_{2}$

$$\stackrel{u_{1}=-u_{2}}{\Rightarrow} u_{1}(x^{*}, y^{*}) \leq u_{1}(x^{*}, y)$$
 für alle $y \in A_{2}$

$$\Rightarrow u_{1}(x^{*}, y^{*}) = \min_{y \in A_{2}} u_{1}(x^{*}, y)$$

$$\leq \max_{x \in A_{1}} \min_{y \in A_{2}} u_{1}(x, y)$$
 (+)

Außerdem:

$$\begin{array}{rcl} u_{1}(x^{*},y^{*}) & \geq & u_{1}(x,y^{*}) & \text{für alle } x \in A_{1} \\ \Rightarrow u_{1}(x^{*},y^{*}) & \geq & \min_{y \in A_{2}} u_{1}(x,y) & \text{für alle } x \in A_{1} & (++) \\ \Rightarrow u_{1}(x^{*},y^{*}) & \geq & \max_{x \in A_{1}} \min_{y \in A_{2}} u_{1}(x,y) & (+++) \\ (+),(+++) \Rightarrow u_{1}(x^{*},y^{*}) & = & \max_{x \in A_{1}} \min_{y \in A_{2}} u_{1}(x,y) & (++++) \end{array}$$

 $\Rightarrow x^*$ ist Maximinimierer.

Analog für Spieler 2:

$$u_2(x^*, y^*) = \max_{y \in A_2} \min_{x \in A_1} u_2(x, y)$$

 $u_2(x^*, y^*) = \max_{x \in A_1} u_2(x, y^*)$

 $\Rightarrow y^*$ ist Maximinimierer. Daraus folgt a)

(b)

$$u_2(x^*, y^*) \stackrel{\text{Lemma}}{=} -\min_{y \in A_2} \max_{x \in A_1} u_1(x, y)$$

$$\Rightarrow u_1(x^*, y^*) = \min_{y \in A_2} \max_{x \in A_1} u_1(x, y)$$

$$\stackrel{(++++)}{=} \max_{x \in A_1} \min_{y \in A_2} u_1(x, y)$$

Daraus folgt b)

(Anm: Daraus folgt insbesondere auch, dass alle Nash-Gleichgewichte für alle Spieler denselben Nutzen haben)

(c)

$$\begin{array}{rcl} v^* &:= & \displaystyle \max_{x \in A_1} \min_{y \in A_2} u_1(x,y) = \min_{y \in A_2} \max_{x \in A_1} u_1(x,y) \\ \stackrel{\text{Lemma}}{\Rightarrow} -v^* &= & \displaystyle \max_{y \in A_2} \min_{x \in A_1} u_2(x,y) \end{array}$$

Da x^* Maximinimierer: $u_1(x^*, y) \ge v^*$ f.a. $y \in A_2$ \square

Da y^* Maximinimierer: $u_2(x, y^*) \ge -v^*$ f.a. $x \in A_1 \odot$

Setze
$$x = x^*, y = y^*$$

$$\begin{array}{cccc}
u_1(x^*, y^*) & \geq & v^* \\
u_2(x^*, y^*) & \geq & -v^* \\
& & u_1(x^*, y^*) & \leq & v^*
\end{array}$$

$$\begin{array}{cccc}
u_1(x^*, y^*) & \geq & v^* \\
& & u_2(x^*, y^*) & \leq & v^*
\end{array}$$

wegen
$$\Box$$
 $u_1(x^*, y) \geq u_1(x^*, y^*)$ für alle $y \in A_2$
 $u_2(x^*, y) \leq u_2(x^*, y^*)$ für alle $y \in A_2$

 $\Rightarrow y^*$ beste Antwort auf x^* .

wegen
$$\odot \ u_1(x, y^*) \le u_1(x^*, y^*)$$
 für alle $x \in A_1$

 $\Rightarrow x^*$ beste Antwort auf y^*

 $\Rightarrow (x^*,y^*)$ ist Nash-Gleichgewicht.

(Anm: Insgesamt folgt, wenn es mehrere NG gibt, so kann man sich immer eines aussuchen.) (Anm: Strikt kompetitive Spiele sind im Wesentlichen für Brettspiele interessant, jedoch nicht für die Wirtschaft.)

Kapitel 3

Gemischte und korrelierte Strategien

Motivation: Was tun bei Nicht-Existenz von Nash-Gleichgewichten?

 \rightsquigarrow randomisierte Strategien!

Notation:

 $\langle N, (A_i), (u_i) \rangle$ Spiel.

• $\Delta(A_i)$ die Menge der Wahrscheinlichkeitsverteilungen über der Menge A_i

"gemischte Strategien" $\alpha_i \in \Delta(A_i)$

 $\alpha_i(a_i)$ Wahrscheinlichkeit für die Wahl von $a_i \in A_i$

• Ein Profil $(\alpha_i)_{i \in N} \in \times_{i \in N} \Delta(A_i)$ induziert eine Wahrscheinlichkeitsverteilung auf $A = \times_{i \in N} A_i$ wie folgt:

$$p(a) = \prod_{i \in N} \alpha_i(a_i)$$

Für $A' \subseteq A = \times_{i \in N} A_i$:

$$p(A') = \sum_{a \in A'} p(a) = \sum_{a \in A'} \prod_{i \in N} \alpha_i(a_i)$$

Beispiel:

Abbildung 3.1: Matching Pennies

Für Spieler 1 betrachte die gemischte Strategie: $\alpha_1 \in \Delta(\{K, Z\})$

$$\alpha_1(K) = \frac{2}{3}, \ \alpha_1(Z) = \frac{1}{3}$$

Für Spieler 2 betrachte die gemischte Strategie: $\alpha_2 \in \Delta(\{K, Z\})$

$$\alpha_{2}(K) = \frac{1}{3}, \ \alpha_{2}(Z) = \frac{2}{3}$$

$$p(K, K) = \alpha_{1}(K) \cdot \alpha_{2}(K) = \frac{2}{9} \xrightarrow{u_{1}} +1$$

$$p(K, Z) = \alpha_{1}(K) \cdot \alpha_{2}(Z) = \frac{4}{9} \to -1$$

$$p(Z, K) = \alpha_{1}(Z) \cdot \alpha_{2}(K) = \frac{1}{9} \to -1$$

$$p(Z, Z) = \alpha_{1}(Z) \cdot \alpha_{2}(Z) = \frac{2}{9} \to +1$$

Notation: "erwarteter Nutzen"

$$U_i(\alpha) = U_i((\alpha_j)_{j \in N}) := \sum_{a \in A} \underbrace{\left(\prod_{j \in N} \alpha_j(a_j)\right)}_{=p(a)} u_i(a)$$

Im Beispiel:

$$U_1(\alpha_1, \alpha_2) = -\frac{1}{9}$$
$$U_2(\alpha_1, \alpha_2) = +\frac{1}{9}$$

Notation: Sei α_i eine gemischte Strategie. Die Unterstützungsmenge (support) von α_i ist die Menge

$$supp(\alpha_i) = \{a_i \in A_i | \alpha_i(a_i) > 0\}$$

Definition 3 (gemischte Erweiterung):

Die **gemischte Erweiterung** eines strategischen Spiels $\langle N, (A_i), (u_i) \rangle$ ist das Spiel $\langle N, (\Delta(A_i)), (U_i) \rangle$, in dem $\Delta(A_i)$ die Menge der Wahrscheinlichkeitsverteilungen über den Aktionen A_i ist und U_i der erwartete Nutzen über $\alpha_i, U_i : \times_{j \in N} \Delta(A_j) \to \mathbb{R}$ jedem $\alpha \in \times \Delta_{j \in N}(A_j)$ den erwarteten Nutzen für Spieler i unter der von α induzierten Wahrscheinlichkeitsverteilung (der erwartete Nutzen von α) zuordnet.

Definition 4 (Nash-Gleichgewicht in gemischten Strategien):

Sei G ein strategisches Spiel. Ein Nash-Gleichgewicht in gemischten Strategien von G ist ein Nash-Gleichgewicht der gemischten Erweiterung von G.