
Introduction to Automated Planning
(Draft)

Jussi Rintanen
Albert-Ludwigs-Universiẗat Freiburg, Institut f̈ur Informatik

Georges-K̈ohler-Allee, 79110 Freiburg im Breisgau
Germany

February 15, 2005



Foreword

These are the lecture notes of the AI planning course at the Albert-Ludwigs-University Freiburg
in summer term 2004, based on earlier notes for the course in winter 2002/2003.

Many thanks for comments and corrections to students who have participated the planning
course, including Slawomir Grzonka, Bernd Gutmann and Martin Wehrle.

i



Contents

Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

1 Introduction 1
1.1 What is AI planning? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Where is AI planning used? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Types of planning problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Related topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Early research on AI planning . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.7 This book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background 9
2.1 Transition systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Incidence matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Reachability as product of matrices . . . . . . . . . . . . . . . . . . . . 10

2.2 Classical propositional logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Quantified Boolean formulae . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Binary decision diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Algebraic decision diagrams . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Operators and state variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Normal forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.3 Sets of states as propositional formulae . . . . . . . . . . . . . . . . . . 22

2.4 Computational complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Deterministic planning 26
3.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 State-space search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Progression and forward search . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 Regression and backward search . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Planning by heuristic search algorithms . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Distance estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5 Planning as satisfiability in the propositional logic . . . . . . . . . . . . . . . . . 38

ii



CONTENTS iii

3.5.1 Actions as propositional formulae . . . . . . . . . . . . . . . . . . . . . 39
3.5.2 Translation of operators into propositional logic . . . . . . . . . . . . . . 40
3.5.3 Finding plans by satisfiability algorithms . . . . . . . . . . . . . . . . . 41
3.5.4 Parallel plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5.5 Translation of parallel planning into propositional logic . . . . . . . . . . 45
3.5.6 Plan existence as evaluation of quantified Boolean formulae . . . . . . . 46

3.6 Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.6.1 Algorithms for computing invariants . . . . . . . . . . . . . . . . . . . . 49
3.6.2 Applications in planning by regression and satisfiability . . . . . . . . . 54

3.7 Planning with symbolic representations of sets of states . . . . . . . . . . . . . . 54
3.7.1 Operations on transition relations expressed as formulae . . . . . . . . . 55
3.7.2 A forward planning algorithm . . . . . . . . . . . . . . . . . . . . . . . 57
3.7.3 A backward planning algorithm . . . . . . . . . . . . . . . . . . . . . . 58

3.8 Computational complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.9 Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Conditional planning 65
4.1 Nondeterministic operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1.1 Normal forms for nondeterministic operators . . . . . . . . . . . . . . . 67
4.1.2 Translation of nondeterministic operators into propositional logic . . . . 69
4.1.3 Operations on nondeterministic transitions represented as formulae . . . 70
4.1.4 Regression for nondeterministic operators . . . . . . . . . . . . . . . . . 71

4.2 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2.1 Conditional plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2.2 Execution graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Planning with full observability . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3.1 An algorithm for constructing acyclic plans . . . . . . . . . . . . . . . . 75
4.3.2 An algorithm for constructing plans with loops . . . . . . . . . . . . . . 78
4.3.3 An algorithm for constructing plans for maintenance goals . . . . . . . . 80

4.4 Planning with partial observability . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4.1 Planning without observability by heuristic search . . . . . . . . . . . . 82
4.4.2 Planning without observability by evaluation of QBF . . . . . . . . . . . 84
4.4.3 Algorithms for planning with partial observability . . . . . . . . . . . . 86

4.5 Computational complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.5.1 Planning with full observability . . . . . . . . . . . . . . . . . . . . . . 95
4.5.2 Planning without observability . . . . . . . . . . . . . . . . . . . . . . . 98
4.5.3 Planning with partial observability . . . . . . . . . . . . . . . . . . . . . 101
4.5.4 Polynomial size plans . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.5.5 Summary of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.6 Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5 Probabilistic planning 109
5.1 Stochastic transition systems with rewards . . . . . . . . . . . . . . . . . . . . . 109
5.2 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.3 Algorithms for finding finite horizon plans . . . . . . . . . . . . . . . . . . . . . 111



iv CONTENTS

5.4 Algorithms for finding plans under discounted rewards . . . . . . . . . . . . . . 112
5.4.1 Evaluating the value of a given plan . . . . . . . . . . . . . . . . . . . . 112
5.4.2 Value iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.4.3 Policy iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.4.4 Implementation of the algorithms with ADDs . . . . . . . . . . . . . . . 114

5.5 Probabilistic planning with partial observability . . . . . . . . . . . . . . . . . . 116
5.5.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.5.2 Value iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.6 Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Bibliography 122

Index 128



List of Figures

1.1 A deterministic planning problem . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 A nondeterministic planning problem . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 A nondeterministic planning problem with partial observability . . . . . . . . . . 6

2.1 The transition graph and the incidence matrix of a deterministic action . . . . . . 10
2.2 Matrix product corresponds to sequential composition. . . . . . . . . . . . . . . 10
2.3 A transition graph and the corresponding matrixM . . . . . . . . . . . . . . . . 11
2.4 A transition graph extended with composed paths of length 2 and the correspond-

ing matrixM +M2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 A transition graph extended with composed paths of length 3 and the correspond-

ing matrixM +M2 +M3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 A BDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.7 Three ADDs, the first of which is also a BDD. . . . . . . . . . . . . . . . . . . . 16
2.8 A simple transition system based on state variables . . . . . . . . . . . . . . . . 17
2.9 A transition graph with valuations ofA, B andC as states and, a corresponding

operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 A transition system on which distance estimates are very accurate . . . . . . . . 37
3.2 A transition system for which distance estimates are very inaccurate . . . . . . . 37
3.3 Algorithm that tests if applyingo may falsifyl1 ∨ · · · ∨ ln in a state satisfying∆ 50
3.4 Algorithm that tests if applyingo may falsifyl1 ∨ · · · ∨ ln in a state satisfying∆ 51
3.5 Algorithm for computing a set of invariant clauses . . . . . . . . . . . . . . . . . 52
3.6 Algorithm for deterministic planning (forward, in terms of sets) . . . . . . . . . 57
3.7 Algorithm for deterministic planning (forward, in terms of formulae) . . . . . . . 58
3.8 Algorithm for deterministic planning (backward, in terms of states) . . . . . . . . 59
3.9 Algorithm for deterministic planning (backward, in terms of formulae) . . . . . . 59
3.10 Algorithm for testing plan existence in polynomial space . . . . . . . . . . . . . 61

4.1 Algorithm for nondeterministic planning with full observability . . . . . . . . . . 76
4.2 Goal distances in a nondeterministic transition system . . . . . . . . . . . . . . . 76
4.3 Algorithm for extracting an acyclic plan from goal distances . . . . . . . . . . . 77
4.4 Test whether successor states are closer to the goal states . . . . . . . . . . . . . 77
4.5 Algorithm for detecting a loop that eventually makes progress . . . . . . . . . . 78
4.6 Algorithm for nondeterministic planning with full observability . . . . . . . . . . 80
4.7 Algorithm for nondeterministic planning with full observability and maintenance

goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

v



vi LIST OF FIGURES

4.8 Example run of the algorithm for maintenance goals . . . . . . . . . . . . . . . . 81
4.9 A sorting network with three inputs . . . . . . . . . . . . . . . . . . . . . . . . 82
4.10 Solution of a simple blocks world problem . . . . . . . . . . . . . . . . . . . . . 89
4.11 A plan for a partially observable blocks world problem . . . . . . . . . . . . . . 90
4.12 An algorithm for finding new belief states . . . . . . . . . . . . . . . . . . . . . 92
4.13 A backward search algorithm for partially observable planning . . . . . . . . . . 93

5.1 A stochastic transition system . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.2 Stochastic transition system with two observational classes{s1, s2} and{s3, s4} 117



Chapter 1

Introduction

1.1 What is AI planning?

• modeling decision making needed by intelligent creatures acting in a complicated environ-
ment

• development of efficient algorithms for such decision making

• emphasis on general-purpose problem representation and general-purpose solution tech-
niques; alternative would be to derive tailored algorithms for every problem separately

Impediments for the success of AI in producing genuinely intelligent beings are related to per-
ceiving and representing knowledge concerning the world. The real world is very complicated in
its all physical and geometric as well as social aspects, and representing all the knowledge required
by an intelligent being may be too inflexible and complicated by the logical and symbolical means
almost exclusively used in artificial intelligence and in planning. This has been criticized by many
researchers[Brooks, 1991] and is a topic of continuing scientific debate as the problem is not well
understood.

AI planning, and knowledge representation techniques in AI in general, are best applicable to
restricted domains in which it is easy to identify what the atomic facts are and to exactly de-
scribe how the world behaves. These properties are best fulfilled by systems that are completely
man-made, or systems in which planning needs to consider only at a very abstract level what is
happening in the world.

Examples of completely man-made systems to which planning techniques have successfully
been applied are given in the next section. This includes applications of planning in autonomous
spacecraft.

A simple real-world application in which abstracting away the details of the real world would
be transportation planning: how to get from Freiburg to London by public transportation, trains,
airplanes and buses. If a robot were capable of finding its way between the couple of hundred of
meters between the various forms of transportation and recognize the trains and buses to board it
could easily travel all over the world. Planning what transportation to use is an easy problem in
this case.

1



2 CHAPTER 1. INTRODUCTION

1.2 Where is AI planning used?

Truly intelligent robots or other artificial intelligent beings do not exist yet, and planning, like most
other work on artificial intelligence, is still very much still something that takes place in research
labs only.

Perhaps the most visible application of AI planning has been experimentation with autonomous
spacecraft by the U. S. space agency NASA[Muscettolaet al., 1998].

At the level of applied AI research, AI planning is being used by many research projects that
have produced autonomous but not very intelligent robots doing simple routine tasks in restricted
environments, like delivering mail in an office or distributing medicine in a hospital. The uses of
planning algorithms in this kind of setting, however, employ only very little from the potential of
AI planning.

1.3 Types of planning problems

The wordplanning is very general, and denotes very many different things. Even in the AI and
robotics context there are many types of planning, related to each other, but having different fla-
vors.

The first problem in controlling autonomous robots, just their basic movement from one lo-
cation to another, and the movement of the limbs, possibly with the ability to grip objects and
move them, so called manipulators, is a very challenging problem. These problems are called
path planningandmotion planning, and they are not discussed in this lecture, as they require spe-
cialized representations of the geometric properties of the world, and cannot usually be efficiently
represented in the general state-based model we are interested in. There is also the very well es-
tablished research area ofschedulingwhich is concerned with ordering and choosing a schedule
for executing a number of predefined actions.

The more abstract planning that is the topic of this lecture is sometimes called task planning
to distinguish it from the more geometric and physical forms of planning used in controlling the
movements of robots and similar systems.

Even within task planning, there are many different types of planning problems, depending on
the assumptions concerning the properties of actions and of the world that are made. Some of
these are the following.

1. Determinism versus nondeterminism.

In the simplest form of planning the state of the world at any moment is unambiguously
determined by the initial state of the world and the sequence of actions that have been taken.
Hence the world is completely deterministic.

The assumption of a deterministic world holds when planning is to be applied in a suffi-
ciently restricted setting. However, when the world is modeled in more detail and more
realistically, the assumption does not hold any more: the plans have to take into account
events that take place independently of the actions and also the possibility that the effects of
an action are not the same every time the action is taken, even when the world appears to be
the same.

Nondeterminism comes from at least two different sources.



1.3. TYPES OF PLANNING PROBLEMS 3

First, the model of the world is usually very incomplete, and things that are possible as far
as our beliefs are concerned can be viewed as a form of nondeterminism: we do not know
whether somebody is going to phone or visit us, and then the visit or phone call can be
modeled as a nondeterministic event that may or may not take place.

Second, many actions themselves are by their nature nondeterministic, either intentionally
or unintentionally. Throwing two dice has 12 possible outcomes that usually cannot be
predicted (which is why throwing dice is interesting!) Throwing some object to a garbage
bin from a distance may or may not succeed.

Notice that there is still the possibility that the physical universe is completely deterministic,
but as long as we do not know the exact causes of events, we might just as well consider
them nondeterministic.

2. Observability.

For deterministic planning problems with one initial state there is no need to consider ob-
servations, because the goals can always be reached by one sequence of actions and the plan
does not need to decide in the middle of plan execution between different courses of action.

When the actions or the environment can be nondeterministic, or when there are several
initial states, the notion of plans as a sequence of actions is not sufficient.

There are two possibilities. Either planning is interleaved with plan execution: only one
action is chosen at a time, it is executed, and based on the observations that are made the
next action is chosen, and so on. Or a complete plan is generated, covering all possible
events that can happen. This plan in the most general form has the structure of a program
with branches (if-then-else) and loops.

In both cases, what can be observed has a strong impact on how exactly the actual state
of the world can be determined: the more facts can be observed, the more precisely the
current state of the world can be determined, and the better the most appropriate action can
be chosen. If there is a lot of uncertainty concerning the current state of the world it may be
impossible to choose an appropriate action.

If the current state can always been determined uniquely, we havefull observability. If the
current state cannot be determined uniquely we havepartial observability, and planning
algorithms are forced to consider sets of possible current states.

3. Time.

Most work on planning uses discrete (integer) time and actions of unit duration. This means
that all changes caused by an action taken at time pointt are visible at time pointt+ 1. So
changes in the world take only one unit of time, and what happens between two time points
is not analyzed further.

More complicated models of time and change are possible, but in this lecture we consider
only discrete time. Most types of problems can be analyzed in terms of discrete time by
making the unit duration sufficiently small. Rational and real time cause unnecessary con-
ceptual difficulties. Effects of actions that are not immediate can easily be reduced to the
basic case by encoding the delayed effects in the state description.

4. Control information and plan structure.



4 CHAPTER 1. INTRODUCTION

G

I

Figure 1.1: A deterministic planning problem

In the basic planning problem a plan is to be synthesized based on a generic description of
how the actions affect the world.

There may be, however, further control information that may affect the planning process and
the plans that are produced. In hierarchical planning, for example, information on the struc-
ture of the possible plans is given in the form of a hierarchical task network, and the plans
that are produced must conform to this structure. This kind of structural information may
substantially improve the efficiency of planning. Another way of restricting the structure of
plans, for efficiency or other reasons, is the use of temporal logics[Bacchus and Kabanza,
2000].

5. Plan quality.

The purpose of a plan is often just to reach one of the predefined goal states, and plans are
judged only with respect to the satisfaction of this property.

However, actions may have differing costs and durations, and plans could be assessed in
terms of their time consumption or cost.

In nondeterministic planning, because different executions of a plan produce different se-
quences of actions, plans can be valued in terms of their expected costs, best-case costs,
worst-case costs, and probability of eventually reaching the goals.

Plans with an infinite execution length can also be considered, and then plans may be valued
according to their average cost per unit time, or according to their geometrically discounted
costs.

1.4 Examples

Figure 1.1 illustrates what deterministic planning is. There is a set of states (the black dots), two
actions (blue, red), an initial stateI, and a set of goal states G. The task is to find a path from the
initial state to one of the goal states. The planning problem is deterministic because in all states
there is at most one red and at most one blue arrow going out of that state, which means that for
all states the successor state is unambiguously determined by the action. In this example there are
several possible plans for reaching G from I. Some of them are BRR (for blue, blue, red), RRRB,



1.4. EXAMPLES 5

G

I

Figure 1.2: A nondeterministic planning problem

BRRRBRBRBRBRBRBRBR. The unique shortest plan is clearly BRR, as there are no plans of
length 2 and not other plans of length 3.

Adding nondeterminism complicates planning, because even when there is a path from the
initial state to a goal state, there is no guarantee that any single sequence of actions reaches the
goal states, or even that the goals can be reached when choosing the next action can be postponed
to the point when it is to be taken. A practical example is winning 1 euro in roulette given an
initial capital of 5 euro. Whatever way the game is played, there is a relatively high probability of
failure (not to mention that the expected outcome of the game is to lose money; don’t do it!)

Figure 1.2 illustrates what a nondeterministic planning problem is. We have added a red arrow
to the second state above the initial state, as well as a new state to the bottom right corner with a
nondeterministic transition leading to it.

The new arrows make the red action nondeterministic, and have an impact on which action
sequences are plans. First, nothing starting with BBBR or RRBR is a plan, because these action
sequences might end in the bottom right state from which goal states cannot be reached. Second,
if first the actions B and R are taken, the only way to proceed is to take the action R, and this either
leads to a goal state, or takes us back toward the initial state. One possible plan would be to first
take action B, and then repeat the sequence RR until a goal state has been reached.

Of course, even in this case there still are plans that do not involve nondeterministic steps, for
example the plan RRRB.

A third possibility is planning with nondeterminism, but without the possibility of uniquely
determining what the current state is. Figure 1.3 extends Figure 1.2 by restrictions onobserv-
ability. Now during plan execution it is possible only to recognize the current state based on the
color green or black. All black states are observationally indistinguishable from each other, and
likewise all green states. We may be able to infer something about the current state based on the
actions already taken and the observations made earlier, but these do not in general allow to infer
the current state unambiguously.

The plan in the previous case consisting of the action B followed by iteration of RR until a goal
state is reached cannot be executed any more, because the two states reached with the second R
are indistinguishable.

However, for this problem there is a closely related plan that works also with partial observabil-
ity. First take actions BR. Then repeat RR until the current state becomes black. So, it does not



6 CHAPTER 1. INTRODUCTION

G

I

Figure 1.3: A nondeterministic planning problem with partial observability

simply suffice to reach a goal state, but one also has to be able to recognize that the goal state has
been reached so that plan execution can terminate.

1.5 Related topics

Reasoning about action has emerged as a separate research topic with the goal of making infer-
ences about actions and their effects[Ginsberg and Smith, 1988; Shoham, 1988; Sandewall, 1994a;
1994b; Stein and Morgenstern, 1994]. Important subtopics include the qualification and the rami-
fication problems, which respectively involve deciding whether a certain action can be performed
to have its anticipated effects and what are the indirect effects of an action. Both of these problems
are of independent interest, both for their relations to the reasoning human beings do and for their
importance in representing the world as required by any intelligent system for doing planning. In
this lecture, however, we assume that a description of some actions is given, with all preconditions
and direct and indirect effects fully spelled out, and concentrate on what kind of planning can be
performed with these actions. The separation between planning and reasoning about actions is
useful for both structuring systems that plan and act in a complicated world and for learning about
these two topics.

Markov decision processes[Puterman, 1994] in operations research is essentially a formal-
ization of planning. In contrast to AI planning, work in that area has used explicit enumerative
representations of transition systems, like those used in Section 2.1, and as a consequence the
algorithms have a different flavor than most planning algorithms do. However, most of the recent
work on probabilistic planning, as discussed in Chapter 5, is based on Markov decision processes.

Discrete event systems (DES) in control engineering have been proposed as a model for synthe-
sizing controllers for systems like automated factories[Ramadge and Wonham, 1987; Wonham,
1988], and this topic is closely related to planning. Again, there are differences in the problem
formulation, with state spaces represented enumeratively or more succinctly, for example as Petri
nets[Ichikawa and Hiraishi, 1988] or vector additions systems[Li and Wonham, 1993].

Synthesis of programs for reactive systems that work in nondeterministic and partially observ-
able environments is similar to planning under same conditions. Program synthesis has been
considered for example from specifications of their input-output behavior in different types of
temporal logics[Vardi and Stockmeyer, 1985; Kupferman and Vardi, 1999].



1.6. EARLY RESEARCH ON AI PLANNING 7

1.6 Early research on AI planning

Research that has to current AI planning started in the 1960’s in the form of programs that were
meant simulate problem solving abilities of human beings.

One of the first programs of this kind was the General Problem Solver by Newell and Simon
[Ernstet al., 1969]. GPS performed state space search and used a heuristic that estimated differ-
ences between the current and goal states.

In the end of 1960’s Green proposed the use of theorem-provers for constructing plans[Green,
1969]. However, because of the immaturity of theorem-proving techniques at that time, this ap-
proach was soon mostly abandoned in favor of specialized planning algorithms. There was the-
oretically oriented work on deductive planning that used different kinds of modal and dynamic
logics [Rosenschein, 1981], but these works had little impact on the development of planning
algorithms. Deductive and logic-based approaches to planning gained popularity again only in
the end of 1990’s as a consequence of the development of more sophisticated programs for the
satisfiability problem of the classical propositional logic[Kautz and Selman, 1996].

The historically most influential planning system is probably the STRIPS planner from the
beginning of the 1970’s[Fikes and Nilsson, 1971]. The states in STRIPS are sets of formulae,
and the operators change these state descriptions by adding and deleting formulae from the sets.
Heuristics similar to the GPS system were used in guiding the search. The definition of operators,
with a preconditionas well asaddanddeletelists, corresponding to the literals that respectively
become true and false, and the associated terminology, has been in common use until very recently.
The add list is simply the set of state variables that the action makes true, and the delete list
similarly consists of the state variables that become false.

Starting in the 1970’s the dominating approach to domain-independent planning was the so-
called partial-order, or causal link, or nonlinear planning,[Sacerdoti, 1975; McAllester and Rosen-
blitt, 1991], which remained popular until the mid-1990’s and the introduction of the Graphplan
planner[Blum and Furst, 1997] which started the shift away from partial-order planning to types
of algorithms that had been earlier considered infeasible, even the then-notorious total-order plan-
ners. The basic idea of partial-order planning is that a plan is incrementally constructed starting
from the initial state and the goals, by either adding an action to the plan so that one of the open
goals or operator preconditions is fulfilled, or adding an ordering constraint on operators already
in the plan in order to resolve potential conflicts between them. In contrast to the forward or back-
ward search strategies in Chapter 3, partial-order planners tried to avoid unnecessarily imposing
an ordering on operators too early. The main advantages of both partial-order planners and Graph-
plan are present in the SAT/CSP approach to planning which we will discuss in detail in Section
3.5.

In parallel to partial-order planning, the notion of hierarchical planning emerged[Sacerdoti,
1974], and it has been deployed in many real-world applications. The idea in hierarchical plan-
ning is that the problem description imposes a structure on solutions and restricts the number
of choices the planning algorithm has to make. A hierarchical plan consists of a main task that
can be decomposed to smaller tasks that are recursively solved. For each task there is a choice
between solution methods. The less choice there is, the more efficiently the problem is solved.
Furthermore, many hierarchical planners allow the embedding of problem-specific heuristics and
problem-solvers to further speed up planning.

A collection of articles on AI planning starting from the late 1960’s has been edited by Allen
et al. [Allen et al., 1990]. Many of the papers are mainly of historical interest, and some of them



8 CHAPTER 1. INTRODUCTION

outline ideas that are still very much in use today.

1.7 This book

My intention in writing these lecture notes was to cover planning problems of different generality
and some of the most important approaches to solving each type of problem. It goes without
saying that during the last several decades of planning research a lot of work has been done that
are not covered by these notes.

Important differences to most textbooks and research papers on planning is that I use a unified
and rather expressive syntax for representing operators, including nondeterministic and condi-
tional effects. This has several implications on the material covered in this book. For example,
many people may find it surprising that I do not use a concept viewed very central for deterministic
planning by some,the planning graphsof Blum and Furst[1997]. This is a direct implication of
the general syntax for operators I use, as discussed in more detail in Section 3.9. It seems that any
graph useful graph-theoretic properties planning graphs have lose their meaning when a definition
of operators more general than STRIPS operators is used.

One of the important messages of these notes is the importance of logic (propositional logic in
our case) in representing many of the notions important to all forms of planning ranging from the
simplest deterministic case to the most general types of planning with partial observability. As we
will see, states, sets of states, belief states and transition relations associated with operators are
in many cases represented most naturally as propositional formulae. This representation shows
up once and again in connection of different types of planning algorithms, including backward
search in classical/deterministic planning, planning as satisfiability, and in implementations of
nondeterministic planning algorithms by means of binary decision diagrams.

In addition to generalizing many existing techniques to the more general definition of planning
problems, many of the algorithms are either new or have been developed further from earlier
algorithms. I cite the original sources in the literature sections in the end of every chapter. Some
of my contributions can be singled out rather precisely. They include the following.

1. The definition of regression for conditional and nondeterministic operators in Sections 3.2.2
and 4.1.4.

2. The algorithm for computing invariants in Section 3.6. The computation of mutexes in Blum
and Furst’s[1997] planning graphs can be viewed as a simple special case of my algorithm,
restricted to unconditional operators only.

3. The algorithm for planning with full observability in Section 4.3.2. This algorithm is based
on a similar but more complicated algorithm by Cimatti et al.[2003].

4. The representation of planning without observability as quantified Boolean formulae in Sec-
tion 4.4.2.

5. The framework for non-probabilistic planning with partial observability in Section 4.4.3.

6. The complexity results in Section 4.5.3, most importantly the 2-EXP-completeness result
for conditional planning with partial observability.



Chapter 2

Background

In this chapter we define the formal machinery needed in the rest of the lecture for describing
different planning problems and algorithms. We give the basic definitions related to the classical
propositional logic, theory of computational complexity, and the definition of the transition system
model that is the basis of most work on planning. The transition systems in this lecture are closely
related to finite automata and transition systems in other areas of computer science.

2.1 Transition systems

The most important way of modeling the application underlying a planning problem is based on
the notion ofa transition system. A transition system consists of a set ofstates, which represent
the world at a given instant, and a number ofactionsthat describe the possible changes in the
world that can be caused by the agent/robot/something. The states form thestate space.

The actions are best understood as directed graphs with the states as the nodes.
Now a transition system is a 2-tuple〈S,O〉 whereO is a finite set of actionso ⊆ S × S.
In the beginning we consider deterministic actions only. An actiono ∈ O is deterministicif

and only if it is a (partial) function onS, that is, for everys ∈ S there is at most ones′ ∈ S such
that(s, s′) ∈ o. Fornondeterministicactions the number of successor statess′ may be higher than
one.

Later in Section 5.1 we will not just associate more than one successor state with a state, but a
probability distribution on the states so that some of the successor states can be more likely than
others.

2.1.1 Incidence matrices

Graphs can be represented graphically, or in terms of incidence matricesM (adjacency matrices)
in which elementMi,j indicates that a transition from statei to j is possible. We will later derive
representations of transition systems as propositional formulae that are best understood as succinct
representations of the kind of incidence matrices described here. Matrix operations like sum and
product have counterparts as operations on propositional formulae, and they are used in some of
the algorithms that we will discuss later.

Figure 2.1 depicts the transition graph of an action and the corresponding incidence matrix. The
action can be seen to be deterministic because for every state there is at most one arrow going out
of it, and each row of the matrix contains at most one non-zero element.

9



10 CHAPTER 2. BACKGROUND

A

B

EF

D

C

A B C D E F

A 0 1 0 0 0 0
B 0 0 0 0 0 1
C 0 0 1 0 0 0
D 0 0 1 0 0 0
E 0 1 0 0 0 0
F 0 0 0 0 1 0

Figure 2.1: The transition graph and the incidence matrix of a deterministic action

A B C D E F

A 0 1 0 0 0 0

B 0 0 0 0 0 1

C 0 0 1 0 0 0
D 0 0 1 0 0 0
E 0 1 0 0 0 0
F 0 0 0 0 1 0

×

A B C D E F

A 0 1 0 0 0 0
B 0 0 0 0 0 1
C 1 0 0 0 0 0
D 0 0 0 1 0 0
E 0 0 0 0 1 0
F 0 0 0 1 0 0

=

A B C D E F

A 0 0 0 0 0 1
B 0 0 0 1 0 0
C 1 0 0 0 0 0
D 1 0 0 0 0 0
E 0 0 0 0 0 1
F 0 0 0 0 1 0

Figure 2.2: Matrix product corresponds to sequential composition.

For matricesM1, . . . ,Mn that represent the transition relations of actionsa1, . . . , an, the com-
bined transition relation isM = M1 +M2 + · · ·+Mn. The matrixM now tells whether a state
can be reached from another state by at least one of the actions.

Here+ is the usual matrix addition that uses the Boolean addition for integers 0 and 1, which
is defined as0 + 0 = 0, andb+ b′ = 1 if b = 1 or b′ = 1. Later in Chapter 5 we will use normal
addition and interpret the matrix elements as probabilities of nondeterministic transitions.

Boolean addition is used because later in the presence of nondeterminism we could have 1 for
both of two transitions from A to B and from A to C. Later, when the matrix elements represent
transition probabilities, we will be using the ordinary arithmetic addition for real numbers.

2.1.2 Reachability as product of matrices

The incidence matrix corresponding to first taking actiona1 and thena2 isM1M2. This is illus-
trated by Figure 2.2 The inner product of two vectors in the definition of matrix product corre-
sponds to the reachability of a state from another state through all possible intermediate states.

Now we can compute for all pairss, s′ of states whethers′ is reachable froms by a sequence of
actions.

LetM be the matrix that is the (Boolean) sum of the matrices of the individual actions. Then
define

R0 = In×n

Ri = Ri−1 +MRi−1 for all i ≥ 1

Heren is the number of states andIn×n is the unit matrix of sizen.



2.2. CLASSICAL PROPOSITIONAL LOGIC 11

A

B

EF

D

C

A B C D E F

A 0 1 0 0 0 0
B 0 0 0 0 0 1
C 0 0 1 0 0 0
D 0 0 1 0 0 0
E 0 1 0 0 0 0
F 0 0 0 0 1 0

Figure 2.3: A transition graph and the corresponding matrixM

A

B

EF

D

C

A B C D E F

A 0 1 0 0 0 1
B 0 0 0 0 1 1
C 0 0 1 0 0 0
D 0 0 1 0 0 0
E 0 1 0 0 0 1
F 0 1 0 0 1 0

Figure 2.4: A transition graph extended with composed paths of length 2 and the corresponding
matrixM +M2

This computation ends because every element that is 1 for somei, is 1 also for allj > i, and
because of this monotonicity property there is a fixpoint by Tarski’s fixpoint theorem. MatrixRi

represents reachability byi actions.
Matrix Ri = M0 ∪M1 ∪ · · · ∪M i represents reachability byi actions or less.
Ri = Rj for somei ∈ {1, . . . , n} and allj ≥ i.

2.2 Classical propositional logic

Let P be a set of atomic propositions. We define the set of propositional formulae inductively as
follows.

1. For allp ∈ P , p is a propositional formula.

2. If φ is a propositional formula, then so is¬φ.

3. If φ andφ′ are propositional formulae, then so isφ ∨ φ′.

4. If φ andφ′ are propositional formulae, then so isφ ∧ φ′.

5. Th symbols⊥ and>, respectively denoting truth-values false and true, are propositional
formulae.



12 CHAPTER 2. BACKGROUND

A

B

EF

D

C

A B C D E F

A 0 1 0 0 1 1
B 0 1 0 0 1 1
C 0 0 1 0 0 0
D 0 0 1 0 0 0
E 0 1 0 0 1 1
F 0 1 0 0 1 1

Figure 2.5: A transition graph extended with composed paths of length 3 and the corresponding
matrixM +M2 +M3

We define the implicationφ→φ′ as an abbreviation for¬φ ∨ φ′, and the equivalenceφ ↔ φ′ as
an abbreviation for(φ→φ′) ∧ (φ′→φ).

A valuation onP is a functionv : P → {0, 1}. Here 0 denotes false and 1 denotes true. For
propositionsp ∈ P we definev |= p if and only if v(p) = 1. Given a valuation of the propositions
P , we can extend it to a valuation of all propositional formulae overP as follows.

1. v |= ¬φ if and only if v 6|= φ

2. v |= φ ∨ φ′ if and only if v |= φ or v |= φ′

3. v |= φ ∧ φ′ if and only if v |= φ andv |= φ′

4. v |= >

5. v 6|= ⊥

Computing the truth-value of a formula under a given valuation of propositional variables is
polynomial time in the size of the formula by the obvious recursive procedure.

A propositional formulaφ is satisfiable(consistent) if there is at least one valuationv so that
v |= φ. Otherwise it isunsatisfiable(inconsistent). A propositional formulaφ is valid or a
tautology if v |= φ for all valuationsv. We write this as|= φ. A propositional formulaφ is a
logical consequenceof a propositional formulaφ′, writtenφ′ |= φ, if v |= φ for all valuationsv
such thatv |= φ′. A propositional formula that is a propositionp or a negated proposition¬p for
somep ∈ P is a literal. A formula that is a disjunction of literals isa clause.

2.2.1 Quantified Boolean formulae

There is an extension of the satisfiability and validity problems of the classical propositional logic
that introduces quantification over the truth-values of propositional variables. Syntactically,quan-
tified Boolean formulae(QBF) are defined like propositional formulae, but there are two new
syntactic rules for the quantifiers.

6. If φ is a formula andp ∈ P , then∀pφ is a formula.

7. If φ is a formula andp ∈ P , then∃pφ is a formula.



2.2. CLASSICAL PROPOSITIONAL LOGIC 13

The truth-value of these formulae is defined if the following two conditions are fulfilled.

• For everyp ∈ P occurring inφ, there is exactly one occurrence of∃p or ∀p in φ.

• All occurrences ofp ∈ P are inside∃p or ∀p.

Defineφ[ψ/x] as the formula obtained fromφ by replacing occurrences of the propositional
variablex byψ.

We define the truth-value of QBF by reducing them to ordinary propositional formulae without
occurrences of propositional variables. The atomic formulae in these formulae are the constants
> and⊥. The truth-value of these formulae is independent of the valuation, and is recursively
computed by the Boolean function associated with the connectives∨, ∧ and¬.

Definition 2.1 (Truth of QBF) A formula∃xφ is true if and only ifφ[>/x] ∨ φ[⊥/x] is true.
(Equivalently, ifφ[>/x] is true orφ[⊥/x] is true.)

A formula∀xφ is true if and only ifφ[>/x] ∧ φ[⊥/x] is true. (Equivalently, ifφ[>/x] is true
andφ[⊥/x] is true.)

A formulaφ with an empty prefix (and consequently without occurrences of propositional vari-
ables) is true if and only ifφ is satisfiable (equivalently, valid: for formulae without propositional
variables validity coincides with satisfiability.)

Example 2.2 The formulae∀x∃y(x↔ y) and∃x∃y(x ∧ y) are true.
The formulae∃x∀y(x↔ y) and∀x∀y(x ∨ y) are false. �

Notice that a QBF with only existential quantifiers is true if and only if if the formula stripped
from the quantifiers is satisfiable. Similarly, truth of QBF with only universal quantifiers coincides
with the validity of the corresponding formulae without quantifiers.

Changing the order of two consecutive variables quantified by the same quantifier does not
affect the truth-value of the formula. It is often useful to ignore the ordering in these cases, and
view each quantifier as quantifying a set of formulae, for example∃x1x2∀y1y2φ.

Quantified Boolean formulae are interesting because evaluating their truth-value is PSPACE-
complete[Meyer and Stockmeyer, 1972], and several computational problems that presumably
cannot be translated to the satisfiability of the propositional logic in polynomial time (assuming
that NP6=PSPACE) can be efficiently translated to QBF.

2.2.2 Binary decision diagrams

Propositional formulae can be transformed to different normal forms. The most well-known nor-
mal forms are the conjunctive normal form (CNF) and the disjunctive normal form (DNF). For-
mulae in conjunctive normal form are conjunctions of disjunctions of literals, and in disjunctive
normal form they are disjunctions of conjunctions of literals. For every propositional formula
there is a logically equivalent one in both of these normal forms. However, the formula in normal
form may be exponentially bigger.

Normal forms are useful for at least two reasons. First, certain types of algorithms are easier to
describe when assumptions of the syntactic form of the formulae can be made. For example, the
resolution rule which is the basis of many theorem-proving algorithms, is defined for formulae in
the conjunctive normal form only (the clausal form). Defining resolution for non-clausal formulae
is more difficult.



14 CHAPTER 2. BACKGROUND

The second reason is that certain computational problems can be solved more efficiently for
formulae in normal form. For example, testing the validity of propositional formulae is in general
co-NP-hard, but if the formulae are in CNF then it is polynomial time: just check whether every
conjunct contains bothp and¬p for some propositionp.

Transformation into a normal form in general is not a good solution to any computationally
intractable problem like validity testing, because for example in the case of CNF, polynomial-time
validity testing became possible only by allowing a potentially exponential increase in the size of
the formula.

However, there are certain normal forms for propositional formulae that have proved very useful
in various types of reasoning needed in planning and other related areas, like model-checking in
computer-aided verification.

In this section we discuss (ordered) binary decision diagrams (BDDs)[Bryant, 1992]. Other
normal forms of propositional formulae that have found use in AI and could be applied to planning
include the decomposable negation normal form[Darwiche, 2001] which is less restricted than
binary decision diagrams (formulae in DNNF can be viewed as a superclass of BDDs) and are
sometimes much smaller. However, smaller size means that some of the logical operations that
can be performed in polynomial time for BDDs, like equivalence testing, are NP-hard for formulae
in DNNF.

The main reason for using BDDs is that the logical equivalence of BDDs coincides with syn-
tactic equivalence: two BDDs are logically equivalent if and only if they are the same BDD.
Propositional formulae in general, or formulae in CNF or in DNF do not have this property. Fur-
thermore, computing a BDD that represents the conjunction or disjunction of two BDDs or the
negation of a BDDs also takes only polynomial time.

However, like with other normal forms, a BDD can be exponentially bigger than a correspond-
ing unrestricted propositional formula. One example of such a propositional formulae is the binary
multiplier: Any BDD representation ofn-bit multipliers has a size exponential inn. Also, even
though many of the basic operations on BDDs can be computed in polynomial time in the size
of the component BDDs, iterating these operations may increase the size exponentially: some of
these operator may double the size of the BDD, and doublingn times is exponential inn and in
the size of the original BDD.

A main application of BDDs has been model-checking in computer-aided verification[Burchet
al., 1994; Clarkeet al., 1994], and in recent years these same techniques have been applied to AI
planning as well. We will discuss BDD-based planning algorithms in Chapter 4.

BDDs are expressed in terms of the ternary Boolean operator if-then-elseite(p, φ1, φ2) defined
as(p∧φ1)∨(¬p∧φ2), wherep is a proposition. Any Boolean formula can be represented by using
this operator together with propositions and the constants> and⊥. Figure 2.6 depicts a BDD for
the formula(A ∨ B) ∧ (B ∨ C). The normal arrow coming from a node forP corresponds to
the case in whichP is true, and the dotted arrow to the case in whichP is false. Note that BDDs
are graphs, not trees like formulae, and this provides a further reduction in the BDD size as a
subformula never occurs more than once.

There is an ordering condition on BDDs: the occurrences of propositions on any path from the
root to a leaf node must obey a fixed ordering of the propositions. This ordering condition together
with the graph representation is required for the good computational properties of BDDs, like the
polynomial time equivalence test.

A BDD corresponding to a propositional formula can be obtained by repeated application of an



2.2. CLASSICAL PROPOSITIONAL LOGIC 15

BB

01

C

A

Figure 2.6: A BDD

equivalence called the Shannon expansion.

φ ≡ (p ∧ φ[>/p]) ∨ (¬p ∧ φ[⊥/p]) ≡ ite(p, φ[>/p], φ[⊥/p])

Example 2.3 We show how the BDD for(A∨B)∧ (B ∨C) is produced by repeated application
of the Shannon expansion. We use the variable orderingA, B, C and use the Shannon expansion
to eliminate the variables in this order.

(A ∨B) ∧ (B ∨ C)
≡ ite(A, (> ∨B) ∧ (B ∨ C), (⊥ ∨B) ∧ (B ∨ C))
≡ ite(A,B ∨ C,B)
≡ ite(A, ite(B,> ∨ C,⊥ ∨ C), ite(B,>,⊥))
≡ ite(A, ite(B,>, C), ite(B,>,⊥))
≡ ite(A, ite(B,>, ite(C,>,⊥)), ite(B,>,⊥))

The simplifications in the intermediate steps are by the equivalences> ∨ φ ≡ > and⊥ ∨ φ ≡ φ
and> ∧ φ ≡ φ and⊥ ∧ φ ≡ ⊥. When

ite(A, ite(B,>, ite(C,>,⊥)), ite(B,>,⊥))

is first turned into a tree and then equivalent subtrees are identified, we get the BDD in Figure 2.6.
The terminal node 1 corresponds to> and the terminal node 0 to⊥. �

There are many operations on BDDs that are computable in polynomial time. These include
forming the conjunction∧ and the disjunction∨ of two BDDs, and forming the negation¬ of a
BDD. However, conjunction and disjunction ofn BDDs may have a size that is exponential inn,
as adding a new disjunct or conjunct may double the size of the BDD.

An important operation in many applications of BDDs is the existential abstraction operation
∃p.φ, which is defined by

∃p.φ = φ[>/p] ∨ φ[⊥/p]

whereφ[ψ/p] means replacing all occurrences ofp in φ by ψ. Also this is computable in polyno-
mial time, but existentially abstractingn variables may result in a BDD that has size exponential
in n, and hence may take exponential time. Existential abstraction can of course be used for any
propositional formulae, not only for BDDs.

The formulaφ′ obtained fromφ by existentially abstractingp is in general not equivalent toφ,
but has many properties that make the abstraction operation useful.



16 CHAPTER 2. BACKGROUND

BB

01

C

A

×
2 3

B

=

BB

0

C

A

2 3

(a) (b) (c)

Figure 2.7: Three ADDs, the first of which is also a BDD.

Lemma 2.4 Letφ be a formula andp a proposition. Letφ′ = ∃p.φ = φ[>/p]∨φ[⊥/p]. Now the
following hold.

1. φ is satisfiable if and only ifφ′ is.

2. φ is valid if and only ifφ′ is.

3. If χ is a formula without occurrences ofp, thenφ |= χ if and only ifφ′ |= χ.

Example 2.5

∃B.((A→B) ∧ (B→C))
= ((A→>) ∧ (>→C)) ∨ ((A→⊥) ∧ (⊥→C))
≡ C ∨ ¬A ≡ A→C

∃AB.(A ∨B) = ∃B.(> ∨B) ∨ (⊥ ∨B) = ((> ∨>) ∨ (⊥ ∨>)) ∨ ((> ∨⊥) ∨ (⊥ ∨⊥))

�

2.2.3 Algebraic decision diagrams

Algebraic decision diagrams (ADDs)[Fujita et al., 1997; Baharet al., 1997] are a generalization
of binary decision diagrams that has been applied to many kinds of probabilistic extensions of
problems solved by BDDs. BDDs have only two terminal nodes, 1 and 0, and ADDs generalize
this to a finite number of real numbers.

While BDDs represent Boolean functions, ADDs represent mapping from valuations to real
numbers. The Boolean operations on BDDs, like taking the disjunction or conjunction of two
BDDs, generalize to the arithmetic operations to take the arithmetic sum or the arithmetic product
of two functions. There are further operations on ADDs that have no counterpart for BDDs, like
constructing a function that on any valuation equals the maximum of two functions.

Figure 2.7 depicts three ADDs, the first of which is also a BDD. The product of ADDs is a
generalization of conjunction of BDDs: if for some valuation/state ADDA assigns the valuer1
and ADDB assigns the valuer2, then the product ADDA · B assigns the valuer1 · r2 to the
valuation.

The following are some of the operations typically available in implementations of ADDs. Here
we denote ADDs byf andg and view them as functions from valuationsx to real numbers.



2.3. OPERATORS AND STATE VARIABLES 17

Jussi−in−FR

Jussi−in−FR Jussi−in−ST Jussi−in−BA

Jussi−in−ST Jussi−in−BA

Jussi−in−FR Jussi−in−ST Jussi−in−BA

suitcase−in−BA

suitcase−in−ST

suitcase−in−FR suitcase−in−FR suitcase−in−FR

suitcase−in−ST suitcase−in−ST

suitcase−in−BA suitcase−in−BA

Figure 2.8: A simple transition system based on state variables

operation notation meaning
sum f + g (f + g)(x) = f(x) + g(x)
product f · g (f · g)(x) = f(x) · g(x)
maximization max(f, g) (max(f, g))(x) = max(f(x), g(x))

There is an operation for ADDs that corresponds to the existential abstraction operation on
BDDs, and that is used in multiplication of matrices represented as ADDs, just like existential
abstraction is used in multiplication of Boolean matrices represented as BDDs.

Let f be an ADD andp a proposition. Thenarithmetic existential abstractionof f , written
∃p.f , is an ADD that satisfies the following.

(∃p.f)(x) = (f [>/p])(x) + (f [⊥/p])(x)

2.3 Operators and state variables

Transition systems are widely used in AI planning and other areas of computer science, and it is a
model that can very well be used for describing all kinds of systems, especially man-made systems
and abstractions of the real-world used by human beings.

However, describing a transition system by giving a set of states and then relations representing
the actions is usually not the most natural nor the most concise description. This is because the
individual states usually have a certain meaning, which determines which actions are possible in
the state and what the possible successor states of the state under the given action are.

The common type of description of states is based onstate variables. LetA be a finite set of
state variables. Each state variablea ∈ A can have a finite number of different valuesR. Now a
states can be understood as a valuations : A→ R that assigns a value to each state variable.

In this lecture we will restrict to Boolean state variables withR = {0, 1}, but almost everything
in the lecture directly generalizes to any finite setR of values.

The state spaceS is now the set of all valuations ofA.

Example 2.6 Figure 2.8 illustrates a small transition system induced by state variables. We have



18 CHAPTER 2. BACKGROUND

depicted each state by enumerating the state variables that have the valuetrue in it (exactly two in
each of the states in the figure), and left out states that do not correspond to the intuitive meaning
of the states. Each state variable indicates whether one of the two objects is in one of the three
locations (Freiburg, Strassburg, Basel.)

The two actions respectively correspond to traveling with and without the suitcase.
Clearly, if we were using many-valued state variables, it would suffice to have only two of them,

each having three possible values corresponding to the three locations. �

It remains to give a description of the set of actions in terms of state variables. Intuitively,
we have to say whether an action is applicable in a given states, and what the successor states′

of that state under the given action is.1 Actions are represented asoperators〈c, e〉, wherec is a
propositional formula overA that has to be satisfied by the valuations for the action to be possible,
ande describes hows′ is obtained by changing the values of state variables ins.

Atomic effects in general are of the forma := r for a ∈ A and r ∈ R. In the Boolean
case it is common to simply writea for a := 1 and¬a for a := 0, and also we will do so. Be
careful to avoid confusion with an effect likee = a1 ∧ ¬a2 and exactly the same looking formula
φ = a1 ∧ ¬a2. After the effecte the formulaφ will be true, but this is the only direct relationship
between formulae and effects; in particular, there are no disjunctions∨ in effects and there is
nothing in the propositional logic that corresponds toB.

Definition 2.7 LetA be a set of state variables. An operator is a pair〈c, e〉 wherec is a proposi-
tional formula overA describing the precondition, ande is an effect overA. Effects are recursively
defined as follows.

1. > is an effect (the dummy effect).

2. a and¬a for state variablesa ∈ A are effects.

3. e1 ∧ · · · ∧ en is an effect ife1, . . . , en are effects overA (the special case withn = 0 is the
empty conjunction>.)

4. c B e is an effect ifc is a formula overA ande is an effect overA.

Notice that the representation of transition systems in terms of state variables and operators
opens the possibility that the size of the transition system, the number of states in the transition
system, may be exponential in the size of the set of operators. This idea ofsuccinct representations
of various objects is present in very many areas of computer science. As we will see later in this
lecture, succinctness usually means that algorithms for reasoning about the objects in question
increases: if a computational problem, like finding shortest paths in transition systems represented
as graphs, is solvable in polynomial time, solving the same problem for succinctly represented
transition systems will be much higher.

Definition 2.8 (Operator application) Let 〈c, e〉 be an operator overA. Let s be a state, that
is an assignment of truth values toA. The operator is applicable ins if s |= c and the set[e]s,
defined below, does not containa and¬a for anya ∈ A.

Recursively assign each effecte a set[e]s of literalsa and¬a for a ∈ A (theactive effects.)

1. [>]s = ∅
1We discuss nondeterministic actions in Chapter 4.



2.3. OPERATORS AND STATE VARIABLES 19

011

111
110

010 001

100

000 101

〈(B ∧ C) ∨ (¬A ∧B ∧ ¬C) ∨ (¬A ∧ C),
((B ∧ C) B ¬C) ∧ (¬B B (A ∧B)) ∧ (¬C B A)〉

Figure 2.9: A transition graph with valuations ofA, B andC as states and, a corresponding
operator

2. [a]s = {a} for a ∈ A.

3. [¬a]s = {¬a} for a ∈ A.

4. [e1 ∧ · · · ∧ en]s = [e1]s ∪ . . . ∪ [en]s.

5. [c′ B e]s = [e]s if s |= c′ and[c′ B e]s = ∅ otherwise.

The successor state ofs under the operator is the one that is obtained froms by making the
literals in [e]s true and retaining the truth-values of state variables not occurring in[e]s. This
state is denoted by appo(s). We call the process of computing the successor state of a state with
respect to an operator asprogression.

Example 2.9 Consider the operator〈a, e〉 wheree = ¬a∧ (¬c B ¬b) and a states with a, b andc
all true. The operator is applicable becauses |= a. Now [e]s = {¬a} andapp〈a,e〉(s) |= ¬a∧b∧c.
�

Example 2.10 Figure 2.9 depicts a transition graph with valuations of three state variablesA, B
andC as nodes, and a corresponding operator. �

2.3.1 Extensions

The basic language for effects could be extended with further constructs. A natural construct
would besequential compositionof effects. If e and e′ are effects, then alsoe; e′ is an effect
that corresponds to first executinge and thene′. We do not discuss this topic further in this
lecture. Definition 3.11 and Theorem 3.12 show how sequential composition can be eliminated
from effects.

2.3.2 Normal forms

We introduce a normal form for effects that will be used in later sections for defining operations
on propositional formulae describing sets of states.

Table 2.1 lists a number of equivalences on effects. Their proofs of correctness with Definition
2.8 are straightforward. An effecte is equivalent to> ∧ e, and conjunctions of effects can be



20 CHAPTER 2. BACKGROUND

c B (e1 ∧ · · · ∧ en) ≡ (c B e1) ∧ · · · ∧ (c B en) (2.1)

c B (c′ B e) ≡ (c ∧ c′) B e (2.2)

(c1 B e) ∧ (c2 B e) ≡ (c1 ∨ c2) B e (2.3)

e ∧ (c B e) ≡ e (2.4)

e ≡ > B e (2.5)

e1 ∧ (e2 ∧ e3) ≡ (e1 ∧ e2) ∧ e3 (2.6)

e1 ∧ e2 ≡ e2 ∧ e1 (2.7)

c B > ≡ > (2.8)

e ∧ > ≡ e (2.9)

(2.10)

Table 2.1: Equivalences on effects

arbitrarily reordered without affecting the meaning of the operator. These trivial equivalences will
later be used without explicitly mentioning them, for example in the definitions of the normal
forms and when applying equivalences.

The normal form corresponds to moving the conditionals inside so that their consequents are
atomic effects, and it is useful for example in the computation of properties satisfied by predecessor
states by regression in Section 3.2.2.

Definition 2.11 An effecte is in normal formif it is > or a conjunction of one or more effects of
the formc B a and c B ¬a wherea is a state variable, and there is at most one occurrence of
atomic effectsa and¬a for any state variablea. An operator〈c, e〉 is in normal form ife is in
normal form.

Theorem 2.12 For every operator there is an equivalent one in normal form. There is one that
has a size that is polynomial in the size of the operator.

Proof: We can transform any operator into normal form by using the equivalences 2.1, 2.2, 2.3,
2.6, 2.7, and 2.8 in Table 2.1.

The proof is by structural induction on the effecte of the operator〈c, e〉.
Induction hypothesis: the effecte can be transformed to normal form.
Base case 1,e = >: This is already in normal form.
Base case 2,e = a or e = ¬a: An equivalent effect in normal form is> B e by Equivalence

2.5.
Inductive case 1,e = e1 ∧ e2: By the induction hypothesise1 ande2 can be transformed into

normal form, so assume that they already are. If one ofe1 ande2 is>, by Equivalence 2.9 we can
eliminate it.

Assumee1 containsc1 B l for some literall ande2 containsc2 B l. We can reordere1∧e2 with
Equivalences 2.6 and 2.7 so that one of the conjuncts is(c1 B l) ∧ (c2 B l). Then by Equivalence
2.3 this conjunct can be replaced by(c1 ∨ c2) B l. Because this can be done repeatedly for every
literal l, we can transforme1 ∧ e2 into normal form.



2.3. OPERATORS AND STATE VARIABLES 21

Inductive case 1,e = z B e1: By the induction hypothesise1 can be transformed to normal
form, so assume that it already is.

If e1 is>, e can be replaced with the equivalent effect>.
If e1 = z′ B e2 for somez′ ande2, thene can be replaced by the equivalent (by Equivalence

2.2) effect(z ∧ z′) B e2 in normal form.
Otherwise,e1 is a conjunction of effectsz B l. By Equivalence 2.1 we can movez inside the

conjunction. Applications of Equivalences 2.2 transform the effect into normal form.
In this transformation the conditionsc in c B e are copied into front of the atomic effects. Let

m be the sum of the sizes of all the conditionsc, and letn be the number of occurrences of atomic
effectsa and¬a in the effect. An upper bound on size increase isO(nm), which is polynomial in
the size of the original operator. �

A further reduction in the size of the descriptions of transition systems is obtained by using
schematic operatorsinstead of operators as described above.

There are often regularities in the set of operators and corresponding regularities in the transition
system. A common regularity is that there are several almost identicalobjectsthat behave in the
same way. For example, operators describing driving car 1 and car 2 between cities are otherwise
identical except that in one case a reference to state variables about car 1 are used and in the other
state variables about car 2. This kind of regularities are ubiquitous, and operators allowing easy
expression of such sets of operators are used by almost all implementations of planning algorithms.

Example 2.13 Consider the schematic operator

〈in(x, t1), in(x, t2) ∧ ¬in(x, t1)〉

where the schema variablesx, t1 andt2 take values as follows.

x ∈ {car1, car2}
t1 ∈ {Freiburg,Strassburg,Basel}
t2 ∈ {Freiburg,Strassburg,Basel}
t1 6= t2

This schematic operator corresponds to the following set of operators.

{ 〈in(car1,Freiburg), in(car1,Basel) ∧ ¬in(car1,Freiburg)〉,
〈in(car1,Freiburg), in(car1,Strassburg) ∧ ¬in(car1,Freiburg)〉,
〈in(car1,Strassburg), in(car1,Freiburg) ∧ ¬in(car1,Strassburg)〉,
〈in(car1,Strassburg), in(car1,Basel) ∧ ¬in(car1,Strassburg)〉,
〈in(car1,Basel), in(car1,Freiburg) ∧ ¬in(car1,Basel)〉,
〈in(car1,Basel), in(car1,Strassburg) ∧ ¬in(car1,Basel)〉,
〈in(car2,Freiburg), in(car2,Basel) ∧ ¬in(car2,Freiburg)〉,
〈in(car2,Freiburg), in(car2,Strassburg) ∧ ¬in(car2,Freiburg)〉,
〈in(car2,Strassburg), in(car2,Freiburg) ∧ ¬in(car2,Strassburg)〉,
〈in(car2,Strassburg), in(car2,Basel) ∧ ¬in(car2,Strassburg)〉,
〈in(car2,Basel), in(car2,Freiburg) ∧ ¬in(car2,Basel)〉,
〈in(car2,Basel), in(car2,Strassburg) ∧ ¬in(car2,Basel)〉 }

�



22 CHAPTER 2. BACKGROUND

Schematic operators may also allowexistentialanduniversalquantification over sets of objects
for encoding disjunctions and conjunctions more concisely. For example,∃x ∈ {A,B,C}in(x,Freiburg)
is a short-hand for in(A,Freiburg) ∨ in(B,Freiburg) ∨ in(C,Freiburg).

Non-schematic operators are often calledground operators, and the process of producing a set
of ground operators from a schematic operator is calledgrounding. In this lecture we will be using
ground operators only. Most planning programs take schematic operators as input, and have a
preprocessor that grounds them.

2.3.3 Sets of states as propositional formulae

Because we identified states with valuations of state variables, we can now identify sets of states
with propositional formulae over the state variables. This allows us to perform set-theoretic opera-
tions on sets as logical operations, and test relations between sets by inference in the propositional
logic.

operation on sets operation on formulae
A ∪B A ∨B
A ∩B A ∧B
A\B A ∧ ¬B

question about setsquestion about formulae
A ⊆ B? |= A→B?
A ⊂ B? |= A→B and not|= B→A?
A = B? |= A↔ B?

Any inconsistent formula, likeA ∧ ¬A or ⊥, is not true in any state, and therefore represents
the empty set. Similarly, any valid formula, for instance> or A ∨ ¬A, represents the set of all
states (all valuations of the state variables.)

2.4 Computational complexity

In this section we discuss deterministic, nondeterministic and alternating Turing machines (DTMs,
NDTMs and ATMs) and define several complexity classes in terms of them. For a detailed intro-
duction to computational complexity see any of the standard textbooks[Balcázaret al., 1988;
1990; Papadimitriou, 1994].

The definition of ATMs we use is like that of Balcázar et al.[1990] but without a separate input
tape. Deterministic and nondeterministic Turing machines (DTMs, NDTMs) are a special case of
a alternating Turing machines.

Definition 2.14 Analternating Turing machineis a tuple〈Σ, Q, δ, q0, g〉 where

• Q is a finite set of states (the internal states of the ATM),

• Σ is a finite alphabet (the contents of tape cells),

• δ is a transition functionδ : Q× Σ ∪ {|,�} → 2Σ∪{|}×Q×{L,N,R},

• q0 is the initial state, and

• g : Q→ {∀,∃,accept, reject} is a labeling of the states.



2.4. COMPUTATIONAL COMPLEXITY 23

The symbols| and �, the end-of-tape symbol and the blank symbol, in the definition ofδ
respectively refer to the beginning of the tape and to the end of the tape. It is required thats = |
andm = R for all 〈s, q′,m〉 ∈ δ(q, |) for any q ∈ Q, that is, at the left end of the tape the
movement is always to the right and the end-of-tape symbol| may not be changed. Fors ∈ Σ we
restricts′ in 〈s′, q′,m〉 ∈ δ(q, s) to s′ ∈ Σ, that is,| gets written onto the tape only in the special
case when the R/W head is on the end-of-tape symbol. Notice that the transition function is a total
function, and the ATM computation terminated upon reaching an accepting or a rejecting state.

A configuration of an ATM is〈q, σ, σ′〉 whereq is the current state,σ is the tape contents left of
the R/W head with the rightmost symbol under the R/W head, andσ′ is the tape contents strictly
right of the R/W head. This is a finite representation of the finite non-blank segment of the tape of
the ATM.

The computation of an ATM starts from the initial configuration〈q0, |a, σ〉whereaσ is the input
string of the Turing machine. Belowε denotes the empty string.

The configuration of an ATM changes as follows.

1. From〈q, σa, σ′〉 to 〈q′, σ, a′σ′〉 whenδ(q, a) = 〈a′, q′, L〉.

2. From〈q, σa, σ′〉 to 〈q′, σa′, σ′〉 whenδ(q, a) = 〈a′, q′, N〉.

3. From〈q, σa, bσ′〉 to 〈q′, σa′b, σ′〉 whenδ(q, a) = 〈a′, q′, R〉.

4. From〈q, σa, ε〉 to 〈q′, σa′�, ε〉 whenδ(q, a) = 〈a′, q′, R〉.

A configuration〈q, σ, σ′〉 of an ATM isfinal if g(q) = accept org(q) = reject.
The acceptance of an input string by an ATM is defined recursively starting from final configu-

rations. A final configuration is accepting ifg(q) = accept. Non-final configurations are accepting
if the state is universal (∀) and all the immediate successor configurations are accepting, or if the
state is existential (∃) and at least one of the immediate successor configurations is accepting.
Finally, the ATM accepts a given input string if the initial configuration is accepting.

A nondeterministic Turing machine is an ATM without universal states. A deterministic Turing
machine is an ATM with|δ(q, s)| = 1 for all q ∈ Q ands ∈ Σ.

The complexity classes used in this lecture are the following. PSPACE is the class of decision
problems solvable by deterministic Turing machines that use a number of tape cells bounded by a
polynomial on the input lengthn. Formally,

PSPACE=
⋃
k≥0

DSPACE(nk).

Similarly other complexity classes are defined in terms of the time consumption (DTIME(f(n))
on a deterministic Turing machine, time consumption (NTIME(f(n)) on a nondeterministic Tur-
ing machine, or time or space consumption on alternating Turing machines (ATIME(f(n)) or



24 CHAPTER 2. BACKGROUND

ASPACE(f(n))) [Balcázaret al., 1988; 1990].

P =
⋃

k≥0 DTIME(nk)
NP =

⋃
k≥0 NTIME(nk)

EXP =
⋃

k≥0 DTIME(2nk
)

NEXP =
⋃

k≥0 NTIME(2nk
)

EXPSPACE =
⋃

k≥0 DSPACE(2nk
)

2-EXP =
⋃

k≥0 DTIME(22nk

)

2-NEXP =
⋃

k≥0 NTIME(22nk

)

APSPACE =
⋃

k≥0 ASPACE(nk)
AEXPSPACE =

⋃
k≥0 ASPACE(2nk

)

There are many useful connections between complexity classes defined in terms of deterministic
and alternating Turing machines[Chandraet al., 1981], for example

EXP = APSPACE
2-EXP = AEXPSPACE.

Roughly, an exponential deterministic time bound corresponds to a polynomial alternating space
bound.

We have defined all the complexity classes in terms of Turing machines. However, for all
purposes of this lecture, we can equivalently use conventional programming languages (like C
or Java) or simplified variants of them for describing computation. The main difference between
conventional programming languages and Turing machines is that the former use random-access
memory whereas memory access in Turing machines is local and only the current tape cell can
be directly accessed. However, these two computational models can be simulated with each other
with a polynomial overhead and are therefore for our purposes equivalent. The differences show up
in complexity classes with very strict (subpolynomial) restrictions on time and space consumption.

Later in this lecture, in some of the proofs that a given computational problem belongs to a
certain class we will usually give a program in a simple programming language comparable to a
small subset of C or Java, instead of giving a formal description of a Turing machine, because the
latter would usually be very complicated and difficult to understand.

A problemL is C-hard(where C is any of the complexity classes) if all problems in the class C
are polynomial timemany-one reducibleto it; that is, for all problemsL′ ∈ C there is a function
fL′ that can be computed in polynomial time on the size of its input andfL′(x) ∈ L if and only if
x ∈ L′. We say that the functionfL′ is a translation fromL′ to L. A problem isC-completeif it
belongs to the class C and is C-hard.

In complexity theory the most important distinction between computational problems is that
betweentractableandintractable problems. A problem is considered to be tractable, efficiently
solvable, if it can be solved in polynomial time. Otherwise it is intractable. Most planning prob-
lems are highly intractable, but for many algorithmic approaches to planning it is important than
certain basic steps in these algorithms can be guaranteed to be tractable.

In this lecture we analyze the complexity of many computational problems, showing them to
be complete problems for some of the classes mentioned above. The proofs consist of two parts.
We show that the problem belongs to the class. This is typically by giving an algorithm for the



2.5. EXERCISES 25

problem, possibly a nondeterministic one, and then showing that the algorithm obeys the resource
bounds on time or memory consumption as required by the complexity class. Then we show
the hardness of the problem for the class, that is, we can reduce any problem in the class to the
problem in polynomial time. This can be either by simulating all Turing machines that represent
computation in the class, or by reducing a complete problem in the class to the problem in question
in polynomial time (a many-one reduction).

For almost all commonly used complexity classes there are more or less natural complete prob-
lems that often have a central role in proving the completeness of other problems for the class in
question. Some complete problems for the complexity classes mentioned above are the following.2

class complete problem
P truth-value of formulae in the propositional logic in a given valuation
NP satisfiability of formulae in the propositional logic (SAT)
PSPACE truth-value of quantified Boolean formulae

Complete problems for classes like EXP and NEXP can be obtained from the P-complete and
NP-problems by representing propositional formulae succinctly in terms of other propositional
formulae[Papadimitriou and Yannakakis, 1986]. We will not discuss this topic further in this
lecture.

2.5 Exercises

2.1Show that for any transition system〈S, {o1, . . . , on}〉 in which the statess ∈ S are valuations
of a setA of propositional variables (as in Example 2.10), the actionso1, . . . , on can be represented
in terms of operators.

2.2Show that conditional effects withB are necessary, that is, find a transition system where states
are valuations of a set of state variables and the actions cannot be represented as operators without
conditional effects withB. Hint: There is an example with two states and one state variable.

2For definition of P-hard problems we have to use more restricted many-one reductions that use only logarithmic
space instead of polynomial time. Otherwise all non-trivial problems in P would be P-hard and P-complete.



Chapter 3

Deterministic planning

In this chapter we describe a number of algorithms for solving the historically most important and
most basic type of planning problem. Two rather strong simplifying assumptions are made. First,
all actions are deterministic, that is, under every action every state has at most one successor state.
Second, there is only one initial state.

Under these restrictions, whenever a goal state can be reached, it can be reached by a fixed
sequence of actions. With more than one initial state it would be necessary to use a different se-
quence of actions for every initial state, and with nondeterministic actions the sequence of actions
to be taken is not simply a function of the initial state, and for producing appropriate sequences
of actions a more general notion of plans with branches/conditionals becomes necessary. This is
because after executing an action, even when the starting state was known, the state that is reached
cannot be predicted, and the way plan execution continues depends on the new state. In Chapter 4
we relax both of these restrictions, and consider planning with more than one initial state and with
nondeterministic actions.

The structure of this chapter is as follows. First we discuss the two ways of traversing the tran-
sition graphs without producing the graphs explicitly. In forward traversal we repeatedly compute
the successor states of our current state, starting from the initial state. In backward traversal we
must use sets of states, represented as formulae, because we must start from the set of goal states,
and further, under a given action a state may have several predecessor states.

Then we discuss the use of heuristic search algorithms for performing the search in the tran-
sition graphs and the computation of distance heuristics to be used in estimating the value of the
current states or sets of states. Further improvements to plan search are obtained by recognizing
symmetries in the transition graphs, and for backward search, restricting the search by invariants
that are formulae describing which states are reachable from the initial state.

A complementary approach to planning is obtained by translating the planning problem to the
classical propositional logic and then finding plans by algorithms that test the satisfiability of for-
mulae in the propositional logic. This is called satisfiability planning. We discuss two translations
of deterministic planning to the propositional logic. The second translation is more complicated
but also more efficient as it avoids considering all interleavings of a set of mutually independent
operators.

We conclude the chapter by presenting the main results on the computational complexity of
deterministic planning.

26



3.1. PROBLEM DEFINITION 27

3.1 Problem definition

We formally define the deterministic planning problem.

Definition 3.1 A 4-tuple〈A, I,O,G〉 consisting of a setA of state variables, a stateI (a valuation
ofA), a setO of operators overA, and a propositional formulaG overA, is a problem instance
in deterministic planning.

The stateI is theinitial stateand the formulaG describes the set ofgoal states.

Definition 3.2 LetΠ = 〈A, I,O,G〉 be a problem instance in deterministic planning. A sequence
o1, . . . , on of operators is aplan for Π if and only if appon(appon−1(· · ·appo1(I) · · ·)) |= G, that
is, when applying the operatorso1, . . . , on in this order starting in the initial state, one of the goal
states is reached.

3.2 State-space search

The simplest planning algorithm just generates all states (valuations ofA), constructs the transition
graph, and then finds a path from the initial stateI to a goal stateg ∈ G for example by a shortest-
path algorithm. The plan is then simply the sequence of actions corresponding to the edges on the
shortest path from the initial state to a goal state.

However, this algorithm is in general not feasible when the number of state variables is higher
than 20 or 30, as the number of valuations is very high:220 = 1048576 ∼ 106 for 20 Boolean
state variables, and230 = 1073741824 ∼ 109 for 30.

Instead, it will often be much more efficient to avoid generating most of the state space explic-
itly, and just to produce the successor or predecessor states of the states currently under consider-
ation. This is how many of the modern planning algorithms work.

There are two main possibilities in finding a path from the initial state to a goal state: traverse
the transition graph forward starting from the initial state, or traverse it backwards starting from
the goal states.

The main difference between these is caused by the fact that there may be several goal states
(and even one goal state may have several possible predecessor states with respect to one operator)
but only one initial state: in forward traversal we repeatedly compute the unique successor state of
the current state, whereas with backward traversal we are forced to keep track of a possibly very
high number of possible predecessor states of the goal states.

Again, it is difficult to say which one is in general better. Backward search is slightly more
complicated to implement, but when the number of goal states is high, it allows to simultaneously
consider a high number of potential suffixes of a plan, each leading to one of the goal states.

3.2.1 Progression and forward search

We already defined progression for single statess asappo(s), and the definition of the determinis-
tic planning problem in Section 3.1 suggests a simple algorithm that does not require the explicit
representation of the transition graph: generate a search tree starting from the initial state as the
root node, and generate the children nodes by computing successor states by progression. Any
node corresponding to a states such thats |= G corresponds to a plan: the plan is simply the
sequence of operators from the root node to the node.



28 CHAPTER 3. DETERMINISTIC PLANNING

Later in this chapter we discuss more sophisticated ways of doing plan search with progression,
as well as computation of distance estimates for guiding heuristic search algorithms.

3.2.2 Regression and backward search

With backward search the starting point is a propositional formulaG that describes the set of goal
states. An operator is selected, and the set of possible predecessor states is computed, and this set
again is described by a propositional formula. One step in this computation, calledregression, is
more complicated than computing unique successor states of deterministic operators by progres-
sion. Reasons for this are that a state and an operator do not in general determine the predecessor
state uniquely (one state may have several predecessors), and that we have to handle arbitrary
propositional formulae instead of single states.

Definition 3.3 We define the condition EPCl(o) of literal l becoming true when the operator〈c, e〉
is applied as EPCl(e) defined recursively as follows.

EPCl(>) = ⊥
EPCl(l) = >
EPCl(l′) = ⊥ whenl 6= l′ (for literals l′)

EPCl(e1 ∧ · · · ∧ en) = EPCl(e1) ∨ · · · ∨ EPCl(en)
EPCl(c B e) = EPCl(e) ∧ c

For effectse, the truth-value of the formulaEPCl(e) indicates whetherl is one of the literals
that the effecte assigns the value true. The connection to the earlier definition of[e]s is explained
by the following lemma.

Lemma 3.4 LetA be the set of state variables,s be a state onA, l a literal onA, ande an effect
onA. Thenl ∈ [e]s if and only ifs |= EPCl(e).

Proof: Proof is by induction on the structure of the effecte.
Base case 1,e = >: By definition of[>]s we havel 6∈ [>]s = ∅, and by definition ofEPCl(>)

we haves 6|= EPCl(>) = ⊥, so the equivalence holds.
Base case 2,e = l: l ∈ [l]s = {l} by definition, ands |= EPCl(l) = > by definition.
Base case 3,e = l′ for some literall′ 6= l: l 6∈ [l′]s = {′l} by definition, ands 6|= EPCl(l′) = ⊥

by definition.
Inductive case 1,e = e1 ∧ · · · ∧ en:
l ∈ [e]s if and only if l ∈ [e′]s for somee′ ∈ {e1, . . . , en}

if and only if s |= EPCl(e′) for somee′ ∈ {e1, . . . , en}
if and only if s |= EPCl(e1) ∨ · · · ∨ EPCl(en)
if and only if s |= EPCl(e1 ∧ · · · ∧ en).

The second equivalence is by the induction hypothesis, the other equivalences are by the defi-
nitions ofEPCl(e) and[e]s as well as elementary facts about propositional formulae.

Inductive case 2,e = c B e′:
l ∈ [c B e′]s if and only if l ∈ [e′]s ands |= c

if and only if s |= EPCl(e′) ands |= c
if and only if s |= EPCl(c B e′).

The second equivalence is by the induction hypothesis.



3.2. STATE-SPACE SEARCH 29

This completes the proof. �

Notice that any operator〈c, e〉 can be expressed in normal form in terms ofEPCa(e) as〈
c,
∧
a∈A

(EPCa(e) B a) ∧ (EPC¬a(e) B ¬a)

〉
.

The formula(a∧¬EPC¬a(e))∨EPCa(e) expresses the truth-value ofa ∈ A after applyingo in
terms of truth-values of formulae before applyingo: eithera was true before and did not become
false, ora became true.

Lemma 3.5 Let a ∈ A be a state variable ando = 〈c, e〉 ∈ O an operator. Lets be a state and
s′ = appo(s). Thens |= (a ∧ ¬EPC¬a(e)) ∨ EPCa(e) if and only ifs′ |= a.

Proof: Assume thats |= (a∧¬EPC¬a(e))∨EPCa(e). We perform a case analysis and show that
s′ |= a holds in both cases.

Case 1: Assume thats |= a ∧ ¬EPC¬a(e). By Lemma 3.4¬a 6∈ [e]s. Hencea remains true in
s′.

Case 2: Assume thats |= EPCa(e). By Lemma 3.4a ∈ [e]s, and hences′ |= a.
For the other half of the equivalence, assume thats 6|= (a ∧ ¬EPC¬a(e)) ∨ EPCa(e). Hence

s |= (¬a ∨ EPC¬a(e)) ∧ ¬EPCa(e).
Assume thats |= a. Now s |= EPC¬a(e) becauses |= ¬a ∨ EPC¬a(e), and hence by Lemma

3.4¬a ∈ [e]s and hences′ 6|= a.
Assume thats 6|= a. Becauses |= ¬EPCa(e), by Lemma 3.4a 6∈ [e]s and hences′ 6|= a.
Therefores′ 6|= a in all cases. �

The formulaeEPCl(o) can now be used in defining regression for operatorso.

Definition 3.6 (Regression)Let φ be a propositional formula. Let〈p, e〉 be an operator. The
regressionof φ with respect too = 〈p, e〉 is regro(φ) = φr ∧ p∧ f whereφr is obtained fromφ by
replacing every propositiona ∈ A by (a∧¬EPC¬a(e))∨EPCa(e), andf =

∧
a∈A ¬(EPCa(e)∧

EPC¬a(e)). We also define regre(φ) = φr ∧ f .

The conjuncts off say that none of the state variables may simultaneously become true and
false.

Becauseregre(φ) often contains many occurrences of⊥ and>, it is useful to simplify it by
applying equivalences like> ∧ φ ≡ φ, ⊥ ∧ φ ≡ ⊥, > ∨ φ ≡ >, ⊥ ∨ φ ≡ φ, ¬⊥ ≡ >, and
¬> ≡ ⊥.

Regression can equivalently be defined in terms of the conditions the state variables stay or
become false, that is, we could use the formula(¬a ∧ ¬EPCa(e)) ∨ EPC¬a(e) which tells when
a is false. The negation of this formula, which can be written as(a ∧ ¬EPC¬a(e)) ∨ (EPCa(e) ∧
¬EPC¬a(e)), is not equivalent to(a∧¬EPC¬a(e))∨EPCa(e). However, ifEPCa(e) andEPC¬a(e)
are never simultaneously true, we do get equivalence, that is,

¬(EPCa(e) ∧ EPC¬a(e)) |= ((a ∧ ¬EPC¬a(e)) ∨ (EPCa(e) ∧ ¬EPC¬a(e)))
↔ ((a ∧ ¬EPC¬a(e)) ∨ EPCa(e))

because¬(EPCa(e) ∧ EPC¬a(e)) |= (EPCa(e) ∧ ¬EPC¬a(e)) ↔ EPCa(e).



30 CHAPTER 3. DETERMINISTIC PLANNING

Concerning the worst-case size of the formula obtained by regression with operatorso1, . . . , on

starting fromφ, the obvious upper bound on its size is the product of the sizes ofφ, o1, . . . , on,
which is exponential inn. However, because of the many possibilities of simplifying the formulae
and the typically simple structure of the operators, the formulae can often be simplified a lot. For
unconditional operatorso1, . . . , on (with no occurrences ofB), an upper bound on the size of the
formula (after the obvious simplifications that eliminate occurrences of> and⊥) is the sum of the
sizes ofo1, . . . , on andφ.

The reason why regression is useful for planning is that it allows to compute the predecessor
states by simple formula manipulation. The same is not possible for progression, that is, there
does not seem to be a simple definition of successor states of asetof states expressed in terms of
a formula: simple syntactic progression is restricted to individual states only.

The important property of regression is formalized in the following lemma.

Lemma 3.7 Letφ be a formula overA. Leto be an operator with effecte. Lets be any state and
s′ = appo(s). Thens |= regre(φ) if and only ifs′ |= φ.

Proof: The proof is by structural induction over subformulaeφ′ of φ. We show that the formula
φr obtained fromφ by replacing propositionsa ∈ A by (a∧¬EPC¬a(e))∨EPCa(e) has the same
truth-value ins asφ has ins′.

Induction hypothesis:s |= φ′r if and only if s′ |= φ′.
Base case 1,φ′ = >: Now φ′r = > and both are true in the respective states.
Base case 2,φ′ = ⊥: Now φ′r = ⊥ and both are false in the respective states.
Base case 3,φ′ = a for somea ∈ A: Now φ′r = (a ∧ ¬EPC¬a(e)) ∨ EPCa(e). By Lemma 3.5

s |= φ′r if and only if s′ |= φ′.
Inductive case 1,φ′ = ¬ψ: By the induction hypothesiss |= ψr iff s′ |= ψ. Hences |= φ′r iff

s′ |= φ′ by the truth-definition of¬.
Inductive case 2,φ′ = ψ ∨ ψ′: By the induction hypothesiss |= ψr iff s′ |= ψ, ands |= ψ′r iff

s′ |= ψ′. Hences |= φ′r iff s′ |= φ′ by the truth-definition of∨.
Inductive case 3,φ′ = ψ ∧ ψ′: By the induction hypothesiss |= ψr iff s′ |= ψ, ands |= ψ′r iff

s′ |= ψ′. Hences |= φ′r iff s′ |= φ′ by the truth-definition of∧. �

Operators for regression can be selected arbitrarily, but there is a simple property all useful
regression steps satisfy. For example, regressinga with the effect¬a is not useful, because the
new formula⊥ describes the empty set of states, and therefore the operators leading to it from
the goal formula are not the suffix of any plan. Another example is regressinga with the operator
〈b, c〉, yieldingregr〈b,c〉(a) = a∧ b, which means that the set of states becomes smaller. This does
not rule out finding a plan, but finding a plan is more difficult than it was before the regression
step, because the set of possible prefixes of a plan leading to the current set of states is smaller
than it was before. Hence it would be better not to take this regression step.

Lemma 3.8 Let there be a plano1, . . . , on for 〈A, I,O,G〉. If regrok
(regrok+1

(· · · regron(G) · · ·)) |=
regrok+1

(· · · regron(G) · · ·) for somek ∈ {1, . . . , n − 1}, then alsoo1, . . . , ok−1, ok+1, · · · , on is
a plan for〈A, I,O,G〉.

Proof: �



3.2. STATE-SPACE SEARCH 31

Hence any regression step that makes the set of states smaller in the set-inclusion sense is
unnecessary. However, testing whether this is the case may be computationally expensive.

Lemma 3.9 The problem of testing that regro(φ) 6|= φ is NP-hard.

Proof: We give a reduction from the NP-complete satisfiability problem of the propositional logic.
Letφ be any formula. Leta be a propositional variable not occurring inφ. Now regr〈¬φ→a,a〉(a) 6|=

a if and only if (¬φ→ a) 6|= a, becauseregr〈¬φ→a,a〉(a) = ¬φ→ a. (¬φ→ a) 6|= a is equiv-
alent to 6|= (¬φ→ a) → a that is equivalent to the satisfiability of¬((¬φ→ a) → a). Further,
¬((¬φ→a)→a) is logically equivalent to¬(¬(φ∨ a)∨ a) and further to¬(¬φ∨ a) andφ∧¬a.

Satisfiability ofφ ∧ ¬a is equivalent to the satisfiability ofφ asa does not occur inφ: if φ is
satisfiable, there is a valuationv such thatv |= φ, we can seta false inv to obtainv′, and asa
does not occur inφ, we still havev′ |= φ, and furtherv′ |= φ ∧ ¬a. Clearly, ifφ is unsatisfiable
alsoφ ∧ ¬a is.

Henceregr〈¬φ→a,a〉(a) 6|= a if and only if φ is satisfiable. �

The problem is also in NP, but we do not show it here. Also the following problem is in NP, but
we just show the NP-hardness. The question is whether an empty set of states is produced by a
regression step, that is, whether the resulting formula is unsatisfiable.

Lemma 3.10 The problem of testing that regro(φ) is satisfiable is NP-hard.

Proof: By a reduction from satisfiability in the propositional logic. Letφ be a formula.regr〈φ,a〉(a)
is satisfiable if and only ifφ is satisfiable becauseregr〈φ,a〉(a) ≡ φ.

The problem is NP-hard even if we restrict to operators that have a satisfiable precondition:φ
is satisfiable if and only if(φ∨¬a)∧a is satisfiable if and only ifregr〈φ∨¬a,b〉(a∧ b) is satisfiable.
Herea is a proposition not occurring inφ. Clearly,φ∨¬a is true whena is false, and henceφ∨¬a
is satisfiable. �

Of course, testing thatregro(φ) 6|= φ or that regro(φ) is satisfiable is not necessary for the
correctness of backward search, but avoiding useless steps improves its efficiency.

Early work on planning restricted to goals and operator preconditions that are conjunctions of
state variables, and to unconditional operator effects (STRIPS operators.) In this special case both
goalsG and operator effectse can be viewed as sets of literals, and the definition of regression is
particularly simple: regressingG with respect to〈c, e〉 is (G\e) ∪ c. If there isa ∈ A such that
a ∈ G and¬a ∈ e, then the result of regression is⊥, that is, the empty set of states. We do not
use this restricted type of regression in this lecture.

Some planners that use backward search and have operators with disjunctive preconditions and
conditional effects eliminate all disjunctivity by branching: for example, the backward step fromg
with operator〈a∨ b, g〉, producinga∨ b, is handled by producing two branches in the search tree,
one fora and another forb. Disjunctivity caused by conditional effects can similarly be handled
by branching. However, this branching leads to a very high branching factor for the search tree
and thus to poor performance.

In addition to being the basis of backward search, regression has many other useful applications
in reasoning about actions and formal manipulation of operators.



32 CHAPTER 3. DETERMINISTIC PLANNING

Definition 3.11 (Composition of operators)Let o1 = 〈p1, e1〉 ando2 = 〈p2, e2〉 be two opera-
tors onA. Then theircompositiono1 ◦ o2 is defined as〈

p,
∧
a∈A

(
((regre1(EPCa(e2)) ∨ (EPCa(e1) ∧ ¬regre1(EPC¬a(e2)))) B a)∧
((regre1(EPC¬a(e2)) ∨ (EPC¬a(e1) ∧ ¬regre1(EPCa(e2)))) B ¬a)

)〉

wherep = p1 ∧ regre1(p2) ∧
∧

a∈A ¬ (EPCa(e1) ∧ EPC¬a(e1)).

Notice that ino1 ◦ o2 first is o1 is applied and theno2, so the ordering is opposite to the usual
notation for the composition of functions.

Theorem 3.12 Let o1 ando2 be operators ands a state. Then appo1◦o2(s) is defined if and only
if appo1;o2(s) is defined, and appo1◦o2(s) = appo1;o2(s).

Proof: �

The above construction can be used in eliminatingsequantial compositionfrom operator effects
(Section 2.3.1).

3.3 Planning by heuristic search algorithms

Plan search can be performed in the forward or in the backward direction respectively with pro-
gression or regression, as described in Sections 3.2.1 and 3.2.2. There are several obvious algo-
rithms that could be used for the purpose, including depth-first search, breadth-first search and
iterative deepening, but without informed selection of branches of search trees these algorithms
perform poorly.

The use of additional information for guiding search is essential for achieving efficient planning
with general-purpose search algorithms. Algorithms that use heuristic estimates on the values of
the nodes in the search space for guiding the search have been applied to planning very success-
fully. Some of the more sophisticated search algorithms that can be used are A∗ [Hartet al., 1968],
WA∗ [Pearl, 1984], IDA∗ [Korf, 1985], simulated annealing[Kirkpatrick et al., 1983].

The effectiveness of these algorithms is dependent on good heuristics for guiding the search.
For planning with progression and regression the main heuristic information is in the form of
estimates on the distance between states. The distance is the minimum number of operators needed
for reaching a state from another state. In Section 3.4 we present techniques for estimating the
distances between states and sets of sets. In this section we discuss how heuristic search algorithms
are applied in planning assuming that we have a useful heuristics for guiding these algorithms

When plan search proceeds by progression in forward direction starting from the initial state,
we estimate the distance between the current state and the set of goal states. When plan search
proceeds by regression in backward direction starting from the goal states, we estimate the distance
between the initial state and the current set of goal states as computed by regression.

For progression, the search tree nodes are sequences of operators (prefixes of plans.)

o1, o2, . . . , on

The initial node for search is the empty sequence. The children nodes are obtained by progression
with respect to an operator or by dropping out some of the last operators.



3.4. DISTANCE ESTIMATION 33

Definition 3.13 (Children for progression) Let〈A, I,O,G〉 be a problem instance. For progres-
sion, the children of a search tree nodeo1, o2, . . . , on are the following.

1. o1, o2, . . . , on, o for anyo ∈ O such that appo1;...;on;o(I) is defined
2. o1, o2, . . . , oi for anyi < n

Whenappo1;o2...,on(I) |= G theno1, . . . , on is a plan.
For regression, the nodes of the search tree are also sequences of operators (suffixes of plans.)

on, . . . , o1

The initial node for search is the empty sequence. The children of a node are those obtained by
prefixing the current sequence with an operator or by dropping out some of the first actions and
associated formulae.

Definition 3.14 (Children for regression) Let 〈A, I,O,G〉 be a problem instance. For regres-
sion, the children of nodeφn, . . . , o1 are the following.

1. o, on, . . . , o1 for anyo ∈ O
2. oi, . . . , o1 for anyi < n

WhenI |= regron;...;o1(G) the sequenceon, . . . , o1 is a plan.
For both progression and regression the neighbors that are obtained by removing some operators

from the incomplete plans are needed with local search algorithms only. The systematic search
algorithms can be implemented to keep track of the alternative extensions of an incomplete plan,
and therefore the backup steps are not needed. Further, for these algorithms it suffices to keep
track of the results of the state obtained by progression or the formula obtained by regression.

The states generated by progression from the initial state, and the formulae generated by regres-
sion are not the only possibilities for defining the search space for a search algorithm. In partial-
order planning[McAllester and Rosenblitt, 1991], the search space consists of incomplete plans
that are partially ordered multisets of operators. The neighbors of an incomplete plan are those
obtained by adding or removing an operator, or by adding or removing an ordering constraint.
Another form of incomplete plans is fixed length sequences of operators, with zero or more of
the operators missing. This has been formalized as planning with propositional satisfiability as
discussed in Section 3.5.

3.4 Distance estimation

Using progression and regression with just any search algorithm does not yield efficient planning.
Critical for the usefulness of the algorithms is the selection of operators for the progression and
regression steps. If the operators are selected randomly it is unlikely that search in possibly huge
transition graphs is going to end quickly.

Operator selection can be substantially improved by using estimates on the distance between the
initial state and the current goal states, for backward search, or the distance between the current
state and the set of goal states, for forward search. Computing exact distances is computationally
just as difficult as solving the planning problem itself. Therefore in order to speed up planning by
distance information, its computation should be inexpensive, and this means that only inaccurate
estimates of the distances can be used.

We present a method for distance estimation that generalizes the work of Bonet and Geffner
[2001] to operators with conditional effects and arbitrary propositional formulae as preconditions.



34 CHAPTER 3. DETERMINISTIC PLANNING

The set makestrue(l, O), consisting of formulaeφ such that ifφ is true then applying an operator
o ∈ O can make the literall true, is defined on the basis ofEPCl(o) from Definition 3.3.

makestrue(l, O) = {EPCl(o)|o ∈ O}

Example 3.15 Let 〈A∧B,R∧(Q B P )∧(R B P )〉 be an operator inO. ThenA∧B∧(Q∨R) ∈
makestrue(P,O) because forP to become true it suffices that the preconditionA ∧ B of the
operator and one of the antecedentsQ orR of a conditional effect is true. �

The idea of the method for estimating distances of goal states is based on the estimation of dis-
tances of states in which given state variables have given values. The estimates are not accurate for
two reasons. First, and more importantly, distance estimation is done one state variable at a time
and dependencies between values of different state variables are ignored. Second, tests whether
a formula is true in a set of states described by a set of literals is performed by an algorithm that
approximates NP-hard satisfiability testing. Of course, because we are interested in computing
distance estimates efficiently, that is in polynomial time, the inaccuracy is an acceptable compro-
mise.

We give a recursive procedure that computes a lower bound on the number of operator applica-
tions that are needed for reaching from a states a state in which given state variablesa ∈ A have
a certain value. This is by computing a sequence of setsDi of literals. The setDi is a set of such
literals that must be true in any state that has a distance≤ i from the states. If a literal l is inD0,
thenl is true ins. If l ∈ Di\Di+1, thenl is true in all states with distance≤ i andl may be false
in some states having distance> i.

Definition 3.16 LetL = A ∪ {¬a|a ∈ A} be the set of literals onA. Define the setsDi for i ≥ 0
as follows.

D0 = {l ∈ L|s |= l}
Di = Di−1\{l ∈ L|o ∈ O, canbetruein(EPCl(o), Di−1)}

Because we consider only finite setsA of state variables and|D0| = |A| andDi+1 ⊆ Di for all
i ≥ 0, necessarilyDi = Di+1 for somei ≤ |A|.

Above canbetruein(φ,D) is a function that tests whether there is a state in whichφ and the
literals D are true, that is, whether{φ} ∪ D is satisfiable. This algorithm does not accurately
test satisfiability, and may claim tht{φ} ∪ D is satisfiable even when it is not. Hence it only
approximates the NP-complete satisfiability problem. The algorithm runs in polynomial time and
is defined as follows.

canbetruein(⊥, D) = false
canbetruein(>, D) = true
canbetruein(a,D) = true iff¬a 6∈ D (for state variablesa ∈ A)

canbetruein(¬a,D) = true iff a 6∈ D (for state variablesa ∈ A)
canbetruein(¬¬φ,D) = canbetruein(φ,D)

canbetruein(φ ∨ ψ,D) = canbetruein(φ,D) or canbetruein(ψ,D)
canbetruein(φ ∧ ψ,D) = canbetruein(φ,D) and canbetruein(ψ,D)

canbetruein(¬(φ ∨ ψ), D) = canbetruein(¬φ,D) and canbetruein(¬ψ,D)
canbetruein(¬(φ ∧ ψ), D) = canbetruein(¬φ,D) or canbetruein(¬ψ,D)



3.4. DISTANCE ESTIMATION 35

The reason why the satisfiability test is not accurate is that for formulaeφ ∧ ψ (respectively
¬(φ ∨ ψ)) we make recursively two satisfiability tests that do not assume that the component
formulaeφ andψ (respectively¬φ and¬ψ) aresimultaneouslysatisfiable.

We give a lemma that states the connection between canbetruein(φ,D) and the satisfiabilty of
{φ} ∪D.

Lemma 3.17 Let φ be a formula andD a consistent set of literals (it contains at most one ofa
and¬a for everya ∈ A.) If D ∪ {φ} is satisfiable, then canbetruein(φ,D) returns true.

Proof: The proof is by induction on the structure ofφ.
Base case 1,φ = ⊥: The setD ∪ {⊥} is not satisfiable, and hence the implication trivially

holds.
Base case 2,φ = >: canbetruein(>, D) always returns true, and hence the implication trivially

holds.
Base case 3,φ = a for somea ∈ A: If D ∪ {a} is satisfiable, then¬a 6∈ D, and hence

canbetruein(a,D) returns true.
Base case 4,φ = ¬a for somea ∈ A: If D ∪ {¬a} is satisfiable, thena 6∈ D, and hence

canbetruein(¬a,D) returns true.
Inductive case 1,φ = ¬¬φ′ for someφ′: The formulae are logically equivalent, and by the

induction hypothesis we directly establish the claim.
Inductive case 2,φ = φ′ ∨ ψ′: If D ∪ {φ′ ∨ ψ′} is satisfiable, then eitherD ∪ {φ′} or

D ∪ {ψ′} is satisfiable and by the induction hypothesis at least one of canbetruein(φ′, D) and
canbetruein(ψ′, D) returns true. Hence canbetruein(φ′ ∨ ψ′, D) returns true.

Inductive case 3,φ = φ′∧ψ′: If D∪{φ′∧ψ′} is satisfiable, then bothD∪{φ′} andD∪{ψ′} are
satisfiable and by the induction hypothesis both canbetruein(φ′, D) and canbetruein(ψ′, D) return
true. Hence canbetruein(φ′ ∧ ψ′, D) returns true.

Inductive cases 4 and 5,φ = ¬(φ′ ∨ ψ′) andφ = ¬(φ′ ∧ ψ′): Like cases 2 and 3 by logical
equivalence. �

The other direction of the implication does not hold because for example canbetruein(A ∧
¬A,D) returns true even though the formula is not satisfiable. The procedure is a polynomial-
time approximation of the logical consequence test from a set of literals: canbetruein(φ,D) always
returns true ifD ∪ {φ} is satisfiable, but it may return true also when the set is not satisfiable.

Now we define the distances of states in which a literall is true byδs(l) = 0 if and only if
l ∈ D0, and ford ≥ 1, δs(l) = d if and only if l ∈ Dd−1\Dd. For formulaeφ we similarly
defineδs(φ) = 0 if canbetruein(φ,D0), and ford ≥ 1, δs(φ) = d if canbetruein(φ,Dd) and not
canbetruein(φ,Dd−1).

Lemma 3.18 Let s be a state andD0, D1, . . . the sets given in Definition 3.16 fors. If s′ is the
state reached froms by applying the operator sequenceo1, . . . , on, thens′ |= Dn.

Proof: By induction onn.
Base casen = 0: The length of the operator sequence is zero, and hences′ = s. The setD0

consists exactly of those literals that are true ins, and hences′ |= D0.
Inductive casen ≥ 1: Let s′′ be the state reached froms by applyingo1, . . . , on−1. Now

s′ = appon(s′′). By the induction hypothesiss′′ |= Dn−1.



36 CHAPTER 3. DETERMINISTIC PLANNING

Let l be any literal inDn. We show it is true ins′. Becausel ∈ Dn andDn ⊆ Dn−1, also
l ∈ Dn−1, and hence by the induction hypothesiss′′ |= l.

Letφ be any member of makestrue(l, {on}). Becausel ∈ Dn it must be that canbetruein(φ,Dn−1)
returns false (Definition ofDn). HenceDn−1∪{φ} is by Lemma 3.17 not satisfiable, ands′′ 6|= φ.
Hence applyingon in s′′ does not makel false, and consequentlys′ |= l.

�

Theorem 3.19 Let s be a state,φ a formula, andD0, D1, . . . the sets given in Definition 3.16 for
s. If s′ is the state reached froms by applying the operatorso1, . . . , on ands′ |= φ for any formula
φ, then canbetruein(φ,Dn) returns true.

Proof: By Lemma 3.18s′ |= Dn. By assumptions′ |= φ. HenceDn ∪ {φ} is satisfiable. By
Lemma 3.17 canbetruein(φ,Dn) returns true. �

Corollary 3.20 Let s be a state andφ a formula. Then for any sequenceo1, . . . , on of operators
such that executing them ins results in states′ such thats′ |= φ, n ≥ δs(φ).

Example 3.21 Consider the blocks world with three blocks and the initial state in which A is on
B and B is on C.

D0 = {A-CLEAR,A-ON-B,B-ON-C,C-ON-TABLE,¬A-ON-C,¬B-ON-A,¬C-ON-A,
¬C-ON-B,¬A-ON-TABLE,¬B-ON-TABLE,¬B-CLEAR,¬C-CLEAR}

There is only one operator applicable, that moves A onto the table. Applying this operator makes
the literals B-CLEAR and A-ON-TABLE and¬A-ON-B true, and consequently their complemen-
tary literals do not occur inD1, because it is possible after at most 1 operator application that these
complementary literals are false.

D1 = {A-CLEAR,B-ON-C,C-ON-TABLE,¬A-ON-C,¬B-ON-A,¬C-ON-A,
¬C-ON-B,¬B-ON-TABLE,¬C-CLEAR}

In addition the operator applicable in the initial states, now there are three more operators applica-
ble (their precondition does not contradictD1), one moving A from the table on top of B (returning
to the initial state), one moving B from the top of C onto A, and one moving B from the top of C
onto the table. HenceD2 is as follows.

D2 = {C-ON-TABLE,¬A-ON-C,¬C-ON-A,¬C-ON-B}

Now there are three further operators applicable, those moving C from the table onto A and onto
B, and the operator moving A onto C. Consequently,

D3 = ∅

�

The next two examples demonstrate the best-case and worst-case scenarios for distance estima-
tion.



3.4. DISTANCE ESTIMATION 37

2=0100000

4=0001000

5=0000100

1=1000000

3=0010000 7=0000001

6=0000010

Figure 3.1: A transition system on which distance estimates are very accurate

2=010

1=001
4=100

5=101

3=011

6=110

7=111

Figure 3.2: A transition system for which distance estimates are very inaccurate

Example 3.22 Figure 3.1 shows a transition system on which the distance estimates from state
1 are very accurate. The accuracy of the estimates is caused by the fact that for each state one
can determine the distance accurately just on the basis of one of the state variables. Let the state
variables be A, B, C, D, E, F, G.

D0 = {A,¬B,¬C,¬D,¬E,¬F,¬G}
D1 = {¬C,¬D,¬E,¬G}
D2 = {¬C,¬G}
D3 = ∅
D4 = ∅

�

Example 3.23 Figure 3.2 shows a transition system on which the distance estimates from state 1
are very poor. The inaccuracy is caused by the fact that all possible values of state variables are
possible after taking just one action, and this immediately gives distance estimate 1 for all states



38 CHAPTER 3. DETERMINISTIC PLANNING

and sets of states.
D0 = {¬A,¬B,C}
D1 = ∅
D2 = ∅

�

The way Bonet and Geffner[2001] express the method differs from our presentation. Their
definition is based on two mutually recursive equations that cannot be directly understood as ex-
ecutable procedures. The basic equation for distance computation for literals (negated and un-
negated) state variablesl (l = a or l = ¬a for somea ∈ A) is as follows (the generalization of
this and the following definitions to arbitrary preconditions and conditional effects are due to us.)

δs(l) =
{

0 if s |= l
minφ∈makestrue(l,O) (1 + δs(φ)) otherwise

The equation gives a cost/distance estimate of making a propositiona ∈ A true starting from state
s, in terms ofs and costδs(φ) of reaching a state that satisfiesφ. This costδs(φ) is defined as
follows in terms of the costsδs(a).

δs(⊥) = ∞
δs(>) = 0
δs(a) = δs(a) for state variablesa ∈ A

δs(¬a) = δs(¬a) for state variablesa ∈ A
δs(¬¬φ) = δs(φ)
δs(φ ∨ ψ) = min(δs(φ), δs(ψ))
δs(φ ∧ ψ) = max(δs(φ), δs(ψ))

δs(¬(φ ∨ ψ)) = δs(¬φ ∧ ¬ψ)
δs(¬(φ ∧ ψ)) = δs(¬φ ∨ ¬ψ)

This representation of the estimation method is useful because Bonet and Geffner[2001] have
also considered another way of defining the cost of achieving a conjunctionφ∧ψ. Instead of taking
the maximum of the costs ofφ andψ, Bonet and Geffner suggest taking the sum of the costs, which
is simply obtained by replacingmax(δs(φ), δs(ψ)) in the above equations byδs(φ)+δs(ψ). They
call this theadditive heuristic, in contrast to the definition given above for themax heuristic.
The justification for this is that the max heuristic assumes that it is the cost of the more difficult
conjunct that alone determines the difficulty of reaching the conjunction and the cost of the less
difficult conjuncts are ignored completely. The experiments Bonet and Geffner conducted showed
that the additive heuristic may lead to much more efficient planning. However, one should notice
that the additive heuristic is not admissible, and indeed, Bonet and Geffner have used the max
heuristic and the additive heuristic in connection with the non-optimal best-first search algorithm.

3.5 Planning as satisfiability in the propositional logic

A very powerful approach to deterministic planning emerged starting in 1992 from the work by
Kautz and Selman[1992; 1996]: translate problem instances to propositional formulaeφ0, φ1, φ2, . . .
so that every valuation that satisfies formulaφi corresponds to a plan of lengthi. Now an algo-
rithm for testing the satisfiability of propositional formulae can be used for finding a plan: test the



3.5. PLANNING AS SATISFIABILITY IN THE PROPOSITIONAL LOGIC 39

satisfiability ofφ0, if it is unsatisfiable, continue withφ1, φ2, and so on, until a satisfiable formula
φn is found. From the valuation the satisfiability algorithm returns we can now construct a plan of
lengthn.

3.5.1 Actions as propositional formulae

First we need to represent all our actions in the propositional logic. We can view arbitrary propo-
sitional formulae as actions, or we can translate operators into formulae in the propositional logic.
We discuss both of these possibilities.

Given a set of state variablesA = {a1, . . . , an}, one could describe an action directly as a
propositional formulaφ over propositionsA∪A′ whereA′ = {a′1, . . . , a′n}. Here the propositions
A represent the values of state variables in the states in which an action is taken, and propositions
A′ the values of state variables in a successor states′.

A pair of valuationss ands′ can be understood as a valuation ofA ∪ A′ (the states assigns a
value to propositionsA ands′ to propositionsA′), and a transition froms to s′ is possible if and
only if s, s′ |= φ.

Example 3.24 Let there be state variablesa1 anda2. The action that reverses the values of both
state variables is described by(a1 ↔ ¬a′1) ∧ (a2 ↔ ¬a′2).

This action is represented by the following matrix.

a′1a
′
2 a′1a

′
2 a′1a

′
2 a′1a

′
2

= = = =
0 0 0 1 1 0 1 1

a1a2 = 00 0 0 0 1
a1a2 = 01 0 0 1 0
a1a2 = 10 0 1 0 0
a1a2 = 11 1 0 0 0

The matrix can be equivalently represented as the following truth-table.

a1a2a
′
1a

′
2

0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 0
1 0 0 0 0
1 0 0 1 1
1 0 1 0 0
1 0 1 1 0
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0



40 CHAPTER 3. DETERMINISTIC PLANNING

Of course, this is the truth-table of(a1 ↔ ¬a′1) ∧ (a2 ↔ ¬a′2). �

Example 3.25 Let the set of state variables beA = {a1, a2, a3}. The formula(a1 ↔ a′2)∧(a2 ↔
a′3) ∧ (a3 ↔ a′1) represents the action that rotates the values of the state variablesa1, a2 anda3

one position right. The formula can be represented as the following adjacency matrix. The rows
correspond to valuations ofA and the columns to valuations ofA′ = {a′1, a′2, a′3}.

000 001 010 011 100 101 110 111
000 1 0 0 0 0 0 0 0
001 0 0 0 0 1 0 0 0
010 0 1 0 0 0 0 0 0
011 0 0 0 0 0 1 0 0
100 0 0 1 0 0 0 0 0
101 0 0 0 0 0 0 1 0
110 0 0 0 1 0 0 0 0
111 0 0 0 0 0 0 0 1

A more conventional way of depicting the valuations of this formula would be as a truth-table with
one row for every valuation ofA ∪A′, a total of 64 rows. �

This kind of propositional formulae are the basis of a number of planning algorithms that are
based on reasoning in propositional logics. These formulae could be input to a planning algorithm,
but describing actions in that way is usually more tricky than as operators, and these formulae are
usually just automatically derived from operators.

The action in Example 3.25 is deterministic. Not all actions represented by propositional for-
mulae are deterministic. A sufficient (but not necessary) condition for the determinism is that the
formula is of the form(φ1 ↔ a′1) ∧ · · · ∧ (φn ↔ a′n) with exactly one equivalence for every
a′ ∈ A′ and formulaeφi not having occurrences of propositions inA′. This way the truth-value of
every state variable in the successor state is unambiguously defined in terms of the truth-values of
the state variables in the predecessor state, and hence the operator is deterministic.

3.5.2 Translation of operators into propositional logic

We first give the simplest possible translation of deterministic planning into the propositional logic.
In this translation every operator is separately translated into a formula, and the choice between
the operators can be represented by the disjunction connective of the propositional logic.

The formulaτo that represents operatoro = 〈z, e〉 is the conjunction of the preconditionz and
the formulae

((EPCa(e) ∨ (a ∧ ¬EPC¬a(e))) ↔ a′) ∧ ¬(EPCa(e) ∧ EPC¬a(e))

for everya ∈ A. Above the first conjunct expresses the value ofa in the successor state in terms of
the values of the state variables in the predecessor state. This is like in the definition of regression
in Section 3.2.2. The second conjunct says that applying the operator is not possible if it assigns
both the value 1 and 0 toa.

Example 3.26 Consider operator〈A ∨B, ((B ∨ C) B A) ∧ (¬C B ¬A) ∧ (A B B)〉.



3.5. PLANNING AS SATISFIABILITY IN THE PROPOSITIONAL LOGIC 41

The corresponding propositional formula is

(A ∨B) ∧(((B ∨ C) ∨ (A ∧ ¬¬C)) ↔ A′) ∧ ¬((B ∨ C) ∧ ¬C)
∧((A ∨ (B ∧ ¬⊥)) ↔ B′) ∧ ¬(A ∧ ⊥)
∧((⊥ ∨ (C ∧ ¬⊥)) ↔ C ′) ∧ ¬(⊥ ∧⊥)

≡
(A ∨B) ∧(((B ∨ C) ∨ (A ∧ C)) ↔ A′) ∧ ¬((B ∨ C) ∧ ¬C)

∧((A ∨B) ↔ B′)
∧(C ↔ C ′)

�

Applying any of the operatorso1, . . . , on or none of the operators is now represented as the
formula

R1(A,A′) = τo1 ∨ · · · ∨ τon ∨ ((a1 ↔ a′1) ∧ · · · ∧ (ak ↔ a′k))

whereA = {a1, . . . , ak} is the set of all state variables. The last disjunct is for the case that no
operator is applied.

The valuations that satisfy this formula do not uniquely determine which operator was applied,
because for a given state two operators may produce the same successor state. However, in such
cases it usually does not matter which operator is applied and one of them can be chosen arbitrarily.

3.5.3 Finding plans by satisfiability algorithms

We show how plans can be found by first translating problem instances〈A, I,O,G〉 into proposi-
tional formulae, and then finding satisfying valuations by a satisfiability algorithm.

In Section 3.5.1 we showed how operators can be described by propositional formulae over sets
A andA′ of propositions, the setA describing the values of the state variables in the state in which
the operator is applied, and the setA′ describing the values of the state variables in the successor
state of that state.

Now, for a fixed plan lengthn, we define sets of propositionsA0, . . . , An with propositions in
Ai describing the values of the state variables at time pointi, that is, wheni operators (or sets of
operators, if we have parallelism) have been applied.

Let 〈A, I,O,G〉 be a problem instance in deterministic planning.
The state at the first time point0 is determined byI, and at the last time pointn a goal state

must have been reached. Therefore we includeι with time-labeling0 andG with time-labelingn
in the encoding.

ι0 ∧R1(A0, A1) ∧R1(A1, A2) ∧ · · · ∧ R1(An−1, An) ∧Gn

Hereι0 =
∧
{a0|a ∈ A, I(a) = 1} ∪ {¬a0|a ∈ A, I(a) = 0} andGn isG with propositionsa

replaced byan.
Plans are found incrementally by increasing the plan length and testing the satisfiability of the

corresponding formulae: first try to find plans of length 0, then of length 1, 2, 3, and so on, until a
plan is found. If there are no plans, it has to be somehow decided when to stop increasing the plan
length that is tried. An upper bound on plan length is2|A|− 1 whereA is the set of state variables,
but this upper bound does not provide a practical termination condition for this procedure.

The size of the encoding is linear in the plan length, and because the plan length may be ex-
ponential, the encoding might not be practical for very long plans, as runtimes of satisfiability
algorithms in general grow exponentially in the length of the formulae.



42 CHAPTER 3. DETERMINISTIC PLANNING

Example 3.27 Consider an initial state that satisfiesI |= A∧B, the goalG = (A∧¬B)∨ (¬A∧
B), and the operatorso1 = 〈>, (A B ¬A)∧ (¬A B A)〉 ando2 = 〈>, (B B ¬B)∧ (¬B B B)〉.

The following formula is satisfiable if and only if〈A, I, {o1, o2}, G〉 has a plan of length 3 or
less.

(A0 ∧B0)
∧(((A0 ↔ A1) ∧ (B0 ↔ ¬B1)) ∨ ((A0 ↔ ¬A1) ∧ (B0 ↔ B1)) ∨ ((A0 ↔ A1) ∧ (B0 ↔ B1)))
∧(((A1 ↔ A2) ∧ (B1 ↔ ¬B2)) ∨ ((A1 ↔ ¬A2) ∧ (B1 ↔ B2)) ∨ ((A1 ↔ A2) ∧ (B1 ↔ B2)))
∧(((A2 ↔ A3) ∧ (B2 ↔ ¬B3)) ∨ ((A2 ↔ ¬A3) ∧ (B2 ↔ B3)) ∨ ((A2 ↔ A3) ∧ (B2 ↔ B3)))
∧((A3 ∧ ¬B3) ∨ (¬A3 ∧B3))

One of the valuations that satisfy the formula is the following.

time i
0 1 2 3

Ai 1 0 0 0
Bi 1 1 0 1

This valuation corresponds to the plan that applies operatoro1 at time point 0,o2 at time point
1, ando2 at time point 2. There are also other satisfying valuations. The shortest plans for this
problem instance areo1 ando2, each consisting of one operator only. �

Example 3.28 Consider the following problem. There are two operators, one for rotating the
values of bits ABC one step right, and the other for inverting the values of all the bits. Consider
reaching from the initial state 100 the goal state 001 with two actions. This is represented as the
following formula.

(A0 ∧ ¬B0 ∧ ¬C0)
∧(((A0 ↔ B1) ∧ (B0 ↔ C1) ∧ (C0 ↔ A1)) ∨ ((¬A0 ↔ A1) ∧ (¬B0 ↔ B1) ∧ (¬C0 ↔ C1)))
∧(((A1 ↔ B2) ∧ (B1 ↔ C2) ∧ (C1 ↔ A2)) ∨ ((¬A1 ↔ A2) ∧ (¬B1 ↔ B2) ∧ (¬C1 ↔ C2)))
∧(¬A2 ∧ ¬B2 ∧ C2)

Because the literals describing the initial and the goal state must be true, we can replace other
occurrences of these state variables by> and⊥.

(A0 ∧ ¬B0 ∧ ¬C0)
∧(((> ↔ B1) ∧ (⊥ ↔ C1) ∧ (⊥ ↔ A1)) ∨ ((¬> ↔ A1) ∧ (¬⊥ ↔ B1) ∧ (¬⊥ ↔ C1)))
∧(((A1 ↔ ⊥) ∧ (B1 ↔ >) ∧ (C1 ↔ ⊥)) ∨ ((¬A1 ↔ ⊥) ∧ (¬B1 ↔ ⊥) ∧ (¬C1 ↔ >)))
∧(¬A2 ∧ ¬B2 ∧ C2)

After simplifying we have the following.

(A0 ∧ ¬B0 ∧ ¬C0)
∧((B1 ∧ ¬C1 ∧ ¬A1) ∨ (¬A1 ∧B1 ∧ C1)
∧((¬A1 ∧B1 ∧ ¬C1) ∨ (A1 ∧B1 ∧ ¬C1))
∧(¬A2 ∧ ¬B2 ∧ C2)

Clearly, the only way of satisfying this formula is to make the first disjuncts of both disjunctions
true, that is,B1 must be true andA1 andC1 must be false.



3.5. PLANNING AS SATISFIABILITY IN THE PROPOSITIONAL LOGIC 43

The resulting valuation corresponds to taking the rotation action twice.
Consider the same problem but now with the goal state 101.

(A0 ∧ ¬B0 ∧ ¬C0)
∧(((A0 ↔ B1) ∧ (B0 ↔ C1) ∧ (C0 ↔ A1)) ∨ ((¬A0 ↔ A1) ∧ (¬B0 ↔ B1) ∧ (¬C0 ↔ C1)))
∧(((A1 ↔ B2) ∧ (B1 ↔ C2) ∧ (C1 ↔ A2)) ∨ ((¬A1 ↔ A2) ∧ (¬B1 ↔ B2) ∧ (¬C1 ↔ C2)))
∧(A2 ∧ ¬B2 ∧ C2)

We simplify again and get the following formula.

(A0 ∧ ¬B0 ∧ ¬C0)
∧((B1 ∧ ¬C1 ∧ ¬A1) ∨ (¬A1 ∧B1 ∧ C1))
∧((¬A1 ∧B1 ∧ C1) ∨ (¬A1 ∧B1 ∧ ¬C1))
∧(A2 ∧ ¬B2 ∧ C2)

Now there are two possible plans, to rotate first and then invert the values, or first invert and then
rotate. These respectively correspond to making the first disjunct of the first disjunction and the
second disjunct of the second disjunction true, or the second and the first disjunct. �

3.5.4 Parallel plans

Plans so far always have had one operator at a time point. It turns out that it is often useful to allow
several operators in parallel. This is beneficial for two main reasons.

First, consider a number of operators that affect and depend on disjoint state variables so that
they can be applied in any order. If there aren such operators, there aren! plans that are equivalent
in the sense that each leads to the same state. When a satisfiability algorithm is used in showing
that there is no plan of lengthn consisting of these operators, it has to show that none of then!
plans reaches the goals. This may be combinatorially very difficult ifn is high.

Second, when several operators can be applied simultaneously, it is not necessary to represent
all intermediate states of the corresponding sequential plans: parallel plans require less time points
than the corresponding sequential plans.

For sequenceso1; o2; . . . ; on of operators we defineappo1;o2;...;on(s) asappon(· · ·appo2(appo1(s)) · · ·).
For setsS of operators and statess we defineappS(s) as the result of simultaneously applying all
operatorso ∈ S: the preconditions of all operators inS must be true ins and the stateappS(s) is
obtained froms by making the literals in

⋃
〈p,e〉∈S ([e]s) true. Analogously to sequential plans we

can defineappS1;S2;...;Sn(s) asappSn(· · ·appS2(appS1(s)) · · ·).

Definition 3.29 (Step plans)For a set of operatorsO and an initial stateI, a planis a sequence
T = S1, . . . , Sl of sets of operators such that there is a sequence of statess0, . . . , sl (the execution
of T ) such that

1. s0 = I,

2.
⋃
〈p,e〉∈Si

(
[e]si−1

)
is consistent for everyi ∈ {1, . . . , l},

3. si = appSi(si−1) for i ∈ {1, . . . , l},

4. for all i ∈ {1, . . . , l} and〈p, e〉 = o ∈ Si andS ⊆ Si\{o}, appS(si−1) |= p, and

5. for all i ∈ {1, . . . , l} and〈p, e〉 = o ∈ Si andS ⊆ Si\{o}, [e]si−1 = [e]appS(si−1).



44 CHAPTER 3. DETERMINISTIC PLANNING

The last condition says that the changes an operator makes would be the same also if some of the
operators parallel to it would have been applied before it. This means that the parallel application
can be understood as applying the operators in any order, with the requirement that the state that
is reached is the same in every case.

Indeed, we can show that a parallel plan can be linearized in an arbitrary way, without affecting
which state it reaches.

Lemma 3.30 LetT = S1, . . . , Sk, . . . , Sl be a step plan. LetT ′ = S1, . . . , S
0
k , S

1
k , . . . , Sl be the

step plan obtained fromT by splitting the stepSk into two stepsS0
k andS1

k such thatSk = S0
k∪S1

k

andS0
k ∩ S1

k = ∅.
If s0, . . . , sk, . . . , sl is the execution ofT thens0, . . . , s′k, sk, . . . , sl for somes′k is the execution

of T ′.

Proof: Sos′k = appS0
k
(sk−1) andsk = appSk

(sk−1) and we have to prove thatappS1
k
(s′k) = sk.

We will show that the active effects of every operatoro ∈ S1
k are the same insk−1 and ins′k, and

hence the changes fromsk−1 to sk are the same in both plans. Leto1, . . . , oz be the operators in
S0

k , and letTi = {o1, . . . , oi} for everyi ∈ {0, . . . , z}. We show by induction that changes caused
by every operatoro ∈ S1

k are the same when executed insk−1 and inappTi(sk−1), from which the
claim follows becauses′k = appTz(sk−1).

Base casei = 0: Immediate becauseT0 = ∅.
Inductive casei ≥ 1: By the induction hypothesis the changes caused by everyo ∈ S1

k are the
same when executed insk−1 and inappTi−1(sk−1). In appTi(sk−1) additionally the operatoroi

has been applied. We have to show that this operator application does affect the set of active effects
of o. By the definition of step plans,[e]appTi−1

(sk−1) = [e]appTi−1∪{oi}(sk−1). This establishes the

induction hypothesis and completes the proof. �

Theorem 3.31 Let T = S1, . . . , Sk, . . . , Sl be a step plan. Then anyσ = o11; . . . ; o
1
n1

; o22;
. . . ; o2n2

; . . . ; ol
1; . . . ; o

l
nl

such that for everyi ∈ {1, . . . , l} the sequenceoi
1; . . . ; o

i
ni

is a total
ordering ofSi, is a plan, and its execution leads to the same terminal state as that ofT .

Proof: First, all empty steps can be removed from the step plan. By Lemma 3.30 non-singleton
steps can be split repeatedly to two smaller non-empty steps until every step is singleton and the
singleton steps are in the desired order. The resulting plan is a sequential plan. �

Lemma 3.32 Testing whether a sequence of sets of operators is a parallel plan is co-NP-hard.

Proof: We can reduce the NP-complete satisfiability problem of the propositional logic to it. Letφ
be a propositional formula in which the propositional variablesA = {a1, . . . , an} occur. LetI be
an initial state in which all state variables are false. Nowφ is valid if and only ifS1 = {〈>, φ B
A〉, 〈>, a1〉, 〈>, a2〉, . . . , 〈>, an〉} is a parallel plan that reaches the goalA. �

However, there are simple sufficient conditions that guarantee that a sequence of sets of oper-
ators satisfies the definition of parallel plans. A commonly used condition is that a state variable
affected by any of the operators at one step of a plan does not occur in the precondition or in the
antecedent of a conditional of any other operator in that step.



3.5. PLANNING AS SATISFIABILITY IN THE PROPOSITIONAL LOGIC 45

3.5.5 Translation of parallel planning into propositional logic

The second translation we give allows applying several operators is parallel. The translation differs
from the one in Section 3.5.2 in that the translation is not obtained simply by combining the
translations of individual operators, and that we use propositions for explicitly representing which
operators are applied.

Let o1, . . . , om be the operators, ande1, . . . , em their respective effects. Leta ∈ A be one of
the state variables. Then we have the following formulae expressing the conditions under which
the state variablep may change from false to true and from true to false.

(¬a ∧ a′)→((o1 ∧ EPCa(e1)) ∨ · · · ∨ (om ∧ EPCa(em)))
(a ∧ ¬a′)→((o1 ∧ EPC¬a(e1)) ∨ · · · ∨ (om ∧ EPC¬a(em)))

Further, for every operator〈z, e〉 ∈ O we have formulae that describe what values the state
variables have in the predecessor and in the successor states if the operator is applied. Then the
state variablesa1, . . . , an may be affected as follows, and the preconditionz of the operator must
be true in the predecessor state.

(o ∧ EPCa1(e)) → a′1
(o ∧ EPC¬a1(e)) → ¬a′1

...
(o ∧ EPCan(e)) → a′n

(o ∧ EPC¬an(e)) → ¬a′n
o → z

Example 3.33 Consider the operatorso1 = 〈¬LAMP1, LAMP1〉 ando2 = 〈¬LAMP2, LAMP2〉.
The application of none, one or both of these operators is described by the following formula.

(¬LAMP1 ∧ LAMP1′)→((o1 ∧ >) ∨ (o2 ∧ ⊥)
(LAMP1 ∧ ¬LAMP1′)→((o1 ∧ ⊥) ∨ (o2 ∧ ⊥)
(¬LAMP2 ∧ LAMP2′)→((o1 ∧ ⊥) ∨ (o2 ∧ >)
(LAMP2 ∧ ¬LAMP2′)→((o1 ∧ ⊥) ∨ (o2 ∧ ⊥)
o1→LAMP1′

o1→¬LAMP1
o2→LAMP2′

o2→¬LAMP2

�

Finally, we have to guarantee that the last two conditions of parallel plans, that the simultaneous
execution leads to the same result as executing them in any order, are satisfied. Encoding the
conditions exactly is difficult, but we can use a simple encoding that provides a sufficient condition
that the conditions are satisfied. We just have

¬oi ∨ ¬oj

whenever there is a state variablep occurring as an effect inoi and in the precondition or the
antecedent of a conditional effect ofoj .



46 CHAPTER 3. DETERMINISTIC PLANNING

We use

R2(A,A
′)

to denote the conjunction of all the above formulae.
LikeR1(A,A′), later we use alsoR2(A,A

′) with propositions labeled for different time points,
and then we also have to label the propositionso for operators so that operator applications at
different time points correspond to different propositions, for exampleo0, o1 and so on. For the
labels for other propositions we use the superscriptt in Rt

2(A,A
′).

3.5.6 Plan existence as evaluation of quantified Boolean formulae

For a more concise representation of the deterministic planning problem we need a slightly more
expressive language than the propositional logic. Quantified Boolean formulae are exactly right
for this purpose.

Consider the following QBF that represents the existence of transition sequences of length2n

between two states.

∃A∃A′(reachn(A,A′) ∧ I ∧G) (3.1)

Here I andG are the formulae describing the initial and goal states respectively expressed in
terms of variables from setsA andA′. Here reachi(A,A′) means that a state represented in terms
of variables fromA′ can be reached with≤ 2i steps from a state represented in terms of variables
fromA. It is recursively defined as follows.

reach0(A,A′)
def≡ R1(A,A′)

reachi+1(A,A′)
def≡ ∃T∀c∃T1∃T2(reachi(T1, T2)

∧(c→(T1 = A ∧ T2 = T ))
∧(¬c→(T1 = T ∧ T2 = A′)))

The setsT andA consist of propositional variables, andA = T for A = {a1, . . . , an} and
T = {t1, . . . , tn}means(a1 ↔ t1)∧· · ·∧(an ↔ tn). The idea of the definition of reachi+1(A,A′)
is that the variablesT describe a state halfway betweenA andA′, and the two values for the
variablec correspond to two reachability tests, one betweenA andT , and the other betweenT
andA′.

This is how the PSPACE-hardness of evaluation of QBF can be proved, withR1(A,A′) rep-
resenting the transitions of a deterministic polynomial-space Turing machine, see for example
[Balcázaret al., 1988].

If we eliminate all universal variables from Formula 3.1, we see that it is essentially a concise
O(log t) space (t = 2n) representation of

I0 ∧R1(A0, A1) ∧R1(A1, A2) ∧ · · · ∧ R1(At−1, At) ∧Gt (3.2)

with only one occurrence of the transition relation.
The representation of deterministic planning as quantified Boolean formulae is more concise

that the representation in the propositional logic, but it currently seems that the algorithms for
testing the satisfiability solve the planning problem much more efficiently than algorithms for
evaluating the values of QBF.



3.6. INVARIANTS 47

3.6 Invariants

Planning with both regression and propositional satisfiability suffer from the problem of states
(valuations of state variables) that are not reachable from the initial state. Even when the number
of state variables is high, the number of possible states of the world might be rather small, because
not all valuations correspond to a possible world state. Hence for example regression may produce
formulae that represent states that are not reachable from the initial state, and due to this backward
search may spend a lot of time doing unfruitful work1. Clearly, search would be more efficient
if backward search could be restricted to state that are indeed reachable from the initial state.
Planning as propositional satisfiability suffers from the same problem.

It would be useful to eliminate those states from consideration that do not represent possible
world states. However, determining whether a given state is reachable from the initial state is
PSPACE-complete and equivalent to the plan existence problem of deterministic planning, and
consequently computing exact information on the reachability of states could not be used for
speeding up the basic forward and backward search algorithms: solving the subproblem would be
just as complex as solving the problem itself, and would just lead to slow planning.

However, there is the possibility of using inexact, less expensive information about the reach-
ability of states. In this section we present a polynomial time algorithm for computing inexact
information about the reachability of states that has turned out very useful in speeding up planning
algorithms based on backward search as well as other algorithms that use incomplete descriptions
of sets of states, like plan search by using propositional logic in Section 3.5.

An invariant is a formula that holds in the initial state of a planning problem and that holds in
every state that is reached by an action from a state in which it holds. A formulaφ is the strongest
invariant if for any invariantψ, φ |= ψ. The strongest invariant exactly characterizes the set of all
states that are reachable from the initial state: For all statess, s |= φ if and only if s is reachable
from the initial state. The strongest invariant is unique up to a logical equivalence.

Example 3.34 Consider a set of blocks that are on the table, and that can be stacked on top of
each other so that every block can be on at most one block and on every block there can be at most
one block.

We can formalize the actions that are possible in this setting as the following schematic opera-
tors.

〈ontable(x) ∧ clear(x) ∧ clear(y),on(x, y) ∧ ¬clear(y) ∧ ¬ontable(x)〉
〈clear(x) ∧ on(x, y),ontable(x) ∧ clear(y) ∧ ¬on(x, y)〉
〈clear(x) ∧ on(x, y) ∧ clear(z),on(x, z) ∧ clear(y) ∧ ¬clear(z) ∧ ¬on(x, y)〉

When instantiated with three objectsX = {A,B,C} we get the following operators.

1A similar problem arises with forward search, because with progression one may reach states from which the goals
cannot be reached.



48 CHAPTER 3. DETERMINISTIC PLANNING

〈ontable(A) ∧ clear(A) ∧ clear(B),on(A,B) ∧ ¬clear(B) ∧ ¬ontable(A)〉
〈ontable(A) ∧ clear(A) ∧ clear(C),on(A,C) ∧ ¬clear(C) ∧ ¬ontable(A)〉
〈ontable(B) ∧ clear(B) ∧ clear(A),on(B,A) ∧ ¬clear(A) ∧ ¬ontable(B)〉
〈ontable(B) ∧ clear(B) ∧ clear(C),on(B,C) ∧ ¬clear(C) ∧ ¬ontable(B)〉
〈ontable(C) ∧ clear(C) ∧ clear(A),on(C,A) ∧ ¬clear(A) ∧ ¬ontable(C)〉
〈ontable(C) ∧ clear(C) ∧ clear(B),on(C,B) ∧ ¬clear(B) ∧ ¬ontable(C)〉

〈clear(A) ∧ on(A,B),ontable(A) ∧ clear(B) ∧ ¬on(A,B)〉
〈clear(A) ∧ on(A,C),ontable(A) ∧ clear(C) ∧ ¬on(A,C)〉
〈clear(B) ∧ on(B,A),ontable(B) ∧ clear(A) ∧ ¬on(B,A)〉
〈clear(B) ∧ on(B,C),ontable(B) ∧ clear(C) ∧ ¬on(B,C)〉
〈clear(C) ∧ on(C,A),ontable(C) ∧ clear(A) ∧ ¬on(C,A)〉
〈clear(C) ∧ on(C,B),ontable(C) ∧ clear(B) ∧ ¬on(C,B)〉

〈clear(A) ∧ on(A,B) ∧ clear(C),on(A,C) ∧ clear(B) ∧ ¬clear(C) ∧ ¬on(A,B)〉
〈clear(A) ∧ on(A,C) ∧ clear(B),on(A,B) ∧ clear(C) ∧ ¬clear(B) ∧ ¬on(A,C)〉
〈clear(B) ∧ on(B,A) ∧ clear(C),on(B,C) ∧ clear(A) ∧ ¬clear(C) ∧ ¬on(B,A)〉
〈clear(B) ∧ on(B,C) ∧ clear(A),on(B,A) ∧ clear(C) ∧ ¬clear(A) ∧ ¬on(B,C)〉
〈clear(C) ∧ on(C,A) ∧ clear(B),on(C,B) ∧ clear(A) ∧ ¬clear(B) ∧ ¬on(C,A)〉
〈clear(C) ∧ on(C,B) ∧ clear(A),on(C,A) ∧ clear(B) ∧ ¬clear(A) ∧ ¬on(C,B)〉

Here a block being clear means that no block is on top of it.
Let all the blocks be initially on the table. Hence the initial state satisfies the formula

clear(A) ∧ clear(B) ∧ clear(C) ∧ ontable(A) ∧ ontable(B) ∧ ontable(C)∧
¬on(A,B) ∧ ¬on(A,C) ∧ ¬on(B,A) ∧ ¬on(B,C) ∧ ¬on(C,A) ∧ ¬on(C,B)

that determines the truth-values of all state variables uniquely.
All the invariants in this problem instance are the following.

clear(A) ↔ (¬on(B,A) ∧ ¬on(C,A))
clear(B) ↔ (¬on(A,B) ∧ ¬on(C,B))
clear(C) ↔ (¬on(A,C) ∧ ¬on(B,C))
ontable(A) ↔ (¬on(A,B) ∧ ¬on(A,C))
ontable(B) ↔ (¬on(B,A) ∧ ¬on(B,C))
ontable(C) ↔ (¬on(C,A) ∧ ¬on(C,B))
¬on(A,B) ∨ ¬on(A,C)
¬on(B,A) ∨ ¬on(B,C)
¬on(C,A) ∨ ¬on(C,B)
¬on(B,A) ∨ ¬on(C,A)
¬on(A,B) ∨ ¬on(C,B)
¬on(A,C) ∨ ¬on(B,C)
¬(on(A,B) ∧ on(B,C) ∧ on(C,A))
¬(on(A,C) ∧ on(C,B) ∧ on(B,A))

The conjunction of these formulae describes exactly the set of states that are reachable from the
initial state by the operators, and intuitively describes all the possible configurations the three
blocks can be in.



3.6. INVARIANTS 49

We can schematically give the invariants for any setX of blocks as follows.

clear(x) ↔ ∀y ∈ X\{x}.¬on(y, x)
ontable(x) ↔ ∀y ∈ X\{x}.¬on(x, y)
¬on(x, y) ∨ ¬on(x, z) wheny 6= z
¬on(y, x) ∨ ¬on(z, x) wheny 6= z
¬(on(x1, x2) ∧ on(x2, x3) ∧ · · · ∧ on(xn−1, x) ∧ on(xn, x1)) for all n ≥ 1 and{x1, . . . , xn} ⊆ X

The last schematic formula says that theon relation is acyclic. �

Because testing whether a state satisfies all invariants, that is whether it is reachable from the
initial state, is PSPACE-hard, the requirement that invariant computation is polynomial time leads
to computing only invariants that are weaker than the strongest invariant. This kind of set of
invariants only gives an upper bound (with respect to set-inclusion) on the set of reachable states.

The algorithm we present computes invariants that are disjunctions of at mostn literals, for a
fixedn. For representing all invariants, no finite upper bound onn may be imposed, but then also
invariant computation could not be performed in polynomial time. Although the computation is
polynomial time for any fixedn, the runtimes grow quickly asn is increased, and it is most useful
for n = 2, that is, for invariants that are disjunctions of two literals.

The algorithm proceeds by first computing alln-literal clauses that are true in the initial state.
Then, the algorithm removes all clauses that are not true after 1 operator application, after 2
operator applications, and so on, until the set of clauses does not change. At this point all the
clauses are invariants and hold in all states that are reachable from the initial state.

3.6.1 Algorithms for computing invariants

Our algorithm for computing invariants has a similar flavor to distance estimation in Section 3.4:
starting from a description of what is possible in the initial state, we inductively determine what
is possible afteri operator applications. In contrast to the distance estimation method, the states
that are reachable afteri operator applications are not characterized by sets of literals but by sets
of clauses. This complicates the computation somewhat.

LetCi be a set of clauses characterizing those states that are reachable byi operator applications.
Similarly to distance computation, we consider for each operator and for each clause inCi whether
applying the operator may make the clause false. If it can, the clause could be false afteri operator
applications and therefore will not be in the clause setCi+1.

For this basic step of invariant computation, whether an operator application may falsify a
clause, we present two algorithms, first a simple one for a restricted class of operators, and then a
more general for arbitrary operators.

Figure 3.3 gives an algorithm that tests whether applying an operatoro ∈ O in some states
may make a formulal1 ∨ · · · ∨ ln false assuming thats |= ∆ ∪ {l1 ∨ · · · ∨ ln}.

The algorithm performs a case analysis for every literal in the clause, testing in each case that
the clause remains true: if a literal becomes false, either some other literal in the clause becomes
true simultaneously or some other literal in the clause was true already and does not become false.

The algorithm is defined only for operators that have a precondition that is a conjunction of liter-
als and an effect that is a conjunction of atomic effects (known as STRIPS operators for historical
reasons). We give a similar algorithm for arbitrary operators later in Figure 3.4.



50 CHAPTER 3. DETERMINISTIC PLANNING

proceduresimplepreserved(φ,∆,o);
Now φ = l1 ∨ · · · ∨ ln ando = 〈l′1 ∧ · · · ∧ l′n′ , l′′1 ∧ · · · ∧ l′′n′′〉 for someli, l′j andl′′k;

if {l′′′1 , · · · , l′′′m} ⊆ {l′1, . . . , l′n′} for somel′′′1 ∨ · · · ∨ l′′′m ∈ ∆ then return true;
(* Operator is not applicable. *)

for each l ∈ {l1, . . . , ln} do
if l 6∈ {l′′1 , . . . , l′′n′′} then gotoOK; (* Literal l cannot become false. *)
for each l′ ∈ {l1, . . . , ln}\{l} do

if l′ ∈ {l′′1 , . . . , l′′n′′} then gotoOK; (* Literal l′ becomes true. *)
if l′ ∈ {l′1, . . . , l′n′} or l′′′1 ∨ · · · ∨ l′′′m ∨ l′ ∈ ∆ for some{l′′′1 , . . . , l

′′′
m} ⊆ {l′1, . . . , l′n′},

and l′ 6∈ {l′′1 , . . . , l′′n′′}
then gotoOK; (* Literal l′ was true and cannot become false. *)

end do
return false; (* Truth of the clause could not be guaranteed. *)
OK:

end do
return true;

Figure 3.3: Algorithm that tests if applyingo may falsifyl1 ∨ · · · ∨ ln in a state satisfying∆

Lemma 3.35 Let∆ be a set of clauses,φ = l1 ∨ · · · ∨ ln a clause, ando an operator of the form
〈l′1 ∧ · · · ∧ l′n′ , l′′1 ∧ · · · ∧ l′′n′′〉 wherel′j andl′′k are literals. If simplepreserved(φ,∆,o) returnstrue,
then appo(s) |= φ for any states such thats |= ∆ ∪ {φ} ando is applicable ins. (It may under
these conditions also returnfalse).

Proof: Assumes is a state such thats |= l′1 ∧ · · · ∧ l′n′ ands |= ∆ ands |= φ andappo(s) 6|= φ.
We show that the procedure returnsfalse.

Becauses |= φ andappo(s) 6|= φ, there are some literals{lf1 , . . . , l
f
m} ⊆ {l1, . . . ln} such that

s |= lf1 ∧ · · · ∧ l
f
m and{lf1 , . . . , l

f
m} ⊆ {l′′1 , . . . l′′n′′}, that is, applyingo makes them false, and the

rest of the literals inφ were false and do not become true.
Choose anyl ∈ {lf1 , . . . , l

f
m}. We show that when the outermostfor eachloop considersl the

procedure will returnfalse.
By assumptionl ∈ {l′′1 , . . . l′′n′′}, and the condition of the firstif inside the loop is not satisfied

and the execution proceeds by iteration of the innerfor eachloop.
Let l′ be any of the literals inφ exceptl.
Becauseφ is false inappo(s), l′ 6∈ {l′′1 , . . . l′′n′′}, and the condition of the firstif statement is not

satisfied.
If l′ ∈ {lf1 , . . . , l

f
m} then by assumptionl′ ∈ {l′′1 , . . . , l′′n′′} and the condition of the secondif

statement is not satisfied.
If l′ 6∈ {lf1 , . . . , l

f
m} then by assumptions 6|= l′. Because the operator is applicables |=

l′1 ∧ · · · ∧ l′n′ , and hencel′ 6∈ {l′1 ∧ · · · ∧ l′n′}. Becauses satisfies the preconditionl′1 ∧ · · · ∧ l′n′
ands |= ∆, there is also nol′′ ∨ l′ ∈ ∆ for any l′′ ∈ {l′1, . . . , l′n′}. Hence also in this case the
condition of theif statement is not satisfied.

Hence on none of the iterations of the innerfor eachloop is agoto OKexecuted, and as the loop
exits, the procedure returnsfalse. �

Figure 3.4 gives a similar algorithm for arbitrary operators. The structure of the algorithm is



3.6. INVARIANTS 51

procedurepreserved(φ,∆,o);
Now φ = l1 ∨ · · · ∨ ln for somel1, . . . , ln ando = 〈c, e〉 for somec ande;
if ∆ |= ¬c then return true; (* Operator is not applicable. *)
for each l ∈ {l1, . . . , ln} do

if ∆ ∧ {EPCl(e)} |= ⊥ then gotoOK; (* Literal l cannot become false. *)
for each l′ ∈ {l1, . . . , ln}\{l} do

if ∆ ∪ {EPCl(e), c} |= EPCl′(e) then gotoOK; (* Literal l′ becomes true. *)
if ∆ ∪ {EPCl(e), c} |= l′ and ∆ ∪ {EPCl(e), c} |= ¬EPCl′(e) then gotoOK;

(* Literal l′ was true and cannot become false. *)
end do
return false; (* Truth of the clause could not be guaranteed. *)
OK:

end do
return true;

Figure 3.4: Algorithm that tests if applyingo may falsifyl1 ∨ · · · ∨ ln in a state satisfying∆

exactly the same, but the tests whether a certain literal becomes true or false or whether it was true
before the operator was applied, are more complicated.

The algorithm is allowed to fail in one direction: it may sometimes returnfalsewhenl1∨· · ·∨ln
actually is true after applying the operator. However, this is a necessary consequence of our
requirement that our invariant computation takes only polynomial time.

Lemma 3.36 Let ∆ be a set of clauses,φ = l1 ∨ · · · ∨ ln a clause, ando an operator. If
preserved(φ,∆,o) returns true, then appo(s) |= φ for any states such thats |= ∆ ∪ {φ} and
o is applicable ins. (It may under these conditions also returnfalse).

Proof: �

Figure 3.5 gives the algorithm for computing invariants consisting of at mostn literals.

Theorem 3.37 LetA be a set of state variables,I a state,O a set of operators, andn ≥ 1 an
integer.

Then the procedure call invariants(A, I,O, n) returns a setC ′ of clauses so that for any se-
quenceo1; . . . , om of operators fromO appo1;...,om(I) |= C ′.

Proof: LetC0 be the value first applied to the variableC in the procedureinvariants, andC1, C2, . . .
be the values of the variable in the end of each iteration of the outermostrepeatloop.

Induction hypothesis: for everyφ ∈ Ci, appo1;...,oi(I) |= φ.
Base casei = 0: appε(I) for the empty sequence is by definitionI itself, and by construction

C0 consists of only formulae that are true in the initial state.
Inductive casei ≥ 1:

�

The algorithm in Figure 3.4 does not run in polynomial time in the size of the problem instance
because the logical consequence tests may take exponential time. To make the procedure run
in polynomial time, we can again use an approximate logical consequence test, similar to the



52 CHAPTER 3. DETERMINISTIC PLANNING

procedure invariants(A, I,O, n);
C := {a ∈ A|I |= a} ∪ {¬a|a ∈ A, I 6|= a};
repeat
C ′ := C;
for each l1 ∨ · · · ∨ lm ∈ C do (* Test every clause *)

for eacho ∈ O do (* with respect to every operator. *)
N := {l1 ∨ · · · ∨ lm};
repeat
N ′ :=N ;
for each l′1 ∨ · · · ∨ l′m′ ∈ N s.t. not preserved(l′1 ∨ · · · ∨ l′m′ ,C ′,o) do
N :=N\{l′1 ∨ · · · ∨ l′m′};
if m′ < n then (* Clause length within pre-defined limit. *)

begin
N :=N ∪ {l′1 ∨ · · · ∨ l′m′ ∨ a | a ∈ A};
N :=N ∪ {l′1 ∨ · · · ∨ l′m′ ∨ ¬a | a ∈ A};

end
end do

until N = N ′; (* N was not weakened further. *)
C := (C\{l1 ∨ · · · ∨ lm}) ∪N ;

end do
end do

until C = C ′;
return C;

Figure 3.5: Algorithm for computing a set of invariant clauses



3.6. INVARIANTS 53

procedure canbetruein(φ,D) used in Definition 3.16. The logical consequence test is allowed
to fail in one direction without invalidating the invariant algorithm in Figure 3.5:preservedis
allowed to returnfalsealso when the operator would not falsifyφ, and hence logical consequence
tests may be answerednoeven when the correct answer isyes.

The logical consequence tests have the form∆ ∪ S |= φ. The logical consequence∆ ∪ S |= φ
holds if and only if∆ ∪ {

∧
S ∧ ¬φ} is not satisfiable. A correct approximation is allowed to

answersatisfiableeven when the formula is unsatisfiable.
We present a polynomial time approximation of satisfiability tests for sets of formulae∆ ∪ S

in the case in which∆ consists of clauses of length at most 2. It is based on the definition of sets
of literals litconseqs(φ,∆) given below. The idea of litconseqs(φ,∆) is that this set consists of (a
subset of the) literals that must be true whenφ and∆ are true, that is, that are logical consequences
of φ and∆. The one-sided error litconseqs(φ,∆) is allowed to make and indeed does make is how
disjunction∨ is handled. if∆∪ {φ} is satisfiable, then litconseqs(φ,∆) does not contain⊥ nora
and¬a for anya ∈ A.

litconseqs(⊥,∆) = {⊥}
litconseqs(>,∆) = (∆ ∩A) ∪ (∆ ∩ {¬a|a ∈ A})
litconseqs(a,∆) = {a} ∪ {l|¬a ∨ l ∈ ∆} ∪ (∆ ∩A) ∪ (∆ ∩ {¬a|a ∈ A})

litconseqs(¬a,∆) = {¬a} ∪ {l|a ∨ l ∈ ∆} ∪ (∆ ∩A) ∪ (∆ ∩ {¬a|a ∈ A})
litconseqs(¬¬φ,∆) = litconseqs(φ,∆)

litconseqs(φ ∨ ψ,∆) = litconseqs(φ,∆) ∩ litconseqs(ψ,∆)
litconseqs(φ ∧ ψ,∆) = litconseqs(φ,∆) ∪ litconseqs(ψ,∆)

litconseqs(¬(φ ∨ ψ),∆) = litconseqs(¬φ,∆) ∪ litconseqs(¬ψ,∆)
litconseqs(¬(φ ∧ ψ),∆) = litconseqs(¬φ,∆) ∩ litconseqs(¬ψ,∆)

The approximation fails because the satisfiability test is too simple. Consider litconseqs((A ∨
B) ∧ ¬(A ∨ B), ∅) which is the empty set of literals because litconseqs(A ∨ B, ∅) = ∅ and
litconseqs(¬(A ∨B), ∅) = ∅. This formula is unsatisfiable because it has the formφ ∧ ¬φ.

There are some simple ways of strengthening this approximation. For example, conjunction
could be strengthened to

litconseqs(φ∧ψ,∆) = litconseqs(φ,∆∪ litconseqs(ψ,∆))∪ litconseqs(ψ,∆∪ litconseqs(φ,∆))

and further by computing more consequences for one of the conjuncts with the literals obtained
from the other until no more literals are obtained.

The function litconseqs(φ,∆) can also be used as a part of slightly more powerful (???) logical
consequence tests as follows.

Define

entailed(⊥, D) = false
entailed(>, D) = true
entailed(a,D) = true iff a ∈ D (for state variablesa ∈ A)

entailed(¬a,D) = true iff ¬a ∈ D (for state variablesa ∈ A)
entailed(¬¬φ,D) = entailed(φ,D)

entailed(φ ∨ ψ,D) = entailed(φ,D) or entailed(ψ,D)
entailed(φ ∧ ψ,D) = entailed(φ,D) and entailed(ψ,D)

entailed(¬(φ ∨ ψ), D) = entailed(¬φ,D) and entailed(¬ψ,D)
entailed(¬(φ ∧ ψ), D) = entailed(¬φ,D) or entailed(¬ψ,D)



54 CHAPTER 3. DETERMINISTIC PLANNING

Notice that the definition of entailed(φ,D) is similar to canbetruein(φ,D) in Definition 3.16 ex-
cept that literalsa and¬a are handled differently: entailed(φ,D) is about logical consequences
of D, that is formulae that are guaranteed to be true whenD is true, while canbetruein(φ,D) is
aboutφ being consistent withD.

Now if entailed(φ, litconseqs(ψ,∆)) then∆ ∪ {ψ} |= φ.

3.6.2 Applications in planning by regression and satisfiability

The first application is in planning in the propositional logic. It has been noticed that adding the
2-literal invariants to all time points reduces runtimes of algorithms that test satisfiability. Notice
that invariants do not affect the set of models of a formula representing planning: any satisfying
valuation of the original formula also satisfies the invariants, because the values of propositions
describing the values of state variables at any time point corresponds to a state that is reachable
from the initial state, and hence this valuation also satisfies any invariant.

The second application is in planning by regression. Consider the blocks world with the goal
A-ON-B ∧ B-ON-C. Now we can regress with the operator that moves B onto C from the table,
obtaining the new goal A-ON-B∧B-CLEAR∧C-CLEAR∧B-ON-TABLE. Clearly, this does not
correspond to an intended blocks world state because A-ON-B is incompatible with B-CLEAR,
and indeed,¬A-ON-B∨¬B-CLEAR is an invariant for the blocks world. Any regression step that
leads to a goal that is incompatible with the invariants can be ignored, because that goal does not
represent any of the states that are reachable from the initial state, and hence no plan can reach the
goal in question.

Another application of invariants, and the intermediate setsCi produced by our invariant algo-
rithm, is improving the distance estimation in Section 3.4. Usingvi for testing whether an operator
precondition, for examplea ∧ b, has distancei from the initial state, the distances ofa andb are
used separately. But even when it is possible to reach botha andb with i operator applications,
it might still not be possible to reach them both simultaneously withi operator applications. For
example, fori = 1 and an initial state in which botha andb are false, there might be no single op-
erator that makes them both true, but two operators, each of which makes only one of them true. If
¬a∨¬b ∈ Ci, we know that afteri operator applications one ofa or b must still be false, and then
we know that the operator in question is not applicable at time pointi. Therefore the invariants
and the setsCi produced during the invariant computation can improve the distance estimates.

3.7 Planning with symbolic representations of sets of states

A complementary approach to planning for planning problems represented as formulae in the
propositional logic uses the formulae as a data structure. As discussed in Section 2.3.3 formulae
directly provide a representation of sets of states, and in this section we show how operations on
transition relations have a counterpart as operations on formulae that represent transition relations.

This yields a further planning algorithm for deterministic planning, typically implemented by
means of BDDs. The algorithm in Section 3.7.3 will later be generalized to different types of
nondeterministic planning.

Table 3.1 outlines a number of connections between operations on vectors and matrices, on
propositional formulae, and on sets and relations.

Computing the product of two matrices that are represented as propositional formulae is based
on theexistential abstractionoperation∃p.φ = φ[>/p] ∨ φ[⊥/p] that takes a formulaφ and a



3.7. PLANNING WITH SYMBOLIC REPRESENTATIONS OF SETS OF STATES 55

matrices formulas sets of states
vectorV1×n formula overA set of states
matrixMn×n formula overA ∪A′ transition relation
Mn×n ×Nn×n ∃A′.(φ(A,A′) ∧ ψ(A′, A′′)) sequential composition
S1×n ×Mn×n ∃A.(φ(A) ∧ ψ(A,A′)) successor states ofS
S1×n + S′1×n φ ∨ ψ set union

φ ∧ ψ set intersection

Table 3.1: Correspondence between matrix operations, Boolean operations as well as set-theoretic
and relational operations

propositionp and produces a formulaφ′ without occurrences ofp.
Let φ be a formula overA ∪ A′ andψ be a formula overA′ ∪ A′′. Now matrix product of

matrices corresponding toφ andψ′ is
∃A′.φ ∧ ψ.

Example 3.38 Let φ = A ↔ ¬A′ andψ = A′ ↔ A′′ represent two actions, reversing the
truth-value ofA and doing nothing. The sequential composition of these actions is

∃A′.φ ∧ ψ = ((A↔ ¬>) ∧ (> ↔ A′′)) ∨ ((A↔ ¬⊥) ∧ (⊥ ↔ A′′))
≡ ((A↔ ⊥) ∧ (> ↔ A′′)) ∨ ((A↔ >) ∧ (⊥ ↔ A′′))
≡ A↔ ¬A′′

�

Consider the representation of planning as satisfiability in the propositional discussed in Section
3.5.3.

ι0 ∧R1(A0, A1) ∧R1(A1, A2) ∧ · · · ∧ R1(An−1, An)︸ ︷︷ ︸∧Gn

The conjunction of formulae theR1(Ai, Ai+1) representing the transition relation corresponds
to the computation of then-fold product of the corresponding adjacency matrices. Further, when
the first factor in the product is the vector describing the initial state, we have the computation of
the set of states reachable inn steps.

ι0 × (R1(A0, A1)︸ ︷︷ ︸×R1(A1, A2)︸ ︷︷ ︸× · · · × R1(An−1, An))

︸ ︷︷ ︸
Taking the intersection of this set with the set of goal states tells us whether there is a plan of
lengthn.

In the following we discuss how this idea can be turned into a planning algorithm, in which
then-fold product of the initial state vector with the adjacency matrices is computed step by step,
yielding vectors describing the sets of states reachable ini ∈ {0, . . . , n} operator applications.

3.7.1 Operations on transition relations expressed as formulae

The most basic operation is the computation ofthe imageof a set of states with respect to a
transition relation.

imgR(S) = {s′|s ∈ S, 〈s, s′〉 ∈ R}



56 CHAPTER 3. DETERMINISTIC PLANNING

This is the set of states that can be reached fromS by transition relationR. When sets of states
and transition relation are represented as propositional formulae, the image computation can be
performed by the existential abstraction and renaming operations as follows.

imgR(A,A′)(φ) = (∃A.(φ ∧R(A,A′)))[p1/p
′
1, . . . , pn/p

′
n]

Similarly we can compute the product of two matrices that are represented as formulaeR(A,A′)
andQ(A′, A′′) by using existential abstraction.

R(A,A′) · Q(A′, A′′) = ∃A′.(R(A,A′) ∧Q(A′, A′′))

The resulting formula is over state variablesA andA′′, from which a formula onA andA′ is
obtained by renamingA′′ toA′.

Plan search can also be performed starting from the goal states, like done with all the algorithms
in Chapter 4. In this case we must compute sets of states from which any of the states in a given
set can be reached by one step. This is represented as the computation ofthe preimageof a set of
states with respect to a transition relation.2

wpreimgR(S) = {s|s′ ∈ S, 〈s, s′〉 ∈ R}

This is the set of states from which a state inS is reached by the transition relationR. The
corresponding computation in terms of formulae is as follows. Hereφ is a formula overA, and
first it has to be renamed to a formula overA′.

wpreimgR(A,A′)(φ) = ∃A′.(φ[p′1/p1, . . . , p
′
n/pn] ∧R(A,A′)) (3.3)

Notice that when the relationR(A,A′) corresponding to an operatoro has been represented as
discussed in Section 3.5.2, the Formula 3.3 forwpreimgR(A,A′)(φ) is logically equivalent to the
regressionregro(φ) as given in Definition 3.6.

Example 3.39 Consider the formulaA∧B that is regressed with the operatoro = 〈C,A∧ (A B
B)〉. Now we have

regro(φ) = C ∧ (> ∧ (B ∨A)) ≡ C ∧ (B ∨A).

The transition relation ofo is represented by the formula

τ = C ∧A′ ∧ ((B ∨A) ↔ B′) ∧ (C ↔ C ′).

The preimage ofA ∨B with respect too is represented by

∃A′B′C ′.((A′ ∧B′) ∧ τ) ≡ ∃A′B′C ′.((A′ ∧B′) ∧ C ∧A′ ∧ ((B ∨A) ↔ B′) ∧ (C ↔ C ′))
≡ ∃A′B′C ′.(A′ ∧B′ ∧ C ∧ (B ∨A) ∧ C ′)
≡ ∃B′C ′.(B′ ∧ C ∧ (B ∨A) ∧ C ′)
≡ ∃C ′.(C ∧ (B ∨A) ∧ C ′)
≡ C ∧ (B ∨A)

�

2This is often called theweak preimageto contrast it with the strong preimage operation defined in Section 4.3.



3.7. PLANNING WITH SYMBOLIC REPRESENTATIONS OF SETS OF STATES 57

procedureplanfwd(I,O,G)
i := 0;
D0 := {I};
while G ∩Di = ∅ and (i = 0 or Di−1 6= Di) do
i := i+ 1;
Di :=Di−1 ∪

⋃
o∈O imgo(Di−1); (* Possible successors of states inDi−1 *)

end
if G ∩Di = ∅ then terminate; (* There is no plan. *)
S :=G ∩Di;
for j := i-1 to 0 do (* Output plan, last operator first. *)

chooseo ∈ O such thatwpreimgo(S) ∩Dj 6= ∅;
outputo;
S := wpreimgo(S) ∩Dj ;

end

Figure 3.6: Algorithm for deterministic planning (forward, in terms of sets)

As we will see later, computation of preimages is applicable to all kinds of operators, not only
deterministic ones as required by our definition of regression, whereas defining regression for
arbitrary operators is more difficult (we will give a definition of regression only for a subclass of
nondeterministic operators.)

Hence our definition of regression can be viewed as a specialized method for computing preim-
age of formulae with respect to a transition relation corresponding to a deterministic operator. The
main advantage of regression is that no existential abstraction is needed.

Notice that defining progression for arbitrary formulae (sets of states) seems to require existen-
tial abstraction. A simple syntactic definition of progression similar to that of regression does not
seem to be possible because the value of state variable in a given state cannot be represented in
terms of the values of the state variables in the successor state. This is because of the asymmetry
of deterministic actions: the current state and an operator determine the successor state uniquely,
but the successor state and the operator do not determine the current state uniquely. In other words,
the changes that take place are a function of the current state, but not a function of the successor
state.

3.7.2 A forward planning algorithm

The algorithm in Figure 3.6 has two phases: the computation of distance from the initial state to
every reachable state, and the extraction of a plan. The setD0 consists of the initial state, the set
D1 of those states that can be reached from the initial state by one operator, and so on.

We can express the same algorithm in terms of formulae in the propositional logic, see Figure
3.7. The plan extraction proceeds by identifying the operators in the backwards direction starting
from the last one.

In the figure we give two variants of the algorithm, first expressed in terms of set-theoretic
operations on sets of states and transition relations, and then expressed in terms of the propositional
formulae.

Notice that in the first version of the algorithmDi is computed as the union ofDi−1 (reachability
by i − 1 steps or less) and the images ofDi−1 with respect to all of the operators, and henceDi



58 CHAPTER 3. DETERMINISTIC PLANNING

procedureplanfwd(I,R1(A,A′),G)
i := 0;
D0 := I;
while Di |= ¬G and (i = 0 or 6|= Di−1 ↔ Di) do
i := i+ 1;
Di := (∃A.(Di−1 ∧R1(A,A′)))[p′1/p1, . . . , p

′
n/pn]; (* Possible predecessors of states inDi−1 *)

end
if Di |= ¬G then terminate; (* There is no plan. *)
S :=G ∧Di;
for j := i-1 to 0 do (* Output plan, last operator first. *)

chooseo ∈ O such thatDj 6|= ¬wpreimgτo(S);
outputo;
S := wpreimgτo(S) ∧Dj ;

end

Figure 3.7: Algorithm for deterministic planning (forward, in terms of formulae)

represents reachability byi steps or less. In the second version the transition relationR1(A,A′)
encodes reachability by 0 or 1 steps, so we directly obtain reachability byi steps or less, without
having to take union (∨) with Di−1.

Theorem 3.40 Let a states be inDi\Di−1. Then there is a plan that reachess from the initial
state byi operator applications.

Proof: �

3.7.3 A backward planning algorithm

The second algorithm computes the distances to the goal states. This computation proceeds by
preimage computation starting from the goal states, soD0 consists of the goal states,D1 the states
with distance 1 to the goal states, and so on. The algorithm is given in Figure 3.8.

We can express the same algorithm in terms of formulae in the propositional logic, see Figure
3.9.

Theorem 3.41 Let a states be inDi\Di−1. Then there is a plan that reaches froms a goal state
by i operator applications.

Proof: �

3.8 Computational complexity

In this section we discuss the computational complexity of the main decision problems related to
deterministic planning.

The plan existence problem of deterministic planning is PSPACE-complete. The result was
proved by Bylander[1994]. He proved the hardness part by giving a simulation of deterministic



3.8. COMPUTATIONAL COMPLEXITY 59

procedureplanbwd(I,O,G)
D0 :=G;
i := 0;
while I 6∈ Di and (i = 0 or Di−1 6= Di) do
i := i+ 1;
Di :=Di−1 ∪

⋃
o∈O wpreimgo(Di−1);

end
if I 6∈ Di then terminate; (* There is no plan. *)
s := I;
for j := i− 1 to 0 do (* Output plan, first operator first. *)

chooseo ∈ O such thatappo(s) ∈ Dj ;
outputo;
s := appo(s);

end

Figure 3.8: Algorithm for deterministic planning (backward, in terms of states)

procedureplanbwd(I,R1(A,A′),G)
D0 :=G;
i := 0;
while I 6|= Di and (i = 0 or 6|= Di−1 ↔ Di) do
i := i+ 1;
Di := ∃A′.(R1(A,A′) ∧ (Di−1[p′1/p1, . . . , p

′
n/pn]));

end

Figure 3.9: Algorithm for deterministic planning (backward, in terms of formulae)



60 CHAPTER 3. DETERMINISTIC PLANNING

polynomial-space Turing machines, and the membership part by giving an algorithm that solves
the problem in polynomial space. We later generalize his Turing machine simulation to alter-
nating Turing machines to obtain an EXP-hardness proof for nondeterministic planning with full
observability in Theorem 4.42.

Theorem 3.42 The problem of testing the existence of a plan is PSPACE-hard.

Proof: Let 〈Σ, Q, δ, q0, g〉 be any deterministic Turing machine with a polynomial space bound
p(x). Letσ be an input string of lengthn.

We construct a problem instance in deterministic planning with for simulating the Turing ma-
chine. The problem instance has a size that is polynomial in the size of the description of the
Turing machine and the input string.

The setA of state variables in the problem instance consists of

1. q ∈ Q for denoting the internal states of the TM,

2. si for every symbols ∈ Σ ∪ {|,�} and tape celli ∈ {0, . . . , p(n)}, and

3. hi for the positions of the R/W headi ∈ {0, . . . , p(n) + 1}.

The initial state of the problem instance represents the initial configuration of the TM. The
initial stateI is as follows.

1. I(q0) = 1

2. I(q) = 0 for all q ∈ Q\{q0}.

3. I(si) = 1 if and only if ith input symbol iss ∈ Σ, for all i ∈ {1, . . . , n}.

4. I(si) = 0 for all s ∈ Σ andi ∈ {0, n+ 1, n+ 2, . . . , p(n)}.

5. I(�i) = 1 for all i ∈ {n+ 1, . . . , p(n)}.

6. I(�i) = 0 for all i ∈ {0, . . . , n}.

7. I(|0) = 1

8. I(|i) = 0 for all n ∈ {1, . . . , p(n)}

9. I(h1) = 1

10. I(hi) = 0 for all i ∈ {0, 2, 3, 4, . . . , p(n) + 1}

The goal is the following formula.

G =
∨
{q ∈ Q|g(q) = accept}

To define the operators, we first define effects corresponding to all possible transitions.
For all〈s, q〉 ∈ (Σ∪{|,�})×Q, i ∈ {0, . . . , p(n)} and〈s′, q′,m〉 ∈ (Σ∪{|})×Q×{L,N,R}

define the effectτs,q,i(s′, q′,m) asα ∧ κ ∧ θ where the effectsα, κ andθ are defined as follows.
The effectα describes what happens to the tape symbol under the R/W head. Ifs = s′ then

α = > as nothing on the tape changes. Otherwise,α = ¬si ∧ s′i to denote that the new symbol in
theith tape cell iss′ and nots.



3.8. COMPUTATIONAL COMPLEXITY 61

procedure reach(O,s,s′,m)
if m = 0 then (* Plans of length 0 and 1 *)

if s = s’or there iso ∈ O such thats′ = appo(s) then return true
else return false

else
begin (* Longer plans *)

for all statess′′ do (* Iteration over intermediate states *)
if reach(O,s,s′′,m− 1) and reach(O,s′′,s′,m− 1) then return true

end
return false;

end

Figure 3.10: Algorithm for testing plan existence in polynomial space

The effectκ describes the change to the internal state of the TM. Again, either the state changes
or does not, soκ = ¬q ∧ q′ if q 6= q′ and> otherwise. We defineκ = ¬q wheni = p(n) and
m = R so that when the space bound gets violated, no accepting state can be reached.

The effectθ describes the movement of the R/W head. Either there is movement to the left, no
movement, or movement to the right. Hence

θ =


¬hi ∧ hi−1 if m = L

> if m = N
¬hi ∧ hi+1 if m = R

By definition of TMs, movement at the left end of the tape is always to the right. Similarly, we
have state variable for R/W head positionp(n) + 1 and moving to that position is possible, but no
transitions from that position are possible, as the space bound has been violated.

Now, these effects that represent possible transitions are used in the operators that simulate the
Turing machine. Let〈s, q〉 ∈ (Σ ∪ {|,�})×Q, i ∈ {0, . . . , p(n)} andδ(s, q) = {〈s′, q′,m〉}. If
g(q) = ∃, then define the operator

os,q,i = 〈hi ∧ si ∧ q, τs,q,i(s′, q′,m)〉.

We claim that the problem instance has a plan if and only if the Turing machine accepts without
violating the space bound.

If the Turing machine violates the space bound, the state variablehp(n)+1 becomes true and an
accepting state cannot be reached because no further operator will be applicable.

So, because all deterministic Turing machines with a polynomial space bound can be in polyno-
mial time translated to a planning problem, all decision problems in PSPACE are polynomial time
many-one reducible to deterministic planning, and the plan existence problem is PSPACE-hard.�

Theorem 3.43 The problem of testing the existence of a plan is in PSPACE.

Proof: A recursive algorithm for testingm-step reachability between two states withlogm mem-
ory consumption is given in Figure 3.10.

We show that when the algorithm is called with the numbern = |A| of state variables as the
last argument, it consumes a polynomial amount of memory inn. The recursion depth isn. At the



62 CHAPTER 3. DETERMINISTIC PLANNING

recursive calls memory is needed for storing the intermediate statess′. The memory needed for
this is polynomial inn. Hence at any point of time the space consumption isO(m2).

A problem instance〈A, I,O,G〉with n = |A| state variables has a plan if and only if reach(O,I,s′,n)
returnstrue for somes′ such thats′ |= G. Iteration over all statess′ can be performed in polyno-
mial space and testings′ |= G can be performed in polynomial time in the size ofG. Hence the
whole memory consumption is polynomial. �

Part of the high complexity of planning is due to the fact that plans can be exponentially long.
If a polynomial upper bound for plan length exists, testing the existence of plans is still intractable
but much easier.

Theorem 3.44 The problem of testing the existence of plans having a length bounded by some
polynomial is NP-hard.

Proof: We reduce the satisfiability problem of the classical propositional logic to the plan existence
problem. The length of the plans, whenever they exist, is bounded by the number of propositional
variables and hence is polynomial.

Let φ be a formula over the propositional variables inA. LetN = 〈A, {(a, 0)|a ∈ A}, O, φ〉
whereO = {〈>, a〉|a ∈ A} We show that the problem instanceN has a plan if and only if the
formulaφ is satisfiable.

Assumeφ ∈ SAT , that is, there is a valuationv : A → {0, 1} such thatv |= φ. Now take the
operators{〈>, a〉|v |= a, a ∈ A} in any order: these operators form a plan that reach the statev
that satisfiesφ.

AssumeN has a plano1, . . . , om. The valuationv = {(a, 1)|(>, a) ∈ {o1, . . . , om}} ∪
{(a, 0)|a ∈ A, (>, a) 6∈ {o1, . . . , om}} of A is the terminal state of the plan and satisfiesφ. �

Theorem 3.45 The problem of testing the existence of plan having a length bounded by some
polynomial is in NP.

Proof: Let p(m) be a polynomial. We give a nondeterministic algorithm that runs in polynomial
time and determines whether a plan of lengthp(m) exists.

LetN = 〈A, I,O,G〉 be a problem instance.

1. Nondeterministically guess a sequence ofl ≤ p(m) operatorso1, . . . , ol from the setO. Be-
causel is bounded by the polynomialp(m), the time consumptionO(p(m)) is polynomial
in the size ofN .

2. Computes = appol
(appol−1

(· ·appo2(appo1(I)) · ·)). This takes polynomial time in the size
of the operators and the number of state variables.

3. Tests |= G. This takes polynomial time in the size of the operators and the number of state
variables.

This nondeterministic algorithm correctly determines whether a plan of length at mostp(m) exists
and it runs in nondeterministic polynomial time. Hence the problem is in NP. �

These theorems show the NP-completeness of the plan existence problem for polynomial-length
plans.



3.9. LITERATURE 63

3.9 Literature

The idea of progression and regression in planning is old[Rosenschein, 1981]. Our definition of
regression in Section 3.2.2 is related to the weakest precondition predicates for program synthesis
[de Bakker and de Roever, 1972; Dijkstra, 1976]. Planning researchers have earlier used regression
only for a very restricted type of operators without conditional effects.

There has recently been a lot of interest in using general-purpose search algorithms with pro-
gression and heuristics that estimate distances between states. Our distance estimation in Section
3.4 generalizes the additive heuristic by Bonet and Geffner[2001] by handling the truth-values
symmetrically and by being applicable to a more type of operators with arbitrary preconditions and
conditional effects. Other distance estimates with a flavor that is similar to Bonet and Geffner’s
exist[Haslum and Geffner, 2000; Hoffmann and Nebel, 2001].

Techniques for speeding up heuristic state-space planners include symmetry reduction[Starke,
1991; Emerson and Sistla, 1996] and partial-order reduction[Godefroid, 1991; Valmari, 1991;
Alur et al., 1997], both originally introduced outside planning in the context of reachability anal-
ysis and model-checking. Both of these techniques address the main problem in heuristic state-
space search, high branching factor (number of applicable operators) and high number of states.
Both techniques help in reducing the number of states to be traversed when searching for a plan.

The use of algorithms for the satisfiability problem of the classical propositional logic in plan-
ning was pioneered by Kautz and Selman, originally as a way of testing satisfiability algorithms,
and later shown to be more efficient than other planning algorithms at that time[Kautz and Sel-
man, 1992; 1996]. In addition to Kautz and Selman[1996], parallel plans were used by Blum and
Furst in their Graphplan planner[Blum and Furst, 1997]. Parallelism in this context serves the
same purpose as partial-order reduction[Godefroid, 1991; Valmari, 1991], namely to avoid con-
sidering all orderings of a number of independent actions and hence reduce the amount of search.
The notion of parallel plans considered in this lecture is not the only possible one[Rintanenet al.,
2004].

The algorithm for invariant computation was originally presented for simple operators with-
out conditional effects[Rintanen, 1998]. The computation parallels the construction of planning
graphs in the Graphplan algorithm[Blum and Furst, 1997], and it would seem to us that the no-
tion of planning graph emerged when Blum and Furst noticed that the intermediate stages of the
invariant computation are useful for backward search algorithms: if a depth-bound ofn is imposed
on the search tree, then formulae obtained bym regression steps (suffixes of lengthm of possible
plans) that do not satisfy clausesRn−m cannot lead to a plan, and the search tree can be pruned.

Even though a lot of contemporary planning research uses Graphplan’s planning graphs[Blum
and Furst, 1997] for various purposes, we have not discussed them in more detail for several
reasons. First, the graph character of planning graphs becomes inconvenient when preconditions
are arbitrary formulae, not just conjunctions of state variables, and effects may be conditional.
As a result, the basic construction steps of planning graphs become unintuitive. Second, even
when the operators have the simple form, the practically and theoretically important properties
of planning graphs are not graph-theoretic. We can equivalently and just as intuitively represent
the contents of planning graphs as sequences of literals and 2-literal clauses, as we have done for
instance in Section 3.6. So it seems that the graph representation does not provide advantages over
more conventional logic based and set based representations.

The algorithms presented in this section cannot in general be ordered in terms of efficiency.
The general-purpose search algorithms with distance heuristics are often very effective in solving



64 CHAPTER 3. DETERMINISTIC PLANNING

big problem instances with a suitable structure. Sometimes this entails better runtimes than in the
SAT/CSP approach because of the high overheads with handling big formulae or constraint nets
in the latter. Similarly, there are problems that are quickly solved by the SAT/CSP approach but
on which the distance estimation fails and the heuristic search algorithms are not able to find plans
quickly.

The main complexity result of the chapter, the PSPACE-completeness of the plan existence
problem, is due to Bylander[1994]. Essentially the same result for other kinds of succinct repre-
sentations of graphs had been established earlier by Lozano and Balcazar[1990].

Any computational problem just NP-hard – not to mention PSPACE-hard – is usually consid-
ered to be too difficult to be solved in any but the simplest cases. Because planning even in the
deterministic case is PSPACE-hard, there has been interest in finding useful special cases in which
it can be guaranteed that the worst-case complexity does not show up. Syntactic restrictions lead-
ing to polynomial time planning have been investigated by several researchers[Bylander, 1994;
Bäckstr̈om and Nebel, 1995], but the restrictions are so strict that very few or no interesting prob-
lems can be represented.

The computational complexity of planning with schematic operators has also been analyzed.
Schematic operators increase the conciseness of the representations of some problem instances
exponentially, and lift the worst-case complexity accordingly. For example, deterministic planning
with schematic operators is EXPSPACE-complete[Erol et al., 1995]. If function symbols are
allowed, encoding arbitrary Turing machines becomes possible, and the plan existence problem
consequently becomes undecidable[Erol et al., 1995].

3.10 Exercises

3.1 Show that regression for goalsG that are sets (conjunctions) of state variables and operators
with preconditionsp that are sets (conjunctions) of state variables and effects that consist of an
add lista (a set of state variables that become true) and a delete listd (a set of state variables that
become false) can equivalently be defined as(G\a) ∪ p whend ∩G = ∅.

3.2Show that the problem in Lemma 3.9 is in NP and therefore NP-complete.

3.3 Satisfiability testing in the propositional logic is tractable in some special cases, like for sets
of clauses with at most 2 literals in each, and for Horn clauses, that is sets of clauses with at most
one positive literal in each clause.

Can you identify special cases in which existence of ann-step plan can be determined in poly-
nomial time (inn and the size of the problem instance), because the corresponding formula trans-
formed to CNF is a set of 2-literal clauses or a set of Horn clauses?



Chapter 4

Conditional planning

Now we relax the two assumptions that characterize deterministic planning, the determinism of
the operators and the restriction to one initial state. Instead of an initial state, we will have a
formula describing a set of initial states, and our definition of operators will be extended to cover
nondeterministic actions.

These extensions to the planning problem mean that the notion of plans as sequences of oper-
ators is not sufficient, because the states that will be visited are not uniquely determined by the
actions taken so far: different initial states may require different actions, and nondeterministic
actions lead to several alternative successor states.

Plans will be mappings from the observations made so far to the next actions to be taken. There
are several possibilities in representing such mapping. Our definition of plans has the form of
programs consisting of operators, sequences of operators, and conditional that choose subplans
based on observations.

What observations can be made has a strong effect on how planning can be done. There are
two special cases we will discuss separately from the general conditional planning problem, those
with no observations possible and with everything observable.

When there are no observations, the definition of plans reduces to sequences of actions like in
deterministic planning, but executing the plans does not always generate the same sequence of
states because of nondeterminism and multiple initial states.

For the fully observable case planning algorithms are much simpler than when observability is
only partial. In this case plans can alternatively be defined as mappings from states to actions,
and there is no need for the plans to have memory in the way program-like plans have, a form of
program counter that keeps track which location of the plan is currently executed.

In this chapter we first discuss nondeterministic actions and transition systems, then define
what conditional plans are, and then discuss algorithms for the three types of conditional plan-
ning, starting from the simplest case of planning with full observability, followed by planning
without observability, and finally the general partially observable planning problem. The chapter
is concluded by a discussion of the computational complexity of conditional planning.

4.1 Nondeterministic operators

There is often uncertainty about what the exacts effects of an action are. This is because not all
aspects of the world can be exactly formalized, and part of the things that are not formalized may

65



66 CHAPTER 4. CONDITIONAL PLANNING

affect the outcomes of the actions.
Consider for example a robot that plays basket ball. However well the robot is designed, there

is still always small uncertainty about the exact physical properties of the ball and the hands the
robot uses for throwing the ball. Therefore it is possible to predict the outcome of throwing the ball
only up to a certain precision, and a ball thrown by the robot may still miss the basket. This would
be a typical situation in which we would formalize an action as nondeterministic. It succeeds with
a certain probability, and fails otherwise, and the exact conditions that lead to success or failure
are outside the formalization of the action.

In other cases nondeterminism arises because formalizing all the things affecting the outcomes
of an action does not bring further benefit. Consider a robot that makes and serves coffee for the
members of the research lab. It might be well known that certain lab members never drink coffee,
that certain lab members always drink coffee right after lunch, and so on. But it would often not
be very relevant for the robot to know these things, as its task is simply to make and serve a cup
of coffee whenever somebody requests it to do so. So for the coffee making robot we could just
formalize the event that somebody requests coffee as a nondeterministic event, even though there
are well known deeper regularities that govern these requests.

In this section we extend the definition of operators first given in Section 2.3 to cover nondeter-
minism and discuss two normal forms for nondeterministic operators, We then present a translation
of nondeterministic operators into the propositional logic, and in the next sections we discuss sev-
eral planning algorithms that can be efficiently implemented with binary decision diagrams that
represent transition relations corresponding to nondeterministic actions.

Probabilities can often be associated with the alternative nondeterministic effects an operator
may have, and we include the probabilities in our definition of nondeterministic operators. How-
ever, the algorithms discussed in this chapter ignore these probabilities, and they will be only
needed later for the probabilistic variants of conditional planning in Chapter 5.

Definition 4.1 LetA be a set of state variables. Anondeterministic operatoris a pair〈c, e〉 where
c is a propositional formula overA describing the precondition, ande is a nondeterministic effect.
Effects are recursively defined as follows.

1. a and¬a for state variablesa ∈ A are effects.

2. e1 ∧ · · · ∧ en is an effect overA if e1, . . . , en are effects overA (the special case withn = 0
is the empty conjunction>.)

3. c B e is an effect overA if c is a formula overA ande is an effect overA.

4. p1e1| · · · |pnen is an effect overA if e1, . . . , en for n ≥ 2 are effects overA, pi > 0 for all
i ∈ {1, . . . , n} and

∑n
i=1 pi = 1.

The definition extends Definition 2.7 by allowing nondeterministic choice asp1e1| · · · |pnen.
Next we give a formal semantics for the application of a nondeterministic operator. The def-

inition of deterministic operator application (Definition 2.8) assigned a state to every state and
operator. The new definition assigns a probability distribution over the set of successor states for
a given state and operator.

Definition 4.2 (Nondeterministic operator application) Let 〈c, e〉 be an operator overA. Lets
be a state, that is an assignment of truth values toA. The operator is applicable ins if s |= c.



4.1. NONDETERMINISTIC OPERATORS 67

Recursively assign each effecte a set[e]s of pairs〈p, l〉 wherep is a probability0 < p ≤ 1 and l
is a set of literalsa and¬a for a ∈ A.

1. [a]s = {〈1, {a}〉} and[¬a]s = {〈1, {¬a}〉} for a ∈ A.

2. [e1 ∧ · · · ∧ en]s = {〈Πn
i=1pi,

⋃n
i=1 fi〉|〈p1, f1〉 ∈ [e1]s, . . . , 〈pn, fn〉 ∈ [en]s}.

3. [c′ B e′]s = [e′]s if s |= c′ and[c′ B e′]s = {〈1, ∅〉} otherwise.

4. [p1e1| · · · |pnen]s = {〈p1 · p, e〉|〈p, e〉 ∈ [e1]s} ∪ · · · ∪ {〈pn · p, e〉|〈p, e〉 ∈ [en]s}

Above in (4) the union of sets is defined so that for example{〈0.2, {a}〉} ∪ {〈0.2, {a}〉} =
{〈0.4, {a}〉}, that is, same sets of changes are combined by summing their probabilities.

The successor states ofs under the operator are ones that are obtained froms by making the
literals in f for 〈p, f〉 ∈ [e]s true and retaining the truth-values of state variables not occurring in
f . The probability of a successor state is the sum of the probabilitiesp for 〈p, f〉 ∈ [e]s that lead
to it.

Each〈p, l〉means that with probabilityp the literals that become true are those inl, and hence in-
dicate the probabilities of the possible successor states ofs. For any[e]s = {〈p1, l1〉, . . . , 〈pn, ln〉}
the sum of probabilities is

∑n
i=1 pi = 1.

In non-probabilistic variants of planning we also use a semantics that ignores the probabilities.
The following definition gives those successor states that have a non-zero probability according to
the preceding definition.

Definition 4.3 (Nondeterministic operator application II) Let〈c, e〉 be an operator overA. Let
s be a state, that is an assignment of truth values toA. The operator is applicable ins if s |= c.
Recursively assign each effecte a set[e]s of literalsa and¬a for a ∈ A.

1. [a]s = {{a}} and[¬a]s = {{¬a}} for a ∈ A.

2. [e1 ∧ · · · ∧ en]s = {
⋃n

i=1 fi|f1 ∈ [e1]s, . . . , fn ∈ [en]s}.

3. [c′ B e′]s = [e′]s if s |= c′ and[c′ B e′]s = {∅} otherwise.

4. [p1e1| · · · |pnen]s = [e1]s ∪ · · · ∪ [en]s

The successor states under〈c, e〉 are obtained froms by assigning the sets of literals in[e]s
true.

4.1.1 Normal forms for nondeterministic operators

We can generalize the normal form defined in Section 2.3.2 to nondeterministic effects and op-
erators. In the normal formal form the nondeterministic choices together with conjunctions are
outside, and all atomic effects are as consequents of conditionals.

For showing that every nondeterministic effect can be transformed into normal form we have
extended our set of equivalences on effects to cover nondeterministic choice. The whole set of
equivalences is given in Table 4.1.



68 CHAPTER 4. CONDITIONAL PLANNING

c B (e1 ∧ · · · ∧ en) ≡ (c B e1) ∧ · · · ∧ (c B en) (4.1)

c B (c′ B e) ≡ (c ∧ c′) B e (4.2)

c B (p1e1| · · · |pnen) ≡ p1(c B e1)| · · · |pn(c B en) (4.3)

(c1 B e) ∧ (c2 B e) ≡ (c1 ∨ c2) B e (4.4)

e ∧ (c B e) ≡ e (4.5)

e ≡ > B e (4.6)

e ∧ (p1e1| · · · |pnen) ≡ p1(e ∧ e1)| · · · |pn(e ∧ en) (4.7)

p1(p′1e
′
1| · · · |p′ne′n)|p2e2| · · · |pnen ≡ (p1p

′
1)e

′
1| · · · |(p1p

′
n)e′n|p2e2| · · · |pnen (4.8)

p1(e′ ∧ (c B e1))|p2e2| · · · |pnen ≡ (c B (p1(e′ ∧ e1)|p2e2| · · · |pnen)) (4.9)

∧(¬c B (p1e
′|p2e2| · · · |pnen)) (4.10)

Table 4.1: Equivalences on effects

Definition 4.4 (Normal form for nondeterministic operators) An effect is innormal formif it
can be derived as follows.

A deterministic effect is in normal form if it is a conjunction (0 or more conjuncts) of effects
c B p andc B ¬p, with at most one occurrence ofp and¬p for any state variablep ∈ A.

A nondeterministic effect is in normal form if it isp1e1| · · · |pnen for deterministic effectsei that
are in normal form, or it is a conjunction of nondeterministic effects in normal form.

A nondeterministic operator〈c, e〉 is in normal form if its effect is in normal form.

Theorem 4.5 For every operator there is an equivalent one in normal form. There is one that has
a size that is polynomial in the size of the former.

Proof: By using equivalences 4.1, 4.2 and 4.3 in Table 4.1 we can transform any effect so that all
atomic effectsl occur as consequents of conditionalc B l. By further using equivalence 4.7 we
can transform the effect to normal form. �

Example 4.6 The effect

a B (0.3b|0.7(c ∧ f)) ∧ (0.2(d ∧ e)|0.8(b B e))

in normal form is

(0.3(a B b)|0.7((a B c) ∧ (a B f))) ∧ (0.2((> B d) ∧ (> B e))|0.8(b B e)).

�

In certain cases, for example for defining regression for nondeterministic operators, it is best
to restrict to operators in a slightly more restrictive normal form, in which nondeterminism may
appear only at the topmost structure in the effect.

Definition 4.7 (Normal form II for nondeterministic operators) An effect is innormal form II
if it can be derived as follows.



4.1. NONDETERMINISTIC OPERATORS 69

A deterministic effect is in normal formal II if it is a conjunction (0 or more conjuncts) of effects
c B p andc B ¬p, with at most one occurrence ofp and¬p for any state variablep ∈ A.

A nondeterministic effect is in normal form II if it is of formp1e1| · · · |pnen whereei are deter-
ministic effects in normal form II.

A nondeterministic operator〈c, e〉 is in normal form if its effect is in normal form.

4.1.2 Translation of nondeterministic operators into propositional logic

In Section 3.5.2 we gave a translation of deterministic operators into the propositional logic. In
this section we extend this translation to nondeterministic operators.

For expressing the translation we define for a given effecte a setchanges(e) of state variables
as follows. This is the set of state variables possibly changed by the effect, or in other words, the
set of state variables occurring in the effect not in the antecedentc of a conditionalc B e.

changes(a) = {a}
changes(¬a) = {a}

changes(c B e) = changes(e)
changes(e1 ∧ · · · ∧ en) = changes(e1) ∪ · · · ∪ changes(en)

changes(p1e1| · · · |pnen) = changes(e1) ∪ · · · ∪ changes(en)

We make the following assumption to slightly simplify the translation.

Assumption 4.8 Leta ∈ A be a state variable. Lete1∧· · ·∧en occur in the effect of an operator.
If e1, . . . , en are not all deterministic, thena or ¬a may occur as an atomic effect in at most one
of e1, . . . , en.

This assumption rules out effects like(0.5a|0.5b) ∧ (0.5¬a|0.5c) that may makea simultane-
ously true and false. It also rules out effects like(0.5(d B a)|0.5b) ∧ (0.5(¬d B ¬a)|c) that
are well-defined and could be translated into the propositional logic. However, the additional
complexity to the translation outweights the benefit of allowing them.

We define the translation of effects satisfying Assumption 4.8 into propositional logic recur-
sively. The problem in the translation that does not show up with deterministic operators is that
for nondeterministic choicesp1e1| · · · |pnen the formula for each alternativeei has to express for
exactly the same set of state variables what changes take or do not take place. This becomes a bit
tricky when we have a lot of nesting of nondeterministic choice and conjunctions.

Now we give the translation of an effecte (in normal form) restricted to state variablesB. This
means that only state variables inB may occur ine in atomic effects (but do not have to), and
the formula does not say anything about the change of state variables not inB (but may of course
refer to them in antecedents of conditionals.)

PLB(e) =
∧

a∈B (((a ∧ ¬EPC¬a(e)) ∨ EPCa(e)) ↔ a′)
whene is deterministic

PLB(p1e1| · · · |pnen) = PLB(e1) ∨ · · · ∨ PLB(en)
PLB(e1 ∧ · · · ∧ en) = PLB\(B2∪···∪Bn)(e1) ∧ PLB2(e2) ∧ · · · ∧ PLBn(en)

whereBi = changes(ei) for all i ∈ {1, . . . , n}

The first part of the translation PLB(e) for deterministice is the translation of deterministic effects
we presented in Section 3.5.2, but restricted to state variables inB. The other two cover all



70 CHAPTER 4. CONDITIONAL PLANNING

nondeterministic effects in normal form. The idea of the translation of a conjunctione1 ∧ · · · ∧ en
of nondeterministic effects is that only the translation of the first effecte1 indicates when state
variables occurring inB do not change.

Additionally, we require that operators are not applied in states in which some state variable
would be set simultaneously both true and false.

XPLB(e) =
∧

a∈B (¬(EPC¬a(e) ∧ EPCa(e)))
whene is deterministic

XPLB(p1e1| · · · |pnen) = XPLB(e1) ∧ · · · ∧ XPLB(en)
XPLB(e1 ∧ · · · ∧ en) = XPLB\(B2∪···∪Bn)(e1) ∧ XPLB2(e2) ∧ · · · ∧ XPLBn(en)

whereBi = changes(ei) for all i ∈ {1, . . . , n}

The translation of an effecte in normal form into the propositional logic is PLA(e) ∧ XPLA(e)
whereA is the set of all state variables.

Example 4.9 We translate the effect

e = (0.5A|0.5(C B A)) ∧ (0.5B|0.5C)

into a propositional formula. The set of state variables isA = {A,B,C,D}.

PL{A,B,C,D}(e) = PL{A,D}(0.5A|0.5(C B A)) ∧ PL{B,C}(0.5B|0.5C)
= (PL{A,D}(A) ∨ PL{A,D}(C B A))∧

(PL{B,C}(B) ∨ PL{B,C}(C))
= ((A′ ∧ (D ↔ D′)) ∨ (((A ∨ C) ↔ A′) ∧ (D ↔ D′)))∧

((B′ ∧ (C ↔ C ′)) ∨ ((B ↔ B′) ∧ C ′))

�

4.1.3 Operations on nondeterministic transitions represented as formulae

In Section 3.7.1 we discussed the image and preimage computations of transition relations ex-
pressed as propositional formulae. In this section we consider also nondeterministic transition
relations and want to compute the set of states from which reaching a state in a given set of states
is certain, not just possible. The (weak) preimage operation in Section 3.7 does not do this. For
example, the weak preimage ofa with respect to the relation{〈b, a〉, 〈b, c〉} is {b}, although also
c is a possible successor state ofb.

The strong preimage of a set of states consists of those states from which only states inside the
given set are reached. This is formally defined as follows.

spreimgR(S) = {s|s′ ∈ S, 〈s, s′〉 ∈ R, imgR(s) ⊆ S}

Lemma 4.10 Images, strong preimages and weak preimages of sets of states are related to each
other as follows.

1. spreimgo(S) ⊆ wpreimgo(S)

2. imgo(spreimgo(S)) ⊆ S

3. wpreimgo(S) = spreimgo(S) wheno is deterministic.



4.2. PROBLEM DEFINITION 71

Proof: �

Strong preimages can be computed by formula manipulation when sets of states and transition
relations are represented as propositional formulae.

(∀A′.(Ro(A,A′)→(φ[a′1/a1, . . . , a
′
n/an]))) ∧ (∃A′.Ro(A,A′))

Here∀a.φ is universal abstractionwhich is defined analogously to existential abstraction as

∀a.φ = φ[>/a] ∧ φ[⊥/a].

4.1.4 Regression for nondeterministic operators

Regression for deterministic operators was given as Definition 3.6. It is straightforward to gener-
alize this definition for nondeterministic operators in the second (more restricted) normal form.

Definition 4.11 (Regression)Let φ be a propositional formula describing a set of states. Let
〈z, e〉 be an operator in normal form II withe = p1e1| · · · |pnen.

Theregressionofφwith respect too = 〈z, e〉 is defined as the formula regro(φ) = regr〈z,e1〉(φ)∧
· · · ∧ regr〈z,en〉(φ) where regr〈z,e〉(φ) refers to regression of deterministic operators as given in
Definition 3.6.

It is presumably possible to define regression for nodeterministic operators in the first normal
with no restriction on nesting of nondeterminism and conjunctions, but the definition is more
complicated, and we do not discuss the topic further here.

Theorem 4.12 LetS′ = {s′|s′ |= φ}. Then spreimgo(S) = {s|s |= regro(φ)}.

Proof: This is because a state inφ has to be reached no matter which effectei is chosen, so we
take the intersection/conjunction of the states obtained by regression with〈z, e1〉, . . . , 〈z, en〉. �

Example 4.13 Let o = 〈A, (0.5B|0.5¬C)〉. Then

regro(B ↔ C) = regr〈A,B〉(B ↔ C) ∧ regr〈A,¬C〉(B ↔ C)
= (A ∧ (> ↔ C)) ∧ (A ∧ (B ↔ ⊥))
≡ (A ∧ C) ∧ (A ∧ ¬B)
≡ A ∧ C ∧ ¬B

�

4.2 Problem definition

We state the conditional planning problem in the general form. Because the number of observa-
tions that are possible has a very strong effect on the type of solution techniques that are applicable,
we will discuss algorithms for three classes of planning problems that are defined in terms of re-
strictions on the setB of observable state variables.



72 CHAPTER 4. CONDITIONAL PLANNING

Definition 4.14 A 5-tuple〈A, I,O,G,B〉 consisting of a setA of state variables, a propositional
formulaI overA, a setO of operators overA, a propositional formulaG overA, and a setB ⊆ A
of state variables isa problem instance in nondeterministic planning.

The setB did not appear in the definition of deterministic planning. This is the set ofobservable
state variables. The idea is that plans can make decisions about what operations to apply and how
the execution proceeds based on the values of the observable state variables. Restrictions on
observability and sensing emerge because of various restrictions on the sensors human beings and
robots have: typically only a small part of the world can be observed.

The task in nondeterministic planning is the same as in deterministic planning (Section 3.1): to
find a plan that starting from any state inI is guaranteed to reach a state inG.

However, because of nondeterminism and the possibility of more than one initial state, it is in
general not possible to use the same sequence of operators for reaching the goals from all the
initial states, and a more general notion of plans has to be used.

Nondeterministic planning problems under certain restrictions have very different properties
than the problem in its full generality. In Chapter 3 we had the restriction to one initial state (I
was defined as a valuation) and deterministic operators. We relax these two restrictions in this
chapter, but still consider two special cases obtained by restrictions on the setB of observable
state variables.

1. Full observability.

This is the most direct extension of the deterministic planning problem of the previous
chapter. The difference is that we have to use a more general notion of plans with branches
(and with loops, if there is no upper bound on the number of actions that might be needed
to reach the goals.)

2. No observability.

Planning without observability can be considered more difficult than planning with full ob-
servability, although they are in many respects not directly comparable.

The main difference to deterministic planning as discussed in Chapter 3 and to planning
with full observability is that during plan execution it is not known what the actual current
state is, and there are several possible current states. This complication means that planning
takes place inthe belief space: the role of individual states in deterministic planning is
taken by sets of states, calledbelief states.

Because no observations can be made, branching is not possible, and plans are still just
sequences of actions, just like in deterministic planning with one initial state.

The type of observability we consider in this lecture is very restricted as only values of in-
dividual state variables can be observed (as opposed to arbitrary formulae) and observations are
independent of what operators have been executed before. Hence we cannot for example directly
express special sensing actions. However, extensions to the above definition like sensing actions
can be relatively easily reduced to the basic definition but we will not discuss this topic further.

4.2.1 Conditional plans

Plans are directed graphs with nodes of degree 1 labeled with operators and edges from nodes of
degree≥ 2 labeled with formulae.



4.2. PROBLEM DEFINITION 73

Definition 4.15 Let 〈A, I,O,G,B〉 be a problem instance in nondeterministic planning. Acon-
ditional planis a triple 〈N, b, l〉 where

• N is a finite set of nodes,

• b ∈ N is the initial node,

• l : N → (O×N)∪ 2L×N is a function that assigns each node an operator and a successor
node〈o, n〉 ∈ O ×N or a set of conditions and successor nodes〈φ, n〉.
Hereφ are formulae overB.

Plan execution begins from the initial nodeb, and the sequence of operators and states generated
when executing a plan is determined as follows.

Let n ∈ N be a node in the plan. Ifl(n) = 〈o, n′〉 thenn is an operator node. Ifl(n) = ∅
thenn is a terminal node. Otherwisen is a branch node andl(n) = {〈φ1, n1〉, . . . , 〈φm, nm〉} for
somem.

Execution in an operator node with label〈o, n〉 proceeds by applying operatoro and makingn
the current plan node.

Execution in a branch noden with labell(n) = {〈φ1, n1〉, . . . , 〈φm, nm〉} proceeds by evaluat-
ing the formulaeφi with respect to the valuations of the observable state variables, and ifs |= φi,
then makingni the current plan node.1

Plan execution ends in a terminal noden ∈ N, l(n) = ∅.
The plans can of course be written in the same form as programs in conventional programming

languages by usingcasestatements for branching andgotostatements for jumping to the successor
nodes of a plan node.

Example 4.16 Consider the plan〈N, b, l〉 for a problem instance with the operatorsO = {o1, o2, o3},
where

N = {1, 2, 3, 4, 5}
b = 1

l(1) = 〈o3, 2〉
l(2) = {〈φ1, 1〉, 〈φ2, 3〉, 〈φ3, 4〉}
l(3) = 〈o2, 4〉
l(4) = {〈φ4, 1〉, 〈φ5, 5〉}
l(5) = ∅

This could be visualized as the program.
1: o3
2: CASE

φ1: GOTO 1
φ2: GOTO 3
φ3: GOTO 4

3: o2
4: CASE

φ4: GOTO 1
φ5: GOTO 5

5:

1The result of plan execution is undefined if there are several formulae true in the states.



74 CHAPTER 4. CONDITIONAL PLANNING

Every plan〈N, b, l〉 can be written as such a program. Nodesn with l(n) = ∅ corresponds to
gotos to the program’s last label after which nothing follows. �

A plan isacyclic if it is a directed acyclic graph in the usual graph theoretic sense.

4.2.2 Execution graph

We define the satisfaction of plan objectives in terms of the transition system that is obtained when
the original transition system is being controlled by a plan, that is, the plan chooses which of the
transitions possible in a state is taken. For goal reachability, without unbounded looping it would
be required that any maximal path from an initial state has finite length and ends in a goal state.
With unbounded looping it would be required that from any state to which there is a path from an
initial state that does not visit a goal state there is a path of length≥ 0 to a goal state.

Definition 4.17 (Execution graph of a plan) Let〈A, I,O,G,B〉 be a problem instance andπ =
〈N, b, l〉 be a plan. Then we definethe execution graphof π as a pair〈M,E〉 where

1. M = S ×N , whereS is the set of Boolean valuations ofA,

2. E ⊆M ×M has an edge from〈s, n〉 to 〈s′, n′〉 if and only if

(a) n ∈ N is an operator node withl(n) = 〈o, n′〉 ands′ ∈ imgo(s), or

(b) n ∈ N is a branch node with〈φ, n′〉 ∈ l(n) ands′ = s ands |= φ.

Definition 4.18 (Reachability goals RG)A planπ = 〈N, b, l〉 solves a problem instance〈A, I,O,G,B〉
under theReachability(RG) criterion if its execution graph fulfills the following.

For all statess such thats |= I, for every(s′, n) to which there is a path from(s, b) that does
not visit (s′′′, n′′) for anys′′′ such thats′′′ |= G and terminal noden′′ there is also a path from
(s′, n) to some(s′′, n′) such thats′′ |= G andn′ is a terminal node.

This plan objective with unbounded looping can be interpreted probabilistically. For every
nondeterministic choice in an operator we have to assume that each of the alternatives has a non-
zero probability. Then for goal reachability, a plan with unbounded looping is simply a plan that
has no finite upper bound on the length of its executions, but that with probability 1 eventually
reaches a goal state. A non-looping plan also reaches a goal state with probability 1, but there is a
finite upper bound on the execution length.

Definition 4.19 (Maintenance goals MG)A planπ = 〈N, b, l〉 solves a problem instance〈A, I,O,G,B〉
under theMaintenance(MG) criterion if its execution graph fulfills the following.

For all statess ands′ and plan nodesn ∈ N such thats |= I, if there is a path of length≥ 0
from (s, b) to some(s′, n), thens′ |= G and(s′, n) has a successor.

We can also define a plan objective that combines the reachability and maintenance criteria:
visit infinitely often one of the goal states. This is a proper generalization of both of the criteria
because we can rather easily reduce both special cases to the general case. Algorithms for the
general case generalize algorithms for both special cases.



4.3. PLANNING WITH FULL OBSERVABILITY 75

4.3 Planning with full observability

When during plan execution the current state is always exactly known, plans can be found by the
same kind of state space traversal algorithms already used for deterministic planning in Section
3.7.

The differences to algorithms for deterministic planning stem from nondeterminism. The main
difference is that successor states are not uniquely determined by the current state and the action,
and different action may be needed for each successor state. Further, nondeterminism may require
loops. Consider tossing a die until it yields 6. Plan for this task involves tossing the die over
and over, and there is no upper bound on the number of tosses that might be needed.2 Hence we
need plans with loops for representing the sequences of actions of unbounded length required for
solving the problem.

Below in Section 4.3.1 we first discuss the simplest algorithm for planning with nondeterminism
and full observability. The plans this algorithm produces are acyclic, and the algorithm does
not find plans for problem instances that only have plans with loops. Then in Section 4.3.2 we
present an algorithm that also produces plans with loops. The structure of the algorithm is more
complicated. Efficient implementation of these algorithms requires the use of binary decision
diagrams or similar representations of sets and transition relations, as discussed in Section 3.7.
Like in the BDD-based algorithms for deterministic planning, these algorithm assign a distance
to all the states, with a different meaning of distance in different algorithms, and based on the
distances either synthesize a program-like plan, or a plan execution mechanism uses the distances
directly for selecting the operators to execute. The algorithms in this section are best implemented
by representing the formulae as BDDs.

Deterministic planning has both a forward and a backward algorithm that are similar to each
other, as described in Section 3.7. However, for nondeterministic problems forward search does
not seem to be a good way of doing planning. For backward distances, distancei of states means
that there is a plan for reaching the goals with at mosti operators. But there does not seem to
be a useful interpretation of the distances computed forwards from the initial states as images of
nondeterministic operators. That a goal state or all goal states can be reached by applying some
i nondeterministic operators does not say anything about the possible plans, because executing
thosei operators might also lead to states that are not goal states and from which goal states could
be much more difficult to reach.

4.3.1 An algorithm for constructing acyclic plans

The algorithm for constructing acyclic plans is an extension of the algorithm for deterministic
planning given in Section 3.7.3. In the first phase the algorithm computes distances of the states. In
the second phase the algorithm constructs a plan based on the distances. The distance computation
is almost identical to the algorithm for deterministic planning. The only difference is the use of
strong preimages instead of the preimages.3 The second phase is more complicated, and uses the
distances for constructing a plan according to Definition 4.15.

The algorithm is given in Figure 4.1. We call the distances computed by the algorithmstrong

2However, for everyp > 0 there is a finite plan that reaches the goal with probabilityp or higher.
3The algorithm for deterministic planning could use the slightly more complicated strong preimage computation

just as well, because strong and weak preimages coincide for deterministic operators. However, this would not have
any advantage for deterministic planning.



76 CHAPTER 4. CONDITIONAL PLANNING

procedureFOplan(I,O,G)
D0 :=G;
i := 0;
while I 6⊆ Di and (i = 0 or Di−1 6= Di) do
i := i+ 1;
Di :=Di−1 ∪

⋃
o∈O spreimgo(Di−1);

end
N := ∅;
l(j) := ∅ for all j;
cnt := 1;
FOplanconstruct(0,I);

Figure 4.1: Algorithm for nondeterministic planning with full observability

G

d=1d=2d=3d=48d= d=0

Figure 4.2: Goal distances in a nondeterministic transition system

distancesbecause they are tight upper bounds on the number of operators needed for reaching
the goals: if the distance of a state isi, then no more thani operators are needed, but it may be
possible that a goal state is also reached with less thani operators if the relevant operators are
nondeterministic and the right nondeterministic effects take place.

Example 4.20 We illustrate the distance computation by the diagram in Figure 4.2. The set of
states with distance 0 is the set of goal statesG. States with distancei are those for which at least
one action always leads to states with distancei−1 or smaller. In this example the action depicted
by the red arrow has this property for every state. States for which there is no finite upper bound
on the number of actions for reaching a goal state have distance∞. �

Lemma 4.21 Let a states be inDj . Then there is a plan that reaches a goal state froms by at
mostj operator applications.

The distances alone could be directly used by a plan execution mechanism. The plan execution
proceeds by observing the current state, looking up its distancej such thats ∈ Dj\Dj−1, selecting
an operatoro ∈ O so thatimgo({s}) ⊆ Dj−1, and executing the operator.

Similarly, a mapping from states to operators could be directly constructed. This kind of plan
is calledmemorylessbecause the plan execution mechanism does not have to keep track of plan



4.3. PLANNING WITH FULL OBSERVABILITY 77

procedureFOplanconstruct(n,S)
if S ⊆ G then return ; (* Goal reached for all states. *)
for eacho ∈ O
S′ := the maximal subset ofS such that progress(o, S′);
if S′ 6= ∅ then (* Is operatoro useful for some of the states? *)

begin
S := S\S′;
cnt := cnt+2;
N :=N ∪ {cnt-2,cnt-1}; (* Create two new plan nodes. *)
l(n) := l(n) ∪ {〈S′,cnt−2〉}; (* First is reached from noden. *)
l(cnt−2) := 〈o,cnt−1〉; (* Second is an operator node. *)
FOplanconstruct(cnt−1,imgo(S′)); (* Continue from successors ofS′. *)

end
end
if S 6= ∅ then (* If something remains inS they must be goal states. *)

begin
cnt := cnt+1;
l(n) := l(n) ∪ {〈S,cnt−1〉}; (* Create a terminal node for them. *)

end

Figure 4.3: Algorithm for extracting an acyclic plan from goal distances

procedureprogress(o, S)
for j := 1 to i do (* Doeso take all states closer to goals? *)

if imgo(S ∩Dj) 6⊆ Dj−1 then return false;
end
return true;

Figure 4.4: Test whether successor states are closer to the goal states

nodes. It just chooses the next operator on the basis of the current state. This corresponds to a
plan that consists of a loop in which each operator is selected for some subset of possible current
states, a terminal node is selected for the goal states, and then the loop repeats again.

Memoryless plans are sufficienty powerful only for the simplest form of conditional planning
in which the current state can be observed uniquely (full observability). Later we will see that
when there are restrictions on which observations can be made it is necessary to have memory in
the plan.

Figure 4.3 gives an algorithm for generating a plan according to Definition 4.15. The algorithm
works forward starting from the set of initial states. Every operator is tried out, and for an operator
that takes some of the states toward the goals a successor node is created, and the algorithm is
recursively called for the states that are reached by applying the operator.

The functionprogresswhich is give in Figure 4.4 tests for a given operator and a setS of states
that for every states ∈ S all the successor states are at least one step closer to the goals.



78 CHAPTER 4. CONDITIONAL PLANNING

procedureprune(O,W ,G);
i := 0;
W0 :=W ;
repeat
i := i+ 1;
k := 0;
S0 :=G; (* States from whichG is reachable with 0 steps. *)
repeat
k := k + 1; (* States from whichG is reachable with≤ k steps. *)
Sk := Sk−1 ∪

⋃
o∈O(wpreimgo(Sk−1) ∩ spreimgo(Wi−1));

until Sk = Sk−1; (* States that stay withinWi−1 and eventually reachG. *)
Wi :=Wi−1 ∩ Sk;

until Wi = Wi−1; (* States inWi stay withinWi and eventually reachG. *)
return Wi;

Figure 4.5: Algorithm for detecting a loop that eventually makes progress

4.3.2 An algorithm for constructing plans with loops

There are many nondeterministic planning problems that require plans with loops because there is
no finite upper bound on the number of actions that might be needed for reaching the goals. These
plan executions with an unbounded length cannot be handled in acyclic plans of a finite size. For
unbounded execution lengths we have to allow loops (cycles) in the plans.

Example 4.22 �

The problem is those states that do not have a finite strong distance as defined Section 4.3.1.
Reaching the goals from these states is either impossible or there is no finite upper bound on the
number of actions that might be needed. For the former states nothing can be done, but the latter
states can be handled by plans with loops.

We present an algorithm based on a generalized notion of distances that does not require reacha-
bility by a finitely bounded number of actions. The algorithm is based on the procedureprunethat
identifies a set of states for which reaching a goal state eventually is guaranteed. The procedure
prunegiven in Figure 4.5.

Lemma 4.23 (Procedure prune)LetO be a set of operators andW andG sets of states. Then
W ′ = prune(O,W ,G) is a set such thatW ′ ⊆W and there is functionx : W ′ → O such that

1. for everys ∈ W ′ there is a sequences0, s1, . . . , sn with n ≥ 0 such thats = s0, sn ∈ G
andsi+1 ∈ imgx(si)({si}) for all i ∈ {0, . . . , n− 1},

2. imgx(s)({s}) ⊆W ′ for everys ∈W ′\G, and

3. for nos ∈W\W ′ there is a plan that guarantees reaching a state inG.

Proof:
LetW0 be the value ofW when the procedure is called, andW1,W2, . . . the values ofW at the

end of therepeat-untilloop on each iteration.
Induction hypothesis: Ifi ≥ 1 then there is functionx : Wi → O such that



4.3. PLANNING WITH FULL OBSERVABILITY 79

1. for everys ∈ Wi there is a sequences0, s1, . . . , sn with n ≥ 0 such thats = s0, sn ∈ G
andsj+1 ∈ imgx(sj)({sj}) for all j ∈ {0, . . . , n− 1}, and

2. imgx(s)({s}) ⊆Wi−1 for everys ∈Wi\G.

Base casei = 0: Trivial because nothing aboutWi is claimed.
Inductive casei ≥ 1:
For the innerrepeat-untilloop we prove inductively the following. LetS0 = G be the value of

S before the loop, andS1, S2, . . . the values ofS in the end of each iteration.
Induction hypothesis: Ifi ≥ 1 then there is functionx : Sk → O such that

1. for everys ∈ Sk there is a sequences0, s1, . . . , sn with n ∈ {0, . . . , k} such thats = s0,
sn ∈ G andsj+1 ∈ imgx(sj)({sj}) for all j ∈ {0, . . . , n− 1}, and

2. imgx(s)({s}) ⊆Wi−1 for everys ∈ Sk\G.

Base casek = 0:

1. BecauseS0 = G, for everys ∈ S0 there is the sequence of statess0 = s such that the initial
state is inS0 and the final state is inG.

2. BecauseS0 = G there are no states inS0\G.

Inductive casek ≥ 1: Let s be a state inSk. If s ∈ Sk−1 then we obtain the property by the
induction hypothesis.

Otherwises ∈ Sk\Sk−1. Therefore by definition ofSk, s ∈ wpreimgo(Sk−1)∩spreimgo(Wi−1)
for someo ∈ O.

1. Becauses ∈ wpreimgo(Sk−1), there is a states′ ∈ Sk−1 such thats′ ∈ imgo({s}). By
the induction hypothesis there is a sequence of states starting froms′ that ends in a goal
state. Fors such a sequence is obtained from the sequence ofs′ by prefixing it withs. The
corresponding operator is assigned tos by x.

2. Becauses ∈ spreimgo(Wi−1), by Lemma 4.10imgo({s}) ⊆Wi−1.

This completes the inner induction. To establish the induction step of the outer induction con-
sider the following. The inner repeat-until loops ends whenSk = Sk−1. This means thatSz = Sk

for all z ≥ k. Hence the upper boundn ≤ k on the length of sequencess0, s1, . . . , sn is infinite.
The outer induction hypothesis is obtained from the inner induction hypothesis by removing the
upper boundn ≤ k and replacingSk by Wi. By definitionWi = Wi−1 ∩ Sk. What happens
here???

keskenThis finishes the outer induction proof. The claim of the lemma is obtained from the
outer induction hypothesis by noticing that the outer loop exits whenWi = Wi−1 (it will exit after
a finite number of steps because the cardinality ofW0 = W is finite and it decreases on every
iteration) and then we can replace bothWi andWi−1 byW ′ to obtain the claim of the lemma.�

Our first algorithm, given in Figure 4.6, is directly based on the procedurepruneand identifying
a set of states from which a goal state is reachable by some execution and no execution leads to a
state outside the set.



80 CHAPTER 4. CONDITIONAL PLANNING

procedureFOplanL2(I,O,G)
W0 :=G;
i := 0;
while I 6⊆ prune(O,Wi,G) and (i = 0 or Wi−1 6= Wi) do
i := i+ 1;
Wi :=Wi−1 ∪

⋃
o∈O wpreimgo(Wi−1);

end
S :=G;
i := 0;
Di :=G;
L := prune(O,Wi,G);
repeat
S′ := S;
S := S ∪

⋃
o∈O(wpreimgo(S) ∩ spreimgo(L ∪ S));

i := i+ 1;
Di := L ∩ S;

until S = S′

Figure 4.6: Algorithm for nondeterministic planning with full observability

procedureFOplanMAINTENANCE(I,O,G)
i := 0;
G0 :=G;
repeat
i := i+ 1; (* Subset ofGi−1 from whichGi−1 can be always reached. *)
Gi :=

⋃
o∈O (spreimgo(Gi−1) ∩Gi−1);

until Gi = Gi−1;
return Gi;

Figure 4.7: Algorithm for nondeterministic planning with full observability and maintenance goals

4.3.3 An algorithm for constructing plans for maintenance goals

There are many important planning problems in which the objective is not to reach a goal state
and then stop execution. When the objective is to keep the state of the system in any of a number
of goal states indefinitely, we talk aboutmaintenance goals.

Plans that satisfy a maintenance goal have only infinite executions.
Figure 4.7 gives an algorithm for finding plans for maintenance goals. The algorithm starts with

the setG of all states that satisfy the property to be maintained. Then iteratively such states are
removed fromG for which the satisfaction of the property cannot be guaranteed in the next time
point. More precisely, the setsGi for i ≥ 0 consist of all those states in which the goal objective
can be maintained for the nexti time points. For somei the setsGi andGi−1 coincide, and then
Gj = Gi for all j ≥ i. This means that starting from the states inGi the goal objective can be
maintained indefinitely.

Theorem 4.24 Let I be a set of initial states,O a set of operator andG a set of goal states. Let
G′ be the set returned by the procedure FOplanMAINTENANCE in Figure 4.7.



4.3. PLANNING WITH FULL OBSERVABILITY 81

PASTURE

RIVER

DEATH

DESERT

PASTURE

RIVER

DESERT

PASTURE

RIVER  

DESERT

PASTURE

RIVER  

DESERT

Figure 4.8: Example run of the algorithm for maintenance goals

Then for every states ∈ G′ there is an operatoro ∈ O such that imgo({s}) ⊆ G′. If I ⊆ G′

then the corresponding plan satisfies the maintenance criterion for〈I,O,G〉.

Proof: �

Example 4.25 Consider the problem depicted in Figure 4.8. An animal may drink at a river and
eat at a pasture. To get from the river to the pasture it must go through a desert. Its hunger and
thirst increase after every time period. If either one reaches level 3 the animal dies. The hunger
and thirst levels are indicated by different colors: the upper halves of the rectanges show thirst
level and the lower halves the hunger level, and blue means no hunger or thirst and red means
much hunger or thirst. The upper left diagram shows all the possible actions the animal can take.
The objective of the animal is to stay alive. The three iterations of the algorithm for finding a plan
that satisfies the goal of staying alive are depicted by the remaining three diagrams. The diagram
on upper right depicts all the states that satisfy the goal. The diagram on lower left depicts all the
states that satisfy the goal and after which the satisfaction of the goal can be guaranteed for at least
one time period. The diagram on lower right depicts all the states that satisfy the goal and after
which the satisfaction of the goal can be guaranteed for at least two time periods.

Further iterations of the algorithm do not eliminate further states, and hence the last diagram
depicts all those states for which the satisfaction of the goal can be guaranteed indefinitely.



82 CHAPTER 4. CONDITIONAL PLANNING

o2

o1

o0

i2

i0

i1

Figure 4.9: A sorting network with three inputs

Hence the only plan says that the animal has to go continuously back and forth between the
pasture and the river. The only choice the animal has is in the beginning if in the initial state it is
not at all hungry or thirsty. For instance, if it is in the desert initially, then it may freely choose
whether to first go to the pasture or the river. �

4.4 Planning with partial observability

4.4.1 Planning without observability by heuristic search

Planning under unobservability is similar to deterministic planning in the sense that the problem
is to find a path from the initial state(s) to the goal states. For unobservable planning, however, the
nodes in the graph do not correspond to individual states but to belief states, and the size of the
belief space is exponentially higher than the size of the state space. Algorithms for deterministic
planning have direct counterparts for unobservable planning, which is not the case for conditional
planning with full or partial observability.

Example 4.26 A sorting network[Knuth, 1998, Section 5.3.4 in 2nd edition] consists of a se-
quence of gates acting on a number of input lines. Each gate combines a comparator and a swap-
per: if the first value is greater than the second, then swap them. The goal is to sort any given input
sequence. The sorting network always has to perform the same operations irrespective of the input,
and hence constructing a sorting network corresponds to planning without observability. Figure
4.9 depicts a sorting network with three inputs. An important property of sorting networks is that
any network that sorts any sequence of zeros and ones will also sort any sequence of arbitrary
numbers. Hence it suffices to consider Boolean 0-1 input values only.

Construction of sorting networks is essentially a planning problem without observability, be-
cause there are several initial states and a goal state has to be reached by using the same sequence
of actions irrespective of the initial states.

For the 3-input sorting net the initial states are000, 001, 010, 011, 100, 101, 110, 111. and the
goal states are000, 001, 011, 111 Now we can compute the images and strong preimages of the
three sorting actions, sort12, sort02 and sort01 respectively starting from the initial or the goal
states. These yield the following belief states at different stages of the sorting network.

000, 001, 010, 011, 100, 101, 110, 111 initially
000, 001, 011, 100, 101, 111 after sort12
000, 001, 011, 101, 111 after sort02
000, 001, 011, 111 after sort01

�

The most obvious approaches to planning with unobservability is to use regression, strong
preimages or images, and to perform backward or forward search in the belief space. The dif-



4.4. PLANNING WITH PARTIAL OBSERVABILITY 83

ference to forward search with deterministic operators and one initial state is that belief states are
used instead of states. The difference to backward search for deterministic planning is that re-
gression for nondeterministic operators has to be used and testing whether (a subset of) the initial
belief state has been reached involves the co-NP-hard inclusion test|= I→ regro(φ) for the belief
states. With one initial state this is an easy polynomial time testI |= regro(φ) of whetherregro(φ)
is true in the initial state.

Deriving good heuristics for heuristic search in the belief space is more difficult than in de-
terministic planning. The main approaches have been to use distances in the state space as an
estimate for distances in the belief space, and to use the cardinalities of belief spaces as a measure
of progress.

Many problems cannot be solved by blindly taking actions that reduce the cardinality of the
current belief state: the cardinality of the belief state may stay the same or increase during plan
execution, and hence the decrease in cardinality is not characteristic to belief space planning in
general, even though in many problems it is a useful measure of progress.

Similarly, distances in the state space ignore the most distinctive aspect of planning with partial
observability: the same action must be used in two states if the states are not observationally
distinguishable. A given (optimal) plan for an unobservable problem may increase the actual
current state-space distance to the goal states (on a given execution) when the distance in the
belief-space monotonically decreases, and vice versa. Hence, the state space distances may yield
wildly misleading estimates of the distances in the corresponding belief space.

Heuristics based on state-space distances

The most obvious distance heuristics are based on the strong distances in the state space.

D0 = G
Di+1 = Di ∪

⋃
o∈O spreimgo(Di) for all i ≥ 1

A lower bound on plan length for belief stateZ is j if Z ⊆ Dj andZ 6⊆ Dj−1.
Next we derive distance heuristics for the belief space based on state space distances. Strong

distances yield an admissible distance heuristic for belief states.

Definition 4.27 (State space distance)Thestate space distanceof a belief stateB is d ≥ 1 when
B ⊆ Dd andB 6⊆ Dd−1, and it is0 whenB ⊆ D0 = G.

Even though computing the exact distances for the operator based representation of state spaces
is PSPACE-hard, the much higher complexity of planning problems with partial observability
still often justifies it: this computation would in many cases be an inexpensive preprocessing
step, preceding the much more expensive solution of the partially observable planning problem.
Otherwise cheaper approximations can be used.

Heuristics based on belief state cardinality

The second heuristic that has been used in algorithms for partial observability is simply based on
the cardinality of the belief states.

In forward search, prefer operators that maximally decrease the cardinality of the belief state.
In backward search, prefer operators that maximally increase the cardinality of the belief state.



84 CHAPTER 4. CONDITIONAL PLANNING

These heuristics are not in general admissible, because there is no direct connection between
the distance to a goal belief state and the cardinalities of the current belief state and a goal belief
state. The belief state cardinality can decrease or increase arbitrarily much by one step.

4.4.2 Planning without observability by evaluation of QBF

In this section we extend the techniques from Section 3.5 to unobservable planning. Because
of nondeterminism and several initial states, one plan may have several different executions. It
turns out that propositional logic is not suitable for representing planning with unobservability,
and the language of quantified Boolean formulae is needed instead. Intuitively, the reason for
this is that we have to quantify over an exponential number of plan executions: we want to say
“there is a plan so that for all executions...”, and expressing this concisely in the propositional
logic does not seem possible. We theoretically justify this in Section 4.5.4 by showing that testing
the existence of plans for problems instances without observability even when restricting to plans
with a polynomial length is complete for the complexity classΣ2, and not contained in NP as
the corresponding problem for deterministic planning. This strongly suggests, because of widely
accepted complexity theoretic conjectures, that there is no efficient representation of the problem
in the propositional logic.

In Section 4.1.2 we showed how nondeterministic operators can be translated into formulae
in the propositional logic. The purpose of that translation was the use of the formulae in BDD-
based planning algorithms for computing the images and preimages of sets of states. For the QBF
representation of nondeterministic operators we have to have a possibility to universally quantify
over all possible successor states an operator produces, and this cannot be easily expressed with
the formulae derived in Section 4.1.2, so we give a new translation that uses quantified Boolean
formulae (see Section 2.2.1.)

Translation of nondeterministic operators into propositional logic

For handling nondeterminism we need to universally quantify over all the nondeterministic choices,
because for every choice the remaining operators in the plan must lead to a goal state. For an ef-
fect withn nondeterministic alternatives this can be achieved by usingm = dlog2 ne universally
quantified auxiliary variables. For every valuation of these variables one of the alternative effects
is chosen.

We assign to every atomic effect a formula that is true if and only if that effect takes place.
This is similar to and extends the functionsEPCl(e) in Definition 3.3. The extension concerns
nondeterminism: for literall to become true, the auxiliary variables for nondeterminism have to
have values corresponding to an effect makingl true.

The condition for atomic effectl to take place when effecte is executed isnEPCl(e, σ, t). The
sequenceσ of integers is for deriving unique names for auxiliary variables innEPCl(e, σ, t), and
t is formula on the auxiliary variables for deciding when to executee. The effect is assumed to be
in normal form I.

nEPCl(e, σ, t) = EPCl(e) ∧ t if e is deterministic
nEPCl(p1e1| · · · |pnen, σ, t) = nEPCl(e1, σ; 1, cn

1 (σ) ∧ t) ∨ · · · ∨ nEPCl(en, σ;n, cn
n(σ) ∧ t)

nEPCl(e1 ∧ · · · ∧ en, σ, t) = nEPCl(e1, σ; 1, t) ∨ · · · ∨ nEPCl(en, σ;n, t)

The functioncn
i (σ) constructs a formula for selecting theith effect fromn alternatives. This

formula is usually a conjunction of literals over the auxiliary propositionsAm
σ = {aσ,1, . . . , aσ,m}



4.4. PLANNING WITH PARTIAL OBSERVABILITY 85

corresponding to one valuation ofAm
σ . Herem = dlog2 ne. Whenn is not a power of 2, the last

effecten corresponds to more than one valuation ofAm
σ . Define

dm
i (σ) =

∧
({aσ,j ∈ Am

σ |jth bit of i− 1 is 1}{¬aσ,j |aσ,j ∈ Am
σ , jth bit of i− 1 is 0}).

Wheni ∈ {1, . . . , n− 1} (and in the special casei = n = 2m), we definecn
i (σ) asdm

i (σ). When
i = n we definecn

i (σ) as
dm

n (σ) ∨ · · · ∨ dm
2m(σ)

Hence effectse1 to en−1 correspond to binary encodings of numbers0 to n− 2 anden covers all
the remaining valuations ofAm

σ .
The following frame axioms express the conditions under which the state variablea ∈ A may

change from false to true and from true to false. We assume that the operators inO = {o1, . . . , on}
have a unique numbering1, . . . , n.

(¬a ∧ a′)→((o1 ∧ nEPCa(e1, 1,>)) ∨ · · · ∨ (on ∧ nEPCa(en, n,>)))
(a ∧ ¬a′)→((o1 ∧ nEPC¬a(e1, 1,>)) ∨ · · · ∨ (on ∧ nEPC¬a(en, n,>)))

For every operatoro = 〈z, e〉 ∈ O we have formulae for describing values of state variables in the
predecessor and in the successor states when the operator is applied. LetA = {a1, . . . , ak} be the
state variables. The formulae describing the effects and preconditions of the operatoroi ∈ O are
the following.

(oi ∧ nEPCa1(ei, i,>)) → a′1
(oi ∧ nEPC¬a1(ei, i,>)) → ¬a′1

...
(oi ∧ nEPCak

(ei, i,>)) → a′k
(oi ∧ nEPC¬ak

(ei, i,>)) → ¬a′k
oi → z

Example 4.28 Consider the operatorso1 = 〈A, (0.5B|0.5(C B D))〉 ando2 = 〈B, (0.5(D B
B)|0.5C)〉. The application of these operators is described by the following formula.

example missing �

Two operators may be applied in parallel only if they do not interfere, so we have

¬oi ∨ ¬oj

for all operatorsi andj such thati 6= j and the operators interfere.
The conjunction of all the above formulae is denoted by

R3(A,A
′)

When renaming the propositions for time pointt, also the propositionso for operatorso ∈ O and
the propositionsa ∈ A must be renamed, and for this we use then notation

Rt
3(A

t, At+1).



86 CHAPTER 4. CONDITIONAL PLANNING

Finding plans by evaluating QBF

In deterministic planning in propositional logic (Section 3.5) the problem is to find a sequence
of operators so that a goal state is reached when the operators are applied starting in the initial
state. When there is nondeterminism, the problem is to find a seqence of operators so that a goal
state is reached for all possible executions of the sequence of operators. The number of executions
of one sequence of operators may be higher than one because there may be several initial states
and because the operators may be deterministic. Expressing the quantification over all possible
executions of a sequence of operators cannot be concisely expressed in the propositional logic,
and this is the reason why quantified Boolean formulae have to be used instead.

∃Vplan

∀Vexec

∃Vrest

I0→(R3(A0, A1) ∧R3(A1, A2) ∧ · · · ∧ R3(An−1, An) ∧Gn)

Here Vexec = A0 ∪ A0 ∪ · · · ∪ At−1 whereA is the set of auxiliary variables occurring in
nEPCl(e, ε,>) for some〈c, e〉 ∈ O and l ∈ {a,¬a} for somea ∈ A. The plan is expressed
in terms of the variablesoi whereo ∈ O andi ∈ {0, . . . , t−1}. The truth-values of the remaining
variablesVrest = A1 ∪ · · · ∪ At are determined by the operators and the execution chosen by
propositions inVexec.

There are algorithms for evaluating QBF that extend the Davis-Putnam procedure and that
traversing and-or trees. And-nodes correspond to universally quantified propositions and or-nodes
correspond to existentially quantified propositions. These algorithms return the valuation of the
outermost existential propositions if the QBF has valuetrue.

Finding plans for nondeterministic problems without observability may be more efficient than
using standard search algorithms with regression or image/preimage computation with BDDs
when the plans are short and there are many operators that can be applied in parallel. If long
plans are required and there is little parallelism, the algorithms that traverse the belief space ap-
pear to be more efficient.

4.4.3 Algorithms for planning with partial observability

Planning with partial observability is much more complicated than its two special cases with full
and no observability. Like planning without observability, the notion of belief states becomes very
important. Like planning with full observability, formalization of plans as sequences of operators
is insufficient. However, plans also cannot be formalized as mappings from states to operators be-
cause partial observability implies that the current state is not necessarily unambiguously known.
Hence we will need the general definition of plans introduced in Section 4.2.1.

When executing operatoro in belief stateB the set of possible successor states isimgo(B), and
based on the observation that are made, this set is restricted toB′ = imgo(B) ∩ C whereC is the
equivalence class of observationally indistinguishable states corresponding to the observation.

In planning with unobservability, a backward search algorithm starts from the goal belief state
and uses regression or strong preimages for finding predecessor belief states until a belief state
covering the initial belief state is found.

With partial observability, plans do not just contain operators but may also branch. With branch-
ing the sequence of operators may depend on the observations, and this makes it possible to reach



4.4. PLANNING WITH PARTIAL OBSERVABILITY 87

goals also when no fixed sequence of operators reaches the goals. Like strong preimages in back-
ward search correspond to images, the question arises what does branching correspond to in back-
ward search?

Assume that we have for belief statesB1 andB2 respectively the plansπ1 andπ2 that reach the
goals, and that these belief states are observationally distinguishable, that is, they are included in
different observational classes. Now we can construct a planπ12 that starts with a branch node
that makes an observation and continues withπ1 or with π2, depending on which observation was
made. If we are initially in any state inB1 ∪ B2, the planπ12 always takes us to a goal state. We
can continue extendingπ12 with operators. For example, ifB = wpreimgo(B1 ∪ B2), then the
plan that first executes the operatoro and then continues withπ will lead to a goal state starting
from any state inB.

Next we formalize these ideas and derive an algorithm that constructs branching plans in the
backward direction starting from the goal states.

Let Π = 〈C1, . . . , Cn〉 be a partition of the state space to observational classes, each consisting
of observationally indistinguishable states.

Sets of belief states generated by traversing the belief space backwards starting from the goal
states contain many regularities induced by observability. For example, if we have plans for reach-
ing the goals from three belief statesB1,B2 andB3, and these have non-empty intersections with
then observational classes, we may construct3n different branching plans for3n different sets of
states. These3n sets have a concise representation in a factored form, simply as

〈{B1∩C1, B2∩C1, B3∩C1}, {B1∩C2, B2∩C2, B3∩C2}, . . . , {B1∩Cn, B2∩Cn, B3∩Cn}〉

from which the sets can be obtained by taking the Cartesian product and then the union of then
components of each of the3n tuples. This motivates the following definitions.

Definition 4.29 (Factored belief space)Let Π = 〈C1, . . . , Cn〉 be a partition of the set of all
states. Then a factored belief space is〈G1, . . . , Gn〉 wheres ⊂ s′ for no {s, s′} ⊆ Gi and
Gi ⊆ 2Ci for all i ∈ {1, . . . , n}.

Intuitively, a factored belief space is a set of belief states, partitioned to subsets corresponding
to the observational classes. This is just a technical definition that makes it easier to talk about
the belief states corresponding to the same observational class. Notice the minimality condition:
none of the belief states in a factored belief space may be a subset of another. We want to have
the minimality condition because we use factored belief spaces as representations of those sets of
states for which a plan exists. If a plan exists for some belief stateB, then the same plan also
works for any belief stateB′ such thatB′ ⊆ B.

The factored representation of a one-element setS of states is simplyF(S) = 〈{C1∩S}, . . . , {Cn∩
S}〉. When it is obvious from the context, we often write simplyS instead ofF(S).

When we have two sets of belief states in the factored form, we may combine them and keep
the result in the factored form.

Definition 4.30 (Combination of factored belief spaces)LetG = 〈G1, . . . , Gn〉 andH = 〈H1, . . . ,Hn〉
be factored belief spaces. DefineG⊕H as〈G1 dH1, . . . , Gn dHn〉, where the operationd takes
union of two sets of sets and eliminates sets that are not set-inclusion maximal. It is formally
defined asG dH = {R ∈ G ∪H|R ⊂ K for noK ∈ G ∪H}.



88 CHAPTER 4. CONDITIONAL PLANNING

Important in this combination operation is that the minimality condition is preserved: any belief
state that is a subset of another belief state is eliminated.

The combination operator has the following properties.

Lemma 4.31 (Belief spaces with⊕ are commutative monoids) The operator⊕ is associative,
commutative and its identity element is〈∅, . . . , ∅〉.

A factored belief spaceG = 〈G1, . . . , Gn〉 can be viewed as representing the set of sets of states
flat(G) = {s1∪· · ·∪sn|si ∈ Gi for all i ∈ {1, . . . , n}}, and its cardinality is|G1| · |G2| · . . . · |Gn|.
The cardinality may be exponential on the size of the factored representation. Assuming that we
have a plan for all belief states inG, we also have a plan for any sets in flat(G). This plan starts by
a branch according to an observationC that is made, and then follows the plan for the respective
belief stateB ∩ C.

Definition 4.32 (Inclusion relation on belief spaces)A factored belief spaceG is included in
factored belief spaceH if for all S ∈ flat(G) there isS′ ∈ flat(H) such thatS ⊆ S′. We
write thisG v H.

The definitions have the property thatS ∈ flat(G) if and only ifF(S) v G.
We discuss the complexity of certain operations on belief spaces. The basic operations needed

in the planning algorithms are testing the membership of a set of states in a factored belief space,
and finding a set of states whose preimage with respect to an operator is not contained in the belief
space. This last operation is needed in the backup steps of our planning algorithm: find a plan that
covers belief states for which we did not have a plan earlier.

Theorem 4.33 TestingG v H for factored belief spacesG andH is polynomial time.

Proof: Testing〈G1, . . . , Gn〉 v 〈H1, . . . ,Hn〉 is simply by testing whether for alli ∈ {1, . . . , n}
and alls ∈ Gi there ist ∈ Hi such thats ⊆ t. �

Example 4.34 Consider the blocks world with three blocks with the goal state in which all the
blocks are on the table. There are three operators, each of which picks up one block (if there is
nothing on top of it) and places it on the table. We can only observe which blocks are not below
another block. This splits the state space to seven observational classes, corresponding to the
valuations of the state variables clear-A, clear-B and clear-C in which at least one block is clear.

The plan construction steps are given in Figure 4.10. Starting from the top left, the first diagram
depicts the goal belief state. The second diagram depicts the belief states obtained by computing
the strong preimage of the goal belief state with respect to the move-A-onto-table action and
splitting the set of states to belief states corresponding to the observational classes. The next two
diagrams are similarly for strong preimages of move-B-onto-table and move-C-onto-table.

The fifth diagram depicts the computation of the strong preimage from the union of two existing
belief states in which the block A is on the table and C is on B or B is on C. In the resulting belief
state A is the topmost block in a stack containing all three blocks. The next two diagrams similarly
construct belief states in which respectively B and C are the topmost blocks.

The last three diagrams depict the most interesting cases, constructing belief states that subsume
two existing belief states in one observational class. The first diagram depicts the construction of
the belief state consisting of both states in which A and B are clear and C is under either A or B.



4.4. PLANNING WITH PARTIAL OBSERVABILITY 89

CA B
?
?

C
?
?

B
?
?

A

? ?
B C

? ?
A C

? ?
BA

CA B

CA B
?
?

C
?
?

B
?
?

A

? ?
B C

? ?
A C

? ?
BA

CA B A
BC

A
B C

CA B

A
BC

?
?

C
?
?

B
?
?

A

? ?
B C

? ?
A C

? ?
BA

A
B C

CA B
A
B

C

A
B
C

CA B

A
BC

?
?

C
?
?

B
?
?

A

? ?
B C

? ?
A C

? ?
BA

A
B C

CA B
A
B

C

AB
C

A B
C

A
B
C

CA B
?
?

C
?
?

B
?
?

A

? ?
B C

? ?
A C

? ?
BA

CA B A
B C

A
B
C

A

B
C

A
BC A

B
C

A
B
C A B

C
AB
C

CA B
?
?

C
?
?

B
?
?

A

? ?
B C

? ?
A C

? ?
BA

A

B
C

A
B
C

CA B A
B C

B
A
C

A
BC

B

A
C

A
B

C

A
B
C A B

C
AB
C

CA B

A
BC

?
?

C
?
?

B
?
?

A

? ?
B C

? ?
A C

? ?
BA

A

B
C

A
B
C

B
A
C

B

A
C

CA B A
B C

C
B
A

C

B
AA

B
C

AB
C

A B
C

A
B
C

CA B
?
?

C
?
?

B
?
?

A

? ?
B C

? ?
A C

? ?
BA

A

B
C

A
B
C

B
A
C

B

A
C

C
B
A

A
B C

C

B
AA

B
C

CA B

A
B
C

A
B
C

A
BC

A
BC

A B
C

AB
C

CA B
?
?

C
?
?

B
?
?

A

? ?
B C

? ?
A C

? ?
BA

A

B
C

A
B
C

B
A
C

B

A
C

C
B
A

A
B C

C

B
A

CA B A
BC

A
B
C A B

C
AB
C

AB
C

A
B

C

A
B
C

A
BC

A
B

C

CA B
?
?

C
?
?

B
?
?

A

? ?
B C

? ?
A C

? ?
BA

A

B
C

A
B
C

B
A
C

B

A
C

C
B
A

C

B
A

CA B A
B C

AB
C

A
B
C

AB
C

A
B
C

A
BC A

B
C

A
BC A

B
C

A B
C

A
B C

A B
C

Figure 4.10: Solution of a simple blocks world problem

This belief state is obtained as the strong preimage of the union of two existing belief states, the
one in which all blocks are on the table and the one in which A is on the table and B is on top of
C. The action that moves A onto the table yields the belief state because if A is on C all blocks
will be on the table and if A is already on the table nothing will happen. Construction of the belief
states in which B and C are clear and A and C are clear is analogous and depicted in the last two
diagrams.

The resulting plan reaches the goal state from any state in the blocks world. The plan in the
program form is given in Figure 4.11 (order of construction is from the end to the beginning.)

�

The algorithm we give for extending factored belief spaces by computing the preimage of a
combination of some of its belief states is based on exhaustive search and runs in worst-case
exponential time. The algorithm is justified by the following theorem that shows that finding new
belief states is NP-hard. The proof is a reduction from SAT: represent each clause as the set of



90 CHAPTER 4. CONDITIONAL PLANNING

16:
IF clear-A AND clear-B AND clear-C THEN GOTO end
IF clear-A AND clear-C THEN GOTO 15
IF clear-B AND clear-C THEN GOTO 13
IF clear-A AND clear-B THEN GOTO 11
IF clear-A THEN GOTO 5
IF clear-B THEN GOTO 7
IF clear-C THEN GOTO 9

15:
move-C-onto-table

14:
IF clear-A AND clear-B AND clear-C THEN GOTO end
IF clear-A AND clear-C THEN GOTO 1

13:
move-B-onto-table

12:
IF clear-A AND clear-B AND clear-C THEN GOTO end
IF clear-B AND clear-C THEN GOTO 3

11:
move-A-onto-table

10:
IF clear-A AND clear-B AND clear-C THEN GOTO end
IF clear-A AND clear-B THEN GOTO 2

9:
move-C-onto-table

8:
IF clear-A AND clear-C THEN GOTO 1
IF clear-B AND clear-C THEN GOTO 2

7:
move-B-onto-table

6:
IF clear-A AND clear-B THEN GOTO 1
IF clear-B AND clear-C THEN GOTO 3

5:
move-A-onto-table

4:
IF clear-A AND clear-B THEN GOTO 2
IF clear-A AND clear-C THEN GOTO 3

3:
move-C-onto-table
GOTO end

2:
move-B-onto-table
GOTO end

1:
move-A-onto-table

end:

Figure 4.11: A plan for a partially observable blocks world problem



4.4. PLANNING WITH PARTIAL OBSERVABILITY 91

literals that are not in it, and then a satisfying assignment is a set of literals that is not included in
any of the sets.

Theorem 4.35 Testing whetherG = 〈G1, . . . , Gn〉 contains a setS of states such that spreimgo(S)
is not inG is NP-complete. This holds also for deterministic operatorso.

Proof: Membership in NP is trivial: nondeterministically choosesi ∈ Gi for everyi ∈ {1, . . . , n},
compute the preimager of s1∪· · ·∪sn in deterministic polynomial time, and verify in polynomial
time that the intersectionr ∩ Ci of the preimage with one of the observational classesCi is not in
Gi.

LetT = {E1, . . . , Em} be a set of clauses over a set of propositional variablesA = {a1, . . . , ak}.
We construct a factored belief space based on a state space in which the variablesa andâ for a ∈ A
and all these variables witha replaced byz, are the states. The variablesẑ represent negative lit-
erals. Define

E′
i = (A\Ei) ∪ {â|a ∈ A,¬a 6∈ Ei} for i ∈ {1, . . . ,m}
G = 〈{E′

1, . . . , E
′
m}, {{z1}, {ẑ1}}, . . . , {{zk}, {ẑk}}〉

Let o mapai to zi andâi to ẑi for all i ∈ {1, . . . , k}.
We claim thatT is satisfiable if and only if flat(G) contains a belief stateB such thatspreimgo(B)

is not inG.
AssumeT is satisfiable, that is, there isM such thatM |= T . DefineM ′ = {zi|ai ∈ A,M |=

ai} ∪ {ẑi|ai ∈ A,M 6|= ai}. Clearly,M ′ is a belief state inG. DefineM ′′ = {ai ∈ A|M |=
ai} ∪ {âi|ai ∈ A,M 6|= ai}. Clearly,M ′′ is the preimage ofM ′ with respect too.

We show thatM ′′ is not inG. Take anyi ∈ {1, . . . ,m}. BecauseM |= Ei, there isaj ∈ A
such thataj ∈ Ei andM |= aj (the case¬a ∈ Ei goes similarly.) Nowaj ∈ M ′′. By definition
now aj 6∈ E′

j . As this holds for alli ∈ {1, . . . ,m}, M ′′ is not a subset of anyEi, and hence it
does not belong toG.

Assume there is belief stateB in G such that the preimage ofB with respect too is not inG.
Clearly,B is a subset ofA∪{â|a ∈ A} with at most one ofai or âi for anyi ∈ {1, . . . , k}. Define
a propositional modelM such thatM |= a if and only if a ∈ B. We show thatM |= T . Take
any clauseEi from T . AsB is not inG, B 6⊆ E′

i. Hence there isaj or âj in B\E′
i. Consider the

case withaj (âj goes similarly.) Asaj 6∈ E′
i, aj ∈ Ei. By definition ofM , M |= aj and hence

M |= Ei. As this holds for alli ∈ {1, . . . ,m},M |= T . This completes the proof. �

Example 4.36 The construction in the above proof can be illustrated by the following example.
We use an operator that maps a variablex to the variablex0. LetT = {A∨B ∨C,¬A∨B,¬C}.
The corresponding factored belief space is

〈 {{Â, B̂, Ĉ}, {A, B̂, C, Ĉ}, {A, Â,B, B̂, C}},
{{A0}, {Â0}},
{{B0}, {B̂0}},
{{C0}, {Ĉ0}}〉.

�



92 CHAPTER 4. CONDITIONAL PLANNING

procedurefindnew(o,A,F ,H);
if F = 〈〉 and spreimgo(A) 6⊆ S for noS ∈ flat(H) then return A;
if F = 〈〉 then return ∅;
F is 〈{f1, . . . , fm}, F2, . . . , Fk〉 for k ≥ 1;
for i := 1 to m do
S := findnew(o,A ∪ fi,〈F2, . . . , Fk〉,H);
if S 6= ∅ then return S;

end;
return ∅

Figure 4.12: An algorithm for finding new belief states

Next we give an algorithm for constructing conditional plans. The basic step in the algorithm
is finding a belief state for which a plan can be shown to exist, based on a set of belief states with
plans.

The procedure in Figure 4.12 performs this step: it finds a setS of states that is not contained
in H and that is the strong preimage of a setS′ of states inF with respect to an operatoro. The
procedure runs in exponential time on the size ofF , and consumes space linear in the size ofF .
By Theorem 4.35 this is the best that can be expected (unless it turns out thatP = NP ).

Lemma 4.37 The procedure call findnew(o,∅,H,H ′) returns a setS′ such thatS′ = spreimgo(S)
for someS ∈ flat(H) andS′ ⊆ S′′ for noS′′ ∈ flat(H ′), and if no such set exists it returns∅.

Proof: The procedure goes through the elements〈S1, . . . , Sn〉 of F1 × · · · ×Fn and tests whether
spreimgo(S1 ∪ · · · ∪Sn) is inH. The setsS1 ∪ · · · ∪Sn are the elements of flat(F ). The traversal
throughF1 × · · · × Fn is by generating a search tree with elements ofF1 as children of the root
node, elements ofF2 as children of every child of the root node, and testing whether the strong
preimage is in it. �

The implementation of the procedure can be improved in many ways. The setsf1, . . . , fm can
be ordered according to cardinality so that the bigger preimages are tried out first and a new belief
state is found sooner. Also other kinds of heuristics could be applied here, for example ones that
would try to produce belief states closer to the initial state for example according to the heuristics
discussed in Section 4.4.1.

Definealtimgo(S) asimgo(wpreimgo(S)). This is the set of states that could have been reached
when a state inS was reached instead. NowS ⊆ altimgo(S), and for deterministic operators
S = altimgo(S).

Pruning techniques based o strong and weak preimages offi are the following.

1. Let o be deterministic. Ifspreimgo(fi) ⊆ spreimgo(fj) and i > j, or spreimgo(fi) ⊂
spreimgo(fj), then we can ignorefi.

If the strong preimage offi is smaller than that offj , the strong preimage that is found with
fi cannot be bigger than that withfj , and hence usingfi is unnecessary.

2. Pruning techniques for nondeterministic operators are more complicated.

If wpreimgo(fi) ⊆ wpreimgo(fj) and altimgo(fi) ∩ fi ⊆ altimgo(fj) and i > j, or
wpreimgo(fi) ⊂ wpreimgo(fj) andaltimgo(fi) ∩ fi ⊂ altimgo(fj) thenfi can be ignored.



4.4. PLANNING WITH PARTIAL OBSERVABILITY 93

procedureplan(I,O,G);
H := F(G);
progress := true;
while progress andI 6⊆ S for all S ∈ flat(H) do

progress := false;
for eacho ∈ O do
S := findnew(o,∅,H,H);
if S 6= ∅ then

begin
H :=H ⊕F(spreimgo(S));
progress := true;

end;
end;

end;
if I ⊆ S for someS ∈ flat(H) then return true
else return false;

Figure 4.13: A backward search algorithm for partially observable planning

kesken

A more advanced version of this technique can be utilized during search. If sets included
in C1, . . . , Ck have already been chosen and their union isB, statess ∈ fi such that
altimgo({s}) ∩ ((

⋃
i{1,...,k}Ci)\B) 6= ∅ do not help in finding a new (bigger) belief state.

kesken

Figure 4.13 shows an algorithm for finding plans for partially observable problems. The algo-
rithm uses the subprocedurefindnewfor extending the belief space (this is the NP-hard subproblem
from Theorem 4.35). The plans the algorithm produces are not guaranteed to be optimal because
it does not produce all possible plans in a breadth-first manner.

We have not here described the book-keeping needed for outputting a plan, and the algorithm
just returnstrue or falsedepending on whether a plan exists or not. Extending the algorithm with
the necessary book-keeping is straightforward.

Lemma 4.38 AssumeS ∈ flat(H). Then there isS′ ∈ flat(H ⊕G) so thatS ⊆ S′.

Lemma 4.39 LetS1, . . . , Sn be sets of states so that for everyi ∈ {1, . . . , n} there isS′i ∈ flat(H)
such thatSi ⊆ S′i, and there is no observational classC such that for some{i, j} ⊆ {1, . . . , n}
bothi 6= j andSi∩C 6= ∅ andSj∩C 6= ∅. Then there isS′ ∈ flat(H) such thatS1∪· · ·∪Sn ⊆ S′.

Theorem 4.40 Whenever there exists a finite acyclic plan for a problem instance, the algorithm
in Figure 4.13 returnstrue.

Proof: So assume there is a plan for a problem instance〈A, I,O,G,B〉. Label all nodes of
the plan as follows. The root nodeN is labeled withI, that is, l(N) = I. When possible
parent nodes of a noden are labeled, we can compute the label forn. Let 〈o1, n〉, . . . , 〈om, n〉
be the annotations of all operator nodesn1, . . . , nm in the plan withn as the child node, and let
{〈φ1, n〉, . . .}, . . . , {〈φk, n〉, . . .} the respective annotations of all branch nodesn′1, . . . , n

′
k with n



94 CHAPTER 4. CONDITIONAL PLANNING

as one of the child nodes. Then the label ofn is imgo1(l(n1)) ∪ · · · ∪ imgom(l(nm)) ∪ (l(n′1) ∩
φ1) ∪ · · · ∪ (l(n′k) ∩ φk). This labeling simply says what are the possible current states for every
node of the plan when the plan is executed starting from some initial state.

We show that –assuming that the algorithm does not terminate earlier after producing a su-
perset ofI – the algorithm determines that for all node labels a plan for reachingG exists if plans
exist for its child nodes.

Induction hypothesis: For each plan noden such that all paths to a terminal node have lengthi
or less, its labelS = l(n) is a subset of someS′ ∈ flat(H), whereH is the value of the program
variableH after thewhile loop exits andH could not be extended further.

Base casei = 0: Terminal nodes of the plan are labeled with subsets ofG. By Lemma 4.38,
G′ ∈ flat(H) for some setG′ such thatG ⊆ G′ becauseG was inH initially.

Inductive casei ≥ 1: Let n be a plan node. By the induction hypothesis for all child nodesn′

of n, l(n′) ⊆ S for someS ∈ flat(H).
If n is a branch node with child nodesn1, . . . , nk and respective conditionsφ1, . . . , φk, then

l(n) ∩ φ1, . . ., l(n) ∩ φk all occupy disjoint observational classes and superset ofl(n) ∩ φi for
everyi ∈ {1, . . . , k} is in flat(H). Hence by Lemma 4.39l(n) ⊆ S for someS ∈ flat(H).

If n is an operator node with operatoro and child noden′, then imgo(l(n)) ⊆ l(n′), and by
the induction hypothesisl(n′) ⊆ S′ for someS′ ∈ flat(H). We have to show thatl(n) ⊆ S′′ for
someS′′ ∈ flat(H). Assume that there is no suchS′′. But now by Lemma 4.37 findnew(o,∅,H,H)
would returnS′′′ such thatspreimgo(S′′′) ⊆ S for noS ∈ flat(H), and thewhile loop could not
have exited withH, contrary to our assumption aboutH. �

Theorem 4.41 Let Π = 〈A, I,O,G,B〉 be a problem instance. If procedure plan(I,O,G) in
Figure 4.13 returnstrue, thenΠ has a solution plan.

Proof: Let H0,H1, . . . be the sequence of factored belief spacesH produced by the algorithm.
We show that for alli ≥ 0, for every set of states inH i there is a plan that reachesG.

Induction hypothesis:H i contains only such setsS ∈ flat(H i) for which a plan reachingG
exists.

Base casei = 0: Initially H0 = F(G) and the only set inH0 isG. The empty plan reachesG
fromG.

Inductive casei ≥ 1: H i+1 is obtained asH i⊕F(spreimgo(S)) whereS =findnew(o,∅,H i,H i).
By Lemma 4.37S ∈ flat(H i) andspreimgo(S) ⊆ S′ for noS′ ∈ flat(H i). BecauseS is in H i,
there is a planπ for reachingG from S. The plan that executeso followed byπ reachesG from
spreimgo(S).

Let Z be any member of flat(H i+1). We show that forZ there is a plan for reachingG. The
plan forZ starts by a branch4. We show that for every possible observation, corresponding to one
observational class, there is a plan that reachesG. Let Cj be thejth observational class. When
observingCj , the current state is inZj = Z ∩ Cj . Now forZj there isZ ′

j ∈ H
i+1
j with Zj ⊆ Z ′

j ,

whereH i+1
j is thejth component ofH i+1. Now by induction hypothesis there is a plan forZ ′

j

if Z ′
j ∈ H i

j , and if Z ′
j ∈ H i+1

j \H i
j , then for branch corresponding toCj we use the plan for

spreimgo(S), asZ ′
j must bespreimgo(S) ∩ Cj . �

4Some of the branches might not be needed, and if the intersection ofZ with only one observational class is non-
empty the plan could start with an operator node instead of a degenerate branch node.



4.5. COMPUTATIONAL COMPLEXITY 95

4.5 Computational complexity

In this section we analyze the computational complexity of the main decision problems related
to nondeterministic planning. The conditional planning problem is a generalization of the deter-
ministic planning problem from Chapter 3, and therefore the plan existence problem is at least
PSPACE-hard. In this section we discuss the computational complexity of each of the three plan-
ning problems, the fully observable, the unobservable, and the general partially observable plan-
ning problem, showing them respectively complete for the complexity classes EXP, EXPSPACE
and 2-EXP.

4.5.1 Planning with full observability

We first show that the plan existence problem for nondeterministic planning with full observability
is EXP-hard and then that the problem is in EXP.

The EXP-hardness proof in Theorem 4.42 is by simulating polynomial-space alternating Tur-
ing machines by nondeterministic planning problems with full observability and the using the fact
that the complexity classes EXP and APSPACE are the same (see Section 2.4.) The most inter-
esting thing in the proof is the representation of alternation. Theorem 3.42 already showed how
deterministic Turing machines with a polynomial space bound are simulated, and the difference is
that we now have nondeterminism, that is, a configuration of the TM may have several successor
configurations, and that there are both∀ and∃ states.5

The∀ states mean that all successor configurations must be accepting (terminal or non-terminal)
configurations. The∃ states mean that at least one successor configuration must be an accepting
(terminal or non-terminal) configuration. Both of these requirements can be represented in the
nondeterministic planning problem.

The transitions from a configuration with a∀ state will correspond to one nondeterministic oper-
ator. That all successor configurations must be accepting (terminal or non-terminal) configurations
corresponds to requirement in planning that from all successor states of a state a goal state must
be reached.

Every transition from a configuration with∃ state will correspond to a deterministic operator,
that is, the transition may be chosen, as only one of the successor configurations needs to be
accepting.

Theorem 4.42 The problem of testing the existence of an acyclic plan for problem instances with
full observability is EXP-hard.

Proof: Let 〈Σ, Q, δ, q0, g〉 be any alternating Turing machine with a polynomial space boundp(x).
Let σ be an input string of lengthn.

We construct a problem instance in nondeterministic planning with full observability for sim-
ulating the Turing machine. The problem instance has a size that is polynomial in the size of the
description of the Turing machine and the input string.

The setA of state variables in the problem instance consists of

1. q ∈ Q for denoting the internal states of the TM,

2. si for every symbols ∈ Σ ∪ {|,�} and tape celli ∈ {0, . . . , p(n)}, and

5Restricting the proof of Theorem 4.42 to∃ states with nondeterministic transitions would yield a proof of the
NPSPACE-hardness of deterministic planning, but this is not interesting as PSPACE=NPSPACE.



96 CHAPTER 4. CONDITIONAL PLANNING

3. hi for the positions of the R/W headi ∈ {0, . . . , p(n) + 1}.

The unique initial state of the problem instance represents the initial configuration of the TM.
The corresponding formula is the conjunction of the following literals.

1. q0

2. ¬q for all q ∈ Q\{q0}.

3. si for all s ∈ Σ andi ∈ {1, . . . , n} such thatith input symbol iss.

4. ¬si for all s ∈ Σ andi ∈ {1, . . . , n} such thatith input symbol is nots.

5. ¬si for all s ∈ Σ andi ∈ {0, n+ 1, n+ 2, . . . , p(n)}.

6. �i for all i ∈ {n+ 1, . . . , p(n)}.

7. ¬�i for all i ∈ {0, . . . , n}.

8. |0

9. ¬|i for all n ∈ {1, . . . , p(n)}

10. h1

11. ¬hi for all i ∈ {0, 2, 3, 4, . . . , p(n) + 1}

The goal is the following formula.

G =
∨
{q ∈ Q|g(q) = accept}

Next we define the operators. All the transitions may be nondeterministic, and the important
thing is whether the transition is for a∀ state or an∃ state.6 For a given input symbol and a∀ state,
the transition corresponds to one nondeterministic operator, whereas for a given input symbol and
an∃ state the transitions corresponds to a set of deterministic operators.

To define the operators, we first define effects corresponding to all possible transitions.
For all〈s, q〉 ∈ (Σ∪{|,�})×Q, i ∈ {0, . . . , p(n)} and〈s′, q′,m〉 ∈ (Σ∪{|})×Q×{L,N,R}

define the effectτs,q,i(s′, q′,m) asα ∧ κ ∧ θ where the effectsα, κ andθ are defined as follows.
The effectα describes what happens to the tape symbol under the R/W head. Ifs = s′ then

α = > as nothing on the tape changes. Otherwise,α = ¬si ∧ s′i to denote that the new symbol in
theith tape cell iss′ and nots.

The effectκ describes the change to the internal state of the TM. Again, either the state changes
or does not, soκ = ¬q ∧ q′ if q 6= q′ and> otherwise. We defineκ = ¬q wheni = p(n) and
m = R so that when the space bound gets violated, no accepting state can be reached.

The effectθ describes the movement of the R/W head. Either there is movement to the left, no
movement, or movement to the right. Hence

θ =


¬hi ∧ hi−1 if m = L

> if m = N
¬hi ∧ hi+1 if m = R

6No operators are needed for accepting or rejecting states.



4.5. COMPUTATIONAL COMPLEXITY 97

By definition of TMs, movement at the left end of the tape is always to the right. Similarly, we
have state variable for R/W head positionp(n) + 1 and moving to that position is possible, but no
transitions from that position are possible, as the space bound has been violated.

Now, these effects that represent possible transitions are used in the operators that simulate the
ATM. Operators for existential statesq, g(q) = ∃ and for universal statesq, g(q) = ∀ differ. Let
〈s, q〉 ∈ (Σ ∪ {|,�})×Q, i ∈ {0, . . . , p(n)} andδ(s, q) = {〈s1, q1,m1〉, . . . , 〈sk, qk,mk〉}.

If g(q) = ∃, then definek deterministic operators

os,q,i,1 = 〈hi ∧ si ∧ q, τs,q,i(s1, q1,m1)〉
os,q,i,2 = 〈hi ∧ si ∧ q, τs,q,i(s2, q2,m2)〉
...
os,q,i,k = 〈hi ∧ si ∧ q, τs,q,i(sk, qk,mk)〉

That is, the plan determines which transition is chosen.
If g(q) = ∀, then define one nondeterministic operator

os,q,i = 〈hi ∧ si ∧ q, (τs,q,i(s1, q1,m1)|
τs,q,i(s2, q2,m2)|
...
τs,q,i(sk, qk,mk))〉.

That is, the transition is chosen nondeterministically.
We claim that the problem instance has a plan if and only if the Turing machine accepts without

violating the space bound.
If the Turing machine violates the space bound, the state variablehp(n)+1 becomes true and an

accepting state cannot be reached because no operator will be applicable.
Otherwise, we show inductively that from a computation tree of an accepting ATM we can

extract a conditional plan that always reaches a goal state, and vice versa. For obtaining an cor-
respondence between conditional plans and computation trees it is essential that the plans are
acyclic.

kesken
So, because all alternating Turing machines with a polynomial space bound can be in polyno-

mial time translated to a nondeterministic planning problem, all decision problems in APSPACE
are polynomial time many-one reducible to nondeterministic planning, and the plan existence
problem is APSPACE-hard and consequently EXP-hard. �

We can extend Theorem 4.42 to general plans with loops. The problem looping plans cause in
the proofs of this theorem is that a Turing machine computation of infinite length is not accepting
but the corresponding infinite length zero-probability plan execution is allowed to be a part of plan
and would incorrectly count as an accepting Turing machine computation.

To eliminate infinite plan executions we have to modify the Turing machine simulation. This
is by counting the length of the plan executions and failing when at least one state or belief state
must have been visited more than once. This modification makes infinite loops ineffective, and
any plan containing a loop can be translated to a finite non-looping plan by unfolding the loop. In
the absence of loops the simulation of alternating Turing machines is faithful.



98 CHAPTER 4. CONDITIONAL PLANNING

Theorem 4.43 The plan existence problem for problem instances with full observability is EXP-
hard.

Proof: This is an easy extension of the proof of Theorem 4.42. If there aren state variables, an
acyclic plan exists if and only if a plan with execution length at most2n exists, because visiting any
state more than once is unnecessary. Plans that rely on loops can be invalidated by counting the
number of actions taken and failing when this exceeds2n. This counting can be done by having
n + 1 auxiliary state variablesc0, . . . , cn that are initialized to false. Every operator〈p, e〉 is
extended to〈p, e∧ t〉 wheret is an effect that increments the binary number encoded byc0, . . . , cn
by one until the most significant bitcn becomes one. The goalG is replaced byG ∧ ¬cn.

Then a plan exists if and only if an acyclic plan exists if and only if the alternating Turing
machine accepts. �

Theorem 4.44 The problem of testing the existence of a plan for problem instances with full ob-
servability is in EXP.

Proof: The algorithm in Section 4.3.2 runs in exponential time in the size of the problem in-
stance. �

4.5.2 Planning without observability

The plan existence problem of conditional planning with unobservability is more complex than
that of conditional planning with full observability.

To show the unobservable problem EXPSPACE-hard by a direct simulation of exponential space
Turing machines, the first problem is how to encode the tape of the TM. With polynomial space, as
in the PSPACE-hardness and APSPACE-hardness proofs of deterministic planning and conditional
planning with full observability, it was possible to represent all the tape cells as the state variables
of the planning problem. With an exponential space bound this is not possible any more, as we
would need an exponential number of state variables, and the planning problem could not be
constructed in polynomial time.

Hence we have to find a more clever way of encoding the working tape. It turns out that we
can use the uncertainty about the initial state for this purpose. When an execution of the plan
that simulates the Turing machine is started, we randomly choose one of the tape cells to be the
watchedtape cell. This is the only cell of the tape for which the current symbol is represented in
the state variables. On all transitions the plan makes, if the watched tape cell changes, the change
is reflected in the state variables.

That the plan corresponds to a simulation of the Turing machine it is tested whether the transi-
tion the plan makes when the current tape cell is the watched tape cell is the one that assumes the
current symbol to be the one that is stored in the state variables. If it is not, the plan is not a valid
plan. Because the watched tape cell could be any of the exponential number of tape cells, all the
transitions the plan makes are guaranteed to correspond to the contents of the current tape cell of
the Turing machine, so if the plan does not simulate the Turing machine, the plan is not guaranteed
to reach the goal states.

The proof requires both several initial states and unobservability. Several initial states are
needed for selecting the watched tape cell, and unobservability is needed so that the plan can-



4.5. COMPUTATIONAL COMPLEXITY 99

not cheat: if the plan can determine what the current tape cell is, it could choose transitions that do
not correspond to the Turing machine on all but the watched tape cell. Because of unobservability
all the transitions have to correspond to the Turing machine.

Theorem 4.45 The problem of testing the existence of a plan for problem instances with unob-
servability is EXPSPACE-hard.

Proof: Proof is a special case of the proof of Theorem 4.48. We do not have∀ states and restrict
to deterministic Turing machines. Nondeterministic Turing machines could be simulated for a
NEXPSPACE-hardness proof, but it is already known that EXPSPACE = NEXPSPACE, so this
additional generality would not bring anything.

Let 〈Σ, Q, δ, q0, g〉 be any deterministic Turing machine with an exponential space bounde(x).
Let σ be an input string of lengthn. We denote theith symbol ofσ by σi.

The Turing machine may use spacee(n), and for encoding numbers from0 to e(n) + 1 corre-
sponding to the tape cells we needm = dlog2(e(n) + 2)e Boolean state variables.

We construct a problem instance in nondeterministic planning without observability for simu-
lating the Turing machine. The problem instance has a size that is polynomial in the size of the
description of the Turing machine and the input string.

We cannot have a state variable for every tape cell because the reduction from Turing machines
to planning would not be polynomial time. It turns out that it is not necessary to encode the whole
contents of the tape in the transition system of the planning problem, and that it suffices to keep
track of only one tape cell (which we will call thewatched tape cell) that is randomly chosen in
the beginning of every execution of the plan.

The setA of state variables in the problem instance consists of

1. q ∈ Q for denoting the internal states of the TM,

2. wi for i ∈ {0, . . . ,m− 1} for the watched tape celli ∈ {0, . . . , e(n)},

3. s for every symbols ∈ Σ ∪ {|,�} for the contents of the watched tape cell,

4. hi for i ∈ {0, . . . ,m− 1} for the position of the R/W headi ∈ {0, . . . , e(n) + 1}.

The uncertainty in the initial state is about which tape cell is the watched one. Otherwise the
formula encodes the initial configuration of the TM, and it is the conjunction of the following
formulae.

1. q0

2. ¬q for all q ∈ Q\{q0}.

3. Formulae for having the contents of the watched tape cell in state variablesΣ ∪ {|,�}.

| ↔ (w = 0)
� ↔ (w > n)
s ↔

∨
i∈{1,...,n},σi=s(w = i) for all s ∈ Σ

4. h = 1 for the initial position of the R/W head.



100 CHAPTER 4. CONDITIONAL PLANNING

So the initial state formula allows any values for state variableswi and the values of the state
variabless ∈ Σ are determined on the basis of the values ofwi. The expressionsw = i, w > i
denote the obvious formulae for testing integer equality and inequality of the numbers encoded by
w0, w1, . . .. Later we will also use effectsh := h+ 1 andh := h− 1 that represent incrementing
and decrementing the number encoded byh0, h1, . . ..

The goal is the following formula.

G =
∨
{q ∈ Q|g(q) = accept}

To define the operators, we first define effects corresponding to all possible transitions.
For all 〈s, q〉 ∈ (Σ∪{|,�})×Q and〈s′, q′,m〉 ∈ (Σ∪{|})×Q×{L,N,R} define the effect

τs,q(s′, q′,m) asα ∧ κ ∧ θ where the effectsα, κ andθ are defined as follows.
The effectα describes what happens to the tape symbol under the R/W head. Ifs = s′ then

α = > as nothing on the tape changes. Otherwise,α = ((h = w) B (¬s ∧ s′)) to denote that the
new symbol in the watched tape cell iss′ and nots.

The effectκ describes the change to the internal state of the TM. Again, either the state changes
or does not, soκ = ¬q ∧ q′ if q 6= q′ and> otherwise. If R/W head movement is to the right we
defineκ = ¬q ∧ ((h < e(n)) B q′) if q 6= q′ and(h = e(n)) B ¬q otherwise. This prevents
reaching an accepting state if the space bound is violated: no further operator applications are
possible.

The effectθ describes the movement of the R/W head. Either there is movement to the left, no
movement, or movement to the right. Hence

θ =


h := h− 1 if m = L

> if m = N
h := h+ 1 if m = R

By definition of TMs, movement at the left end of the tape is always to the right.
Now, these effectsτs,q(s′, q′,m) which represent possible transitions are used in the operators

that simulate the DTM. Let〈s, q〉 ∈ (Σ ∪ {|,�})×Q andδ(s, q) = {〈s′, q′,m〉}.
If g(q) = ∃, then define the operator

os,q = 〈((h 6= w) ∨ s) ∧ q, τs,q(s′, q′,m)〉

It is easy to verify that the planning problem simulates the DTM assuming that when operator
os,q is executed the current tape symbol is indeeds. So assume that someos,q is the first operator
that misrepresents the tape contents and thath = c for some tape cell locationc. Now there is an
execution of the plan so thatw = c. On this execution the preconditionos,q is not satisfied, and
the plan is not executable. Hence a valid plan cannot contain operators that misrepresent the tape
contents. �

Theorem 4.46 The problem of testing the existence of a plan for problem instances with unob-
servability is in EXPSPACE.

Proof: Proof is similar to the proof Theorem 3.43 but works at the level of belief states. �

The two theorems together yield the EXPSPACE-completeness of the plan existence problem
for conditional planning without observability.



4.5. COMPUTATIONAL COMPLEXITY 101

4.5.3 Planning with partial observability

We show that the plan existence problem of the general conditional planning problem with partial
observability is 2-EXP-complete. The hardness proof is by a simulation of AEXPSPACE=2-EXP
Turing machines. Membership in 2-EXP is obtained directly from the decision procedure dis-
cussed earlier: the procedure runs in polynomial time in the size of the enumerated belief space of
doubly exponential size.

Showing that the plan existence problem for planning with partial observability is in 2-EXP is
straightforward. The easiest way to see this is to view the partially observable planning problem
as a nondeterministic fully observable planning problem with belief states viewed as states. An
operator maps a belief state to another belief state nondeterministically: compute the image of a
belief state with respect to an operator, and choose the subset of its states that correspond to one
of the possible observations. Like pointed out in the proof of Theorem 4.44, the algorithms for
fully observable planning run in polynomial time in the size of the state space. The state space
with the belief states as the states has a doubly exponential size in the size of the problem instance,
and hence the algorithm runs in doubly exponential time in the size of the problem instance. This
gives us the membership in 2-EXP.

Theorem 4.47 The plan existence problem for problem instances with partial observability is in
2-EXP.

The hardness proof is an extension of both the EXP-hardness proof of Theorem 4.42 and of
the EXPSPACE-hardness proof of Theorem 4.45. From the first proof we have the simulation of
alternating Turing machines, and from the second proof the simulation of Turing machines with
an exponentially long tape.

Theorem 4.48 The problem of testing the existence of an acyclic plan for problem instances with
partial observability is 2-EXP-hard.

Proof: Let 〈Σ, Q, δ, q0, g〉 be any alternating Turing machine with an exponential space bound
e(x). Letσ be an input string of lengthn. We denote theith symbol ofσ by σi.

The Turing machine may use spacee(n), and for encoding numbers from0 to e(n) + 1 corre-
sponding to the tape cells we needm = dlog2(e(n) + 2)e Boolean state variables.

We construct a problem instance in nondeterministic planning with full observability for sim-
ulating the Turing machine. The problem instance has a size that is polynomial in the size of the
description of the Turing machine and the input string.

We cannot have a state variable for every tape cell because the reduction from Turing machines
to planning would not be polynomial time. It turns out that it is not necessary to encode the whole
contents of the tape in the transition system of the planning problem, and that it suffices to keep
track of only one tape cell (which we will call thewatched tape cell) that is randomly chosen in
the beginning of every execution of the plan.

The setA of state variables in the problem instance consists of

1. q ∈ Q for denoting the internal states of the TM,

2. wi for i ∈ {0, . . . ,m− 1} for the watched tape celli ∈ {0, . . . , e(n)},

3. s for every symbols ∈ Σ ∪ {|,�} for the contents of the watched tape cell,



102 CHAPTER 4. CONDITIONAL PLANNING

4. s∗ for everys ∈ Σ ∪ {|} for the symbol last written (important for nondeterministic transi-
tions),

5. L, R andN for the last movement of the R/W head (important for nondeterministic transi-
tions), and

6. hi for i ∈ {0, . . . ,m− 1} for the position of the R/W headi ∈ {0, . . . , e(n) + 1}.

The observable state variables areL, N andR, q ∈ Q, ands∗ for s ∈ Σ. These are needed by
the plan to decide how to proceed execution after a nondeterministic transition with a∀ state.

The uncertainty in the initial state is about which tape cell is the watched one. Otherwise the
formula encodes the initial configuration of the TM, and it is the conjunction of the following
formulae.

1. q0

2. ¬q for all q ∈ Q\{q0}.

3. ¬s∗ for all s ∈ Σ ∪ {|}.

4. Formulae for having the contents of the watched tape cell in state variablesΣ ∪ {|,�}.

| ↔ (w = 0)
� ↔ (w > n)
s ↔

∨
i∈{1,...,n},σi=s(w = i) for all s ∈ Σ

5. h = 1 for the initial position of the R/W head.

So the initial state formula allows any values for state variableswi and the values of the state
variabless ∈ Σ are determined on the basis of the values ofwi. The expressionsw = i, w > i
denote the obvious formulae for testing integer equality and inequality of the numbers encoded by
w0, w1, . . .. Later we will also use effectsh := h+ 1 andh := h− 1 that represent incrementing
and decrementing the number encoded byh0, h1, . . ..

The goal is the following formula.

G =
∨
{q ∈ Q|g(q) = accept}

Next we define the operators. All the transitions may be nondeterministic, and the important
thing is whether the transition is for a∀ state or an∃ state. For a given input symbol and a∀ state,
the transition corresponds to one nondeterministic operator, whereas for a given input symbol and
an∃ state the transitions corresponds to a set of deterministic operators.

To define the operators, we first define effects corresponding to all possible transitions.
For all 〈s, q〉 ∈ (Σ∪{|,�})×Q and〈s′, q′,m〉 ∈ (Σ∪{|})×Q×{L,N,R} define the effect

τs,q(s′, q′,m) asα ∧ κ ∧ θ where the effectsα, κ andθ are defined as follows.
The effectα describes what happens to the tape symbol under the R/W head. Ifs = s′ then

α = > as nothing on the tape changes. Otherwise,α = ((h = w) B (¬s ∧ s′)) ∧ s′∗ ∧ ¬s∗ to
denote that the new symbol in the watched tape cell iss′ and nots, and to make it possible for the
plan to detect which symbol was written to the tape by the possibly nondeterministic transition.

The effectκ describes the change to the internal state of the TM. Again, either the state changes
or does not, soκ = ¬q ∧ q′ if q 6= q′ and> otherwise. If R/W head movement is to the right we



4.5. COMPUTATIONAL COMPLEXITY 103

defineκ = ¬q ∧ ((h < e(n)) B q′) if q 6= q′ and(h = e(n)) B ¬q otherwise. This prevents
reaching an accepting state if the space bound is violated: no further operator applications are
possible.

The effectθ describes the movement of the R/W head. Either there is movement to the left, no
movement, or movement to the right. Hence

θ =


(h := h− 1) ∧ L ∧ ¬N ∧ ¬R if m = L

N ∧ ¬L ∧ ¬R if m = N
(h := h+ 1) ∧R ∧ ¬L ∧ ¬N if m = R

By definition of TMs, movement at the left end of the tape is always to the right.
Now, these effectsτs,q(s′, q′,m) which represent possible transitions are used in the opera-

tors that simulate the ATM. Operators for existential statesq, g(q) = ∃ and for universal states
q, g(q) = ∀ differ. Let 〈s, q〉 ∈ (Σ ∪ {|,�})×Q andδ(s, q) = {〈s1, q1,m1〉, . . . , 〈sk, qk,mk〉}.

If g(q) = ∃, then definek deterministic operators

os,q,1 = 〈((h 6= w) ∨ s) ∧ q, τs,q(s1, q1,m1)〉
os,q,2 = 〈((h 6= w) ∨ s) ∧ q, τs,q(s2, q2,m2)〉
...
os,q,k = 〈((h 6= w) ∨ s) ∧ q, τs,q(sk, qk,mk)〉

That is, the plan determines which transition is chosen.
If g(q) = ∀, then define one nondeterministic operator

os,q = 〈((h 6= w) ∨ s) ∧ q, (τs,q(s1, q1,m1)|
τs,q(s2, q2,m2)|
...
τs,q(sk, qk,mk)〉).

That is, the transition is chosen nondeterministically.
We claim that the problem instance has a plan if and only if the Turing machine accepts without

violating the space bound. If the Turing machine violates the space bound, thenh > e(n) and an
accepting state cannot be reached because no further operator will be applicable.

From an accepting computation tree of an ATM we can construct a plan, and vice versa. Ac-
cepting final configurations are mapped to terminal nodes of plans,∃-configurations are mapped
to operator nodes in which an operator corresponding to the transition to an accepting successor
configuration is applied, and∀-configurations are mapped to operator nodes corresponding to the
matching nondeterministic operators followed by a branch node that selects the plan nodes corre-
sponding to the successors of the∀ configuration. The successors of∀ and∃ configurations are
recursively mapped to plans.

Construction of computation trees from plans is similar, but involves small technicalities. A plan
with DAG form can be turned into a tree by having several copies of the shared subplans. Branches
not directly following the nondeterministic operator causing the uncertainty can be moved earlier
so that every nondeterministic operator is directly followed by a branch that chooses a successor
node for every possible new state, written symbol and last tape movement. With these transforma-
tions there is an exact match between plans and computation trees of the ATM, and mapping from
plans to ATMs is straightforward like in the opposite direction.



104 CHAPTER 4. CONDITIONAL PLANNING

Because alternating Turing machines with an exponential space bound are polynomial time
reducible to the nondeterministic planning problem with partial observability, the plan existence
problem is AEXPSPACE=2-EXP-hard. �

What remains to be done is the extension of the above theorem to the case with arbitrary (pos-
sibly cyclic) plans. For the fully observable case counting the execution length does not pose a
problem because we only have to count an exponential number of execution steps, which can be
represented by a polynomial number of state variables, but in the partially observable case we
need to count a doubly exponential number of execution steps, as the number of belief states to be
visited may be doubly exponential. A binary representation of these numbers requires an exponen-
tial number of bits, and we cannot use an exponential number of state variables for the purpose,
because the reduction to planning would not be polynomial time. However, partial observability
together with only a polynomial number of auxiliary state variables can be used to force the plans
to count doubly exponentially far.

Theorem 4.49 The plan existence problem for problem instances with partial observability is 2-
EXP-hard.

Proof: We extend the proof of Theorem 4.48 by a counting scheme that makes cyclic plans inef-
fective. We show how counting the execution length can be achieved within a problem instance
obtained from the alternating Turing machine and the input string in polynomial time.

Instead of representing the exponential number of bits explicitly as state variables, we use a
randomizing technique for forcing the plans to count the number of Turing machine transitions.
The technique has resemblance to the idea in simulating exponentially long tapes in the proofs of
Theorems 4.45 and 4.42.

For a problem instance withn state variables (representing the Turing machine configurations)
executions that visit each belief state at most once may have length22n

. Representing numbers
from 0 to22n − 1 requires2n binary digits. We introducen+ 1 new unobservable state variables
d0, . . . , dn for representing the index of one of the digits andvd for the value of that digit, and
new state variablesc0, . . . , cn through which the plan indicates changes in the counter of Turing
machine transitions. There is a set of operators by means of which the plan sets the values of these
variables before every transition of the Turing machine is made.

The idea of the construction is the following. Whenever the counter of TM transitions is incre-
mented, one of the2n digits in the counter changes from 0 to 1 and all of the less significant digits
change from 1 to 0. The plan is forced to communicate the index of the digit that changes from
0 to 1 by the state variablesc0, . . . , cn. The unobservable state variablesd0, . . . , dn, vd store the
index and value of one of the digits (chosen randomly in the beginning of the plan execution), that
we call the watched digit, and they are used for checking that the reporting ofc0, . . . , cn by the
plan is truthful. The test for truthful reporting is randomized, but this suffices to invalidate plans
that incorrectly report the increments, as a valid plan has to reach the goals on every possible exe-
cution. The plan is invalid if reporting is false or when the count can exceed22n

. For this reason
a plan for the problem instance exists if and only if an acyclic plan exists if and only if the Turing
machine accepts the input string.

Next we exactly define how the problem instances defined in the proof of Theorem 4.48 are
extended with a counter to prevent unbounded looping.

The initial state description is extended with the conjunct¬dv to signify that the watched digit



4.5. COMPUTATIONAL COMPLEXITY 105

is initially 0 (all the digits in the counter implicitly represented in the belief state are 0.) The state
variablesd0, . . . , dn may have any values which means that the watched digit is chosen randomly.
The state variablesdv, d0, . . . , dn are all unobservable so that the plan does not know the watched
digit (may not depend on it).

There is also a failure flagf that is initially set to false by having¬f in the initial states formula.
The goal is extended by¬f ∧ ((d0 ∧ · · · ∧ dn)→¬dv) to prevent executions that lead to setting

f true or that have length22n+1−1 or more. The conjunct(d0∧· · ·∧dn)→¬dv is false if the index
of the watched digit is2n+1− 1 and the digit is true, indicating an execution of length≥ 22n+1−1.

Then we extend the operators simulating the Turing machine transitions, as well as introduce
new operators for indicating which digit changes from 0 to 1.

The operators for indicating the changing digit are

〈>, ci〉 for all i ∈ {0, . . . , n}
〈>,¬ci〉 for all i ∈ {0, . . . , n}

The operators for Turing machine transitions are extended with the randomized test that the digit
the plan claims to change from 0 to 1 is indeed the one: every operator〈p, e〉 defined in the proof
of Theorem 4.48 is replaced by〈p, e∧t〉where the testt is the conjunction of the following effects.

((c = d) ∧ dv) B f
(c = d) B dv

((c > d) ∧ ¬dv) B f
(c > d) B ¬dv

Herec = d denotes(c0 ↔ d0) ∧ · · · ∧ (cn ↔ dn) andc > d encodes the greater-than test for the
binary numbers encoded byc0, . . . , cn andd0, . . . , dn.

The above effects do the following.

1. When the plan claims that the watched digit changes from 0 to 1 and the value ofdv is 1,
fail.

2. When the plan claims that the watched digit changes from 0 to 1, changedv to 1.

3. When the plan claims that a more significant digit changes from 0 to 1 and the value ofdv

is 0, fail.

4. When the plan claims that a more significant digit changes from 0 to 1, set the value ofdv

to 0.

That these effects guarantee the invalidity of a plan that relies on unbounded looping is because
the failure flagf will be set if the plan lies about the count, or the most significant bit with index
2n+1 − 1 will be set if the count reaches22n+1−1. Attempts of unfair counting are recognized and
consequentlyf is set to true because of the following.

Assume that the binary digit at indexi changes from 0 to 1 (and therefore all less significant
digits change from 1 to 0) and the plan incorrectly claims that it is the digitj that changes, and
this is the first time on that execution that the plan lies (hence the value ofdv is the true value of
the watched digit.)

If j > i, theni could be the watched digit (and hencec > d), and forj to change from 0
to 1 the less significant biti should be 1, but we would know that it is not becausedv is false.
Consequently on this plan execution the failure flagf would be set.



106 CHAPTER 4. CONDITIONAL PLANNING

If j < i, thenj could be the watched digit (and hencec = d), and the value ofdv would indicate
that the current value of digitj is 1, not 0. Consequently on this plan execution the failure flagf
would be set.

So, if the plan does not correctly report the digit that changes from 0 to 1, then the plan is not
valid. Hence any valid plan correctly counts the execution length which cannot exceed22n+1−1. �

4.5.4 Polynomial size plans

We showed in Section 3.8 that the plan existence problem of deterministic planning is only NP-
complete, in contrast to PSPACE-complete, when a restriction to plans of polynomial length is
made. Here we investigate the same question for conditional plans.

Theorem 4.50 The plan existence problem for conditional planning without observability re-
stricted to polynomial length plans is inΣp

2.

Proof: Let p(n) be any polynomial. We give an NPNP algorithm (Turing machine) that solves the
problem. Let the problem instance〈A, I,O,G, ∅〉 have sizen.

First guess a sequence of operatorsσ = o0, o1, . . . , ok for k < p(n). This is nondeterministic
polynomial time computation.

Then use an NP-oracle for testing thatσ is a solution. The oracle is a nondeterministic polynomial-
time Turing machine that accepts if a plan execution does not lead to a goal state or if the plan
is not executable (operator precondition not satisfied). The oracle guesses an initial state and for
each nondeterministic operator for each step which nondeterministic choices are made, and then
in polynomial time tests whether the execution of the operator sequence leads to a goal state.

1. Guess valuationI ′ that satisfiesI.

2. Guess the results of the nondeterministic choices for every operator in the plan: replace
everyp1e1| · · · |pnen by a nondeterministically selectedei.

3. Computesj = appoj (appoj−1(· · ·appo2(appo1(I
′)))) for j = 0, j = 1, j = 2, . . . , j = k.

4. If sj 6|= cj for oj = 〈cj , ej〉, accept.

5. If sk 6|= G, accept.

6. Otherwise reject.

�

Theorem 4.51 The plan existence problem for conditional planning without observability re-
stricted to polynomial length plans isΣp

2-hard.

Proof: Truth of QBF of the form∃x1 · · ·xn∀y1 · · · ymφ is Σp
2-complete. We reduce this problem

to the plan existence problem of unobservable planning with polynomial length plans.

• A = {x1, . . . , xn, y1, . . . , ym, s, g}



4.6. LITERATURE 107

deterministic deterministic non-deterministic
context-independent context-dependent context-dependent

full observability PSPACE PSPACE EXPTIME
no observability PSPACE EXPSPACE EXPSPACE
partial observability PSPACE EXPSPACE 2-EXPTIME

Table 4.2: Computational complexity of plan existence problems

deterministic deterministic non-deterministic
context-independent context-dependent context-dependent

full observability PSPACE PSPACE EXPTIME
no observability PSPACE PSPACE EXPSPACE
partial observability PSPACE PSPACE 2-EXPTIME

Table 4.3: Computational complexity of plan existence problems with one initial state

• I = ¬x1 ∧ · · · ∧ ¬xn ∧ ¬g ∧ s

• O = {〈s, x1〉, 〈s, x2〉, . . . , 〈s, xn〉, 〈s,¬s ∧ (φ B g)〉}

• G = g

Out claim is that there is a plan if and only if∃x1 · · ·xn∀y1 · · · ymφ is true.
Assume the QBF is true, that is, there is a valuationx for x1, . . . , xn so thatx, y |= φ for any

valuationy of y1, . . . , ym. LetX = {〈s, xi〉|i ∈ {1, . . . , n}, x(xi) = 1}. Now the operatorsX
in any order followed by〈s,¬s ∧ (φ B g)〉 is a plan: whatever valuesy1, . . . , ym have,φ is true
after executing the operatorsX, and hence the last operator makesG = g true.

Assume there is a plan. The plan has one occurrence of〈s,¬s ∧ (φ B g)〉 and it must be the
last operator. Define the valuationx of x1, . . . , xn as follows. Letx(xi) = 1 iff 〈s, xi〉 is one of
the operators in the plan, for alli ∈ {1, . . . , n}. Becauseg is reached,x, y |= φ for any valuation
y of y1, . . . , ym, and the QBF is therefore true. �

4.5.5 Summary of the results

The complexities of the plan existence problem under different restrictions on operators and ob-
servability are summarized in Tables 4.2 (with an arbitrary number of initial states) and 4.3 (with
one initial state). The different columns list the complexities with different restrictions on the
operators. In the previous sections we have considered the general problems with arbitrary opera-
tors containing conditional effects and nondeterministic choice. These results are summarized in
the third column. The second column lists the complexities in the case without nondeterminism
(choice|), and the first column without nondeterminism (choice|) and without conditional effects
(B). These results are not given in this lecture.

4.6 Literature

There is a difficult trade-off between the two extreme approaches, producing a conditional plan
covering all situations that might be encountered, and planning only one action ahead. Schoppers



108 CHAPTER 4. CONDITIONAL PLANNING

[1987] proposeduniversal plansas a solution to the high complexity of planning. Ginsberg[1989]
attacked Schopper’s idea. Schopper’s proposal was to have memoryless plans that map any given
observations to an action. He argued that plans have to be memoryless in order to be able to react
to all the unforeseeable situations that might be encountered during plan execution. Ginsberg
argued that plans that are able to react to all possible situations are necessarily much too big to
be practical. It seems to us that Schopper’s insistence on using plans without a memory is not
realistic nor necessary, and that most of Ginsberg argumentation on impracticality of universal
plans relies on the lack of any memory in the plan execution mechanism. Of course, we agree that
a conditional plan that can be executed efficiently can be much bigger than a plan or a planner that
has no restrictions on the amount of time consumed in deciding about the action to be taken. Plans
without such restrictions could have as high expressivity as Turing machines, for example, and
then a conditional plan does not have to be less succinct than the description of a general purpose
planning algorithm.

There is some early work on conditional planning that mostly restricts to the fully observable
case and is based on partial-order planning[Etzioni et al., 1992; Peot and Smith, 1992; Pryor and
Collins, 1996]. We have not discussed these algorithms because they have only been shown to
solve very small problem instances.

A variants of the algorithm for constructing plans for nondeterministic planning with full ob-
servability in Section 4.3.1 was first presented by Cimatti et al.[2003]. The algorithms by Cimatti
et al. construct mappings of states to actions whereas our presentation in Section 4.3 focuses on
the computation of distances of states, and plans are synthesized afterwards on the basis of the
distances. We believe that our algorithms are conceptually simpler. Cimatti et al. also presented
an algorithm for findingweak plansthat may reach the goals but are not guaranteed to. However,
finding weak plans is polynomially equivalent to the deterministic planning problem of Chap-
ter 3 by an easy reduction that replaces each nondeterministic operator by a set of deterministic
operators.

The nondeterministic planning problem with unobservability is not very interesting because
all robots and intelligent beings can sense their environment in at least some extent. However,
there are problems (outside AI) that are equivalent to the unobservable planning problem. Finding
homing/reset/synchronization sequences of circuits/automata is an example of such a problem
[Pixley et al., 1992]. There are extensions of the distance and cardinality based heuristics for
planning without observability not discussed in this lecture[Rintanen, 2004].

Bertoli et al. have presented a forward search algorithm for finding conditional plans in the
general partially observable case[Bertoli et al., 2001].

The computational complexity of conditional planning was first investigated by Littman[1997]
and Haslum and Jonsson[2000]. They presented proofs for the EXPTIME-completeness of plan-
ning with full observability and the EXPSPACE-completeness of planning without observability.
The hardness parts of the proofs were reductions respectively from the existence problem of win-
ning strategies for the gameG4 [Stockmeyer and Chandra, 1979] and from the universality prob-
lem of regular expressions with exponentiation[Hopcroft and Ullman, 1979]. In this chapter we
gave more direct hardness proofs by direct simulation of alternating polynomial space (exponential
time) and exponential space Turing machines.



Chapter 5

Probabilistic planning

Probabilistic planning is an extension of nondeterministic planning with exact information on the
probabilities of nondeterministic events.

Exact probabilities are important because it is not just important to get things done, but to get
them done efficiently, and for goals for which there is no guarantee that they are reached, it is
important to reach them as likely as possible.

The introduction of probabilities complicates planning, both conceptually and computationally.
Whereas in the non-probabilistic of conditional planning with partial observability it is sufficient
to work in a finite discrete belief space, the introduction of probabilities makes the belief space
continuous and thereby infinite. This means that there are no algorithms for doing planning, that
is, there is no program that either delivers a plan (with a given property) or announces that no plans
exist.

However, despite these difficulties one is forced to face, probabilities are important in many
types of applications, and algorithms for probabilistic planning are therefore worth studying.

In this section we discuss a number of algorithms for probabilistic planning, starting from al-
gorithms for the conditional planning problem with full observability. The use of probabilities
allows to consider more general plan quality criteria than those that were considered in connection
with non-probabilistic planning problems. A main difference is that there is no necessity to re-
strict to planning with the objective of reaching one of designated goal states. Instead, actions and
states are associated with rewards/costs, and the objective is to maximize the rewards (or minimize
costs) over the execution of a plan. This kind of problems naturally generalize to plan executions
of infinite length.

5.1 Stochastic transition systems with rewards

In Section 2.1 we gave a basic definition of deterministic and nondeterministic transition systems.
For expressing exact transition probabilities we need a new definition of transition systems.

A stochastic transition system consists of a finite setS of states. The actions do not just associate
a set of possible successor states to each state, but a probability distribution on the set of possible
successor states.

An action is a partial function fromS to probability distributions overS. Partiality means that
not all actions are applicable in all states. A probability distributionp is a function that mapsS to
real numbersr ∈ [0, 1] so that

∑
s∈S p(s) = 1.0. The probability distribution indicates how likely

109



110 CHAPTER 5. PROBABILISTIC PLANNING

each state is as a successor state of a given state.
In many types of probabilistic planning problems considered in the literature the objective is

not to reach one of a set of designated goal states. Instead, the objective is to act in a way that
maximizes therewardsor minimizes thecosts. Planning problems with a designated set of goal
states can be expressed in terms of rewards, but not vice versa.

Definition 5.1 A stochastic transition system with rewardsis a 4-tuple〈S,A, p,R, 〉 where

• S is a finite set of states,

• A is a finite set of actions,

• p is a partial function that maps each states ∈ S and actiona ∈ A to a probability
distribution onS, and

• R : S×A→ R is a reward function which maps each states ∈ S and actiona ∈ A to real
number.

A major difference to the definition of Markov decision processes[Puterman, 1994] is thatp is
a partial function, that is, not all states are assigned a probability distribution. This is for having a
match between the definition of operators in AI planning, where not all actions are applicable in
all states. Below, we will denote the set of actions applicable in a states ∈ S by A(S). We also
require thatA(s) is non-empty for everys ∈ S.

Notice that we have not defined initial states or a probability distribution on possible initial
states: the most important algorithms find plans that reach the goals from any initial state. Clearly,
when the number of states is very high and the sets of initial states are small, more efficient
planning could be obtained by taking information about the set of initial states into account.

Stochastic transition systems can be described in terms of state variables and operators just like
the transition systems earlier discussed in this lecture. A nondeterministic operator〈c, e〉, as given
in Definition 4.1, assigns a probability distribution corresponding toe, as given in Definition 4.2,
to any states such thats |= c.

5.2 Problem definition

A given plan produces infinite sequences of rewardsr1, r2, . . .. Clearly, if the planning problem
has several initial states or if the actions are nondeterministic this sequence of rewards is not
unique. In either case, possible plans are assessed in terms of these rewards, and there are several
possibilities how good plans are defined. Because the sequences are infinite, we in general cannot
simply take their sum and compare them. Instead, several other possibilities have been considered.

1. Expected total rewards over a finite horizon.

This is a natural alternative that allows using the normal arithmetic sum of the rewards.
However, there is typically no natural bound on the horizon length.

2. Expected average rewards over an infinite horizon.

This is probably the most natural way of assessing plans. However, there are several tech-
nical complications that make average rewards difficult to use.



5.3. ALGORITHMS FOR FINDING FINITE HORIZON PLANS 111

3. Expected discounted rewards over an infinite horizon.

This is the most often used criterion in connection with Markov decision processes. Dis-
counting means multiplying theith reward byλi−1 and it means that early rewards are
much more important than rewards obtained much later. The discount constantλ has a
value strictly between 0.0 and 1.0. The sum of the geometrically discounted rewards is
finite. Like with choosing the horizon length when evaluating plans with respect to their
behavior within a finite horizon, it is often difficult to say why a certain discount constantλ
is used.

For the latter two infinite horizon problems there always is an optimal plan that is a mapping
from states to actions, and this is the type of plan used in most of this section.

In the first case with a bounded horizon the optimal plans cannot be represented as mappings
from state to actionsif it really is the case that the length of the plan execution indeed equals the
horizon length, and instead mappings from states and time points to actions are needed. This is
because for example at the last stage all rewards that are obtained are from the last action. The
optimal plans are therefore time-dependent. However, nothing prevents using the first stage of the
finite horizon plan as a normal plan, that is, as a mapping from states to actions.

We state the probabilistic conditional planning problem in the general form. Like with non-
probabilistic conditional planning, observability restrictions are expressed in terms of a set of state
variables that are observable.

Definition 5.2 A 5-tuple〈A, I,O,B,R〉 consisting of a setA of state variables, a probability
distributionI over valuations ofA, a setO of operators, a reward functionR, and a setB ⊆ A
of state variables isa problem instance in probabilistic nondeterministic planning.

I is a set{〈φ1, p1〉, 〈φ2, p2〉, . . . , 〈φn, pn〉} that expresses a probability distribution over valua-
tions ofA. We require thatφi |= ¬φj for every{i, j} ⊆ {1, . . . , n}.
R(o) for everyo ∈ O is a set{〈φ1, r1〉, 〈φ2, r2〉, . . . , 〈φm, rm〉} that expresses the rewards

obtained wheno is applied: ifo is applied ins ands |= φk, then reward isrk. We require that
φi |= ¬φj for every{i, j} ⊆ {1, . . . ,m}.

Definition 5.3 A plan for a problem instance is a functionπ : S → A that assigns each state an
action.

A plan is executed in the obvious way: when the current state iss ∈ S, then executeπ(s) to
reach a new current state, and so on. Plan execution does not terminate.

5.3 Algorithms for finding finite horizon plans

Conceptually the simplest probabilistic planning is when plan executions are restricted to have a
finite horizon of lengthN . We briefly describe this problem to illustrate the techniques that are
used in connection with the infinite horizon planning problems.

The optimum valuesvi(s) that can be obtained in states ∈ S at time pointi ∈ {1, . . . , N}
fulfill the following equations.

vN (s) = max
a∈A(s)

R(s, a)



112 CHAPTER 5. PROBABILISTIC PLANNING

vi(s) = max
a∈A(s)

(
R(s, a) +

∑
s′∈S

p(s′|s, a)vi+1(s′)

)
, for i ∈ {1, . . . , N − 1}

The value at the last stageN is simply the best immediate reward that can be obtained, and
values of states for the other stages are obtained in terms of the values of states for the later stages.

These equations also directly yield an algorithm for computing the optimal values and optimal
plans: first computevN , thenvN−1, vN−2 and so on, untilv1 is obtained. The action to be taken
in states ∈ S at time pointi is π(s, i) defined by

π(s,N) = arg max
a∈A(s)

R(s, a)

π(s, i) = arg max
a∈A(s)

(
R(s, a) +

∑
s′∈S

p(s′|s, a)vi+1(s′)

)
, for i ∈ {1, . . . , N − 1}

5.4 Algorithms for finding plans under discounted rewards

The valuev(s) of a states ∈ S is the discounted sum of the expected rewards that can be obtained
by choosing the best possible action ins and assuming that the best possible actions are also
chosen in all the possible successor states. The following equations, one for each states ∈ S,
characterize the relations between the values of states of a stochastic transition system under an
optimal plan and geometrically discounted rewards with discount constantλ.

v(s) = max
a∈A(s)

(
R(s, a) +

∑
s′∈S

λp(s′|s, a)v(s′)

)
(5.1)

These equations are called the optimality equations or the Bellman equations, and they are
the basis of the most important algorithms for finding optimal plans for probabilistic planning
problems with full observability.

5.4.1 Evaluating the value of a given plan

Given a planπ its value under discounted rewards with discount constantλ satisfies the following
equation for everys ∈ S.

v(s) = R(s, π(s)) +
∑
s′∈S

λp(s′|s, π(s))v(s′) (5.2)

This yields a system of linear equation with|S| equations and unknowns. The solution of these
equations yields the value of the plan in each state.

5.4.2 Value iteration

The value iteration algorithm finds an approximation of the value of the optimalλ-discounted plan
within a constantε, and a plan with at least this value.



5.4. ALGORITHMS FOR FINDING PLANS UNDER DISCOUNTED REWARDS 113

R=5

R=1

p=0.1

p=0.9

A

B D

E
C

Figure 5.1: A stochastic transition system

1. n := 0

2. Assign (arbitrary) initial values tov0(s) for all s ∈ S.

3. For eachs ∈ S, assign

vn+1(s) := max
a∈A(s)

(
R(s, a) +

∑
s′∈S

λp(s′|s, a)vn(s′)

)

If |vn+1(s)− vn(s)| < ε(1−λ)
2λ for all s ∈ S then go to step 4.

Otherwise, setn := n+ 1 and go to step 3.

4. Assign

π(s) := arg max
a∈A(s)

(
R(s, a) +

∑
s′∈S

λp(s′|s, a)vn+1(s′)

)

Theorem 5.4 Let vπ be the value function of the plan produced by the value iteration algorithm,
and letv∗ be the value function of an optimal plan. Then|v∗(s)− vπ(s)| ≤ ε for all s ∈ S.

Notice that unlike in partially observable planning problems, under full observability there is
never a trade-off between the values of two states: if the optimal value for states1 is r1 and the
optimal value for states2 is r2, then there is one plan that achieves these both.

Example 5.5 Consider the stochastic transition system in Figure 5.1. Only one of the actions is
nondeterministic and only in sate B, and all the other actions and states have zero reward except
one of the actions in states A and D, with rewards 1 and 5, respectively. �

5.4.3 Policy iteration

The second, also rather widely used algorithm for finding plans, is policy iteration1. It is slightly
more complicated to implement than value iteration, but it typically converges after a smaller
number of iterations, and it is guaranteed to produce an optimal plan.

The idea is to start with an arbitrary plan (assignment of actions to states), compute its value,
and repeatedly choose for every state an action that is better than its old action.

1In connection with Markov decision processes the wordpolicy is typically used instead of the wordplan.



114 CHAPTER 5. PROBABILISTIC PLANNING

1. Assignn := 0.

2. Letπ0 be any mapping from states to actions.

3. Compute the valuesvn(s) of all s ∈ S underπn.

4. Letπn+1(s) = arg maxa∈A(s)

(
R(s, a) +

∑
s′∈S λp(s

′|s, a)vn(s′)
)
.

5. Assignn := n+ 1.

6. If n = 1 or vn 6= vn−1 then go to 3.

Theorem 5.6 The policy iteration algorithm terminates after a finite number of steps and returns
an optimal plan.

Proof: Outline: There is only a finite number of different plans, and at each step the new plan
assigns at least as high a value to each state as the old plan. �

It can be shown that the convergence rate of policy iteration is always at least as fast as that of
value iteration[Puterman, 1994], that is, the number of iterations needed for finding anε-optimal
plan for policy iteration is never higher than the number of iterations needed by value iteration.

In practise policy iteration often finds an optimal plan after just a few iterations. However,
the amount of computation in one round of policy iteration is substantially higher than in value
iteration, and value iteration is often considered more practical.

5.4.4 Implementation of the algorithms with ADDs

Similar to the techniques in Section 3.7 for deterministic planning with binary decision diagrams,
also probabilistic planning algorithms can be implemented with data structures that allow the
representation of much bigger states spaces than what is possible by enumerative representations.

A main difference to the non-probabilistic case (Sections 3.7, 4.3 is that for probabilistic plan-
ning propositional formulae and binary decision diagrams are not suitable for representing the
probabilities of nondeterministic operators nor the probabilities of the value functions needed in
the value and policy iteration algorithms. However, instead of BDDs, we can use algebraic deci-
sion diagrams (Section 2.2.3).

In Section 4.1.2 we showed how the incidence matrices expressing the transition probabilities
of nondeterministic operators can be represented as BDDs, when the exact probabilities can be
ignored, and it is only necessary to know whether a certain nondeterministic event is possible or
not.

Next we define a similar translation from nondeterministic operators to ADDs that does repre-
sent the exact probabilities.

Now we give the translation of an effecte restricted to state variablesB. This means that only
state variables inB may occur ine in atomic effects (but do not have to), and the formula does
not say anything about the change of state variables not inB (but may of course refer to them in
antecedents of conditionals.)

The last two cases, handling nondeterministic choice and conjunction of possibly nondetermin-
istic effects is with ADD operations of multiplying an ADD with a constant, summing ADDs, and
multiplying ADDs.



5.4. ALGORITHMS FOR FINDING PLANS UNDER DISCOUNTED REWARDS 115

PLB(e) =
∧

({((a ∧ ¬EPC¬a(e)) ∨ EPCa(e)) ↔ a′|a ∈ B}
whene is deterministic

PLB(p1e1| · · · |pnen) = p1 · PLB(e1) + · · ·+ pn · PLB(en)
PLB(e1 ∧ · · · ∧ en) = PLB\(B2∪···∪Bn)(e1) · PLB2(e2) · . . . · PLBn(en)

whereBi = changes(ei) for all i ∈ {1, . . . , n}

The first part of the translation PLB(e) for deterministice is the translation of deterministic effects
we presented in Section 3.5.2, but restricted to state variables inB. The result of this translation
is a normal propositional formula, which can be further transformed to a BDD and an ADD with
only two terminal nodes 0 and 1. The other two cases cover all nondeterministic effects in normal
form.

The translation of an effecte in normal form into an ADD is PLA(e) whereA is the set of all
state variables. Translating an operators〈c, e〉 to an ADD representing its incidence matrix is as
c · PLA(e), wherec is the ADD representing the precondition.

Example 5.7 Consider effect(0.2¬A|0.8A)∧(0.5(B B ¬B)|0.5>). The two conjunct translated
to functions

AA′ fA

00 0.2
01 0.8
10 0.2
11 0.8

BB′ fB

00 1.0
01 0.0
10 0.5
11 0.5

Notice that the sum of the probabilities of the successor states is 1.0. These functions are below
depicted in the same table. Notice that the third column, with the two functions componentwise
multiplied, has the property that the sum of successor states of each state is 1.0.

ABA′B′ fA fB fA · fB

0000 0.2 1.0 0.2
0001 0.2 0.0 0.0
0010 0.8 1.0 0.8
0011 0.8 0.0 0.0
0100 0.2 0.5 0.1
0101 0.2 0.5 0.1
0110 0.8 0.5 0.4
0111 0.8 0.5 0.4
1000 0.2 1.0 0.2
1001 0.2 0.0 0.0
1010 0.8 1.0 0.8
1011 0.8 0.0 0.0
1100 0.2 0.5 0.1
1101 0.2 0.5 0.1
1110 0.8 0.5 0.4
1111 0.8 0.5 0.4

�



116 CHAPTER 5. PROBABILISTIC PLANNING

We represent the rewards produced by operatoro = 〈c, e〉 ∈ O in different states compactly as
a listR(o) = {〈φ1, r1〉, . . . , 〈φn, rn〉} of pairs〈φ, r〉, meaning that wheno is applied in a state
satisfyingφ the rewardr is obtained. In any state only one of the formulaeφi may be true, that
is φi |= ¬φj for all {i, j} ⊆ {1, . . . , n} such thati 6= j. If none of the formula is true in a given
state, then the reward is zero. HenceRo is simply a mapping from states to a real numbers.

The reward functionsR(o) can be easily translated to ADDs. First construct the BDDs for
φ1, . . . , φn and then multiply them with the respective rewards as

Ro = r1 · φ1 + · · ·+ rn · φn −∞ · ¬c.

The summand∞ · ¬c handles the case in which the precondition of the operator is not satisfied:
application yields immediate reward minus infinity. This prevent using the operator in any state.

Similarly, the probability distribution on possible initial states can be represented asI =
{〈φ1, p1〉, . . . , 〈φn, pn〉} and translated to an ADD.

Now the value iteration algorithm can be rephrased in terms of ADD operations as follows.

1. Assignn := 0 and letvn be an ADD that is constant 0.

2.

vn+1 := max
〈c,e〉=o∈O

(
Ro + λ · ∃A′.(To · (vn[A′/A])

)
for everys ∈ S

If all terminal nodes of ADD|vn+1 − vn| are< ε(1−λ)
2λ then stop.

Otherwise, setn := n+ 1 and repeat step 2.

5.5 Probabilistic planning with partial observability

5.5.1 Problem definition

5.5.2 Value iteration

Value of a plan in a state

Let 〈C1, . . . , Cn〉 be the partition of the state spaceS to the observational classes. Heren ≥ 1.
The value of finite plansπ for a states ∈ S is defined recursively as follows. Here() is the

empty plan.

v(),s = 0

v(a,π1,...,πn),s =
{
−∞ if actiona is not applicable ins
R(s, a) + λ(

∑
s′∈C1

p(s′|s, a)vπ1,s′ + · · ·+
∑

s′∈Cn
p(s′|s, a)vπn,s′)

Given a belief stateB and the valuesvπ,s1 , . . . , vπ,sm of a planπ for all statesS ∈ {s1, . . . , sm},
the value ofπ for B is simply

∑
s∈S vπ,sB(s).

Eliminating dominated plans

The test whether planπ is for at least one belief state strictly better than any other plan inΠ =
{π1, . . . , πn} can be performed by linear programming.



5.5. PROBABILISTIC PLANNING WITH PARTIAL OBSERVABILITY 117

s4

s3s1

s2 p=0.5

p=0.5

p=0.7
R=1

p=0.2

R=1

p=0.1

Figure 5.2: Stochastic transition system with two observational classes{s1, s2} and{s3, s4}

The variables in the LP ared andps for everys ∈ S, and the expression to be maximized is the
value ofd. The constantsvπ,s are values of plansπ in statess ∈ S.∑

s∈S psvπ,s ≥
∑

s∈S psvπ′,s + d for all π′ ∈ Π\{π}∑
s∈S ps = 1

ps ≥ 0 for all s ∈ S

The number of equations in the LP is|Π| + |S| and the number of unknowns is|S| + 1. If the
maximum value ofd is> 0, then there is a belief state in which the value ofπ is higher than the
value of any other plan. This belief state is expressed by the values of the variablesps, s ∈ S.

The main procedure of the algorithm

1. i := 0

2. Π0 := {()}

3. i := i+ 1

4. Πi := {(a, π1, . . . , πn)|a ∈ A, {π1, . . . , πn} ⊆ Πi−1}

5. Evaluate the values of plans inΠi in all states.

6. As long as there isπ ∈ Πi that is dominated byΠi\{π}, setΠi := Πi\{π}.

7. If the difference between value functions represented byΠi andΠi−1 is> ε for some belief
state, go to 3.

Example 5.8 Consider the Now we run the value iteration algorithm for partially observable prob-
abilistic planning problems. We use the discounting constantλ = 0.5.

Plans of depth 1 with the corresponding value vectors for all statesS = {s1, s2, s3, s4} are the
following.

π1 = (RED, (), ()) v(π1) = 〈1.0,0.0,0.0,0.0〉
π2 = (BLUE, (), ()) v(π2) = 〈0.0,1.0,0.0,0.0〉



118 CHAPTER 5. PROBABILISTIC PLANNING

s1 s2

π1 π2

1.0

0.0 0.0

1.0

s3 s4

0.0 0.0
π1 π2

Plans of depth 2 and the corresponding value vectors are the following.

π3 = (RED, π1, π1) v(π3) = 〈1.0, 0.0, 0.0, 0.0〉
π4 = (RED, π1, π2) v(π4) = 〈1.0, 0.0, 0.0, 0.0〉
π5 = (RED, π2, π1) v(π5) = 〈1.35,0.0,0.0,0.0〉
π6 = (RED, π2, π2) v(π6) = 〈1.35, 0.0, 0.0, 0.0〉
π7 = (BLUE, π1, π1) v(π7) = 〈0.5,1.5,0.5,0.0〉
π8 = (BLUE, π1, π2) v(π8) = 〈0.5, 1.5, 0.5, 0.0〉
π9 = (BLUE, π2, π1) v(π9) = 〈0.0, 1.0, 0.0, 0.0〉
π10 = (BLUE, π2, π2) v(π10) = 〈0.0, 1.0, 0.0, 0.0〉

The graphical representation of these vectors is as follows.

s1 s2

0.0

1.35

π5

0.5

1.5

π7

s3 s4

0.0 0.0

0.5
π7

π5

Becauses1 and s2 are indistinguishable, but distinguishable froms3 and s4, the associated
value functions can be depicted in two diagrams, each depicting probability distributions on a set
of states that are indistinguishable from each other.

When enumerating plans of depthi+ 1, it suffices to use as subplans only those plans of depth
i that are the best plans for at least one belief state. Hence from the depth 2 plans we can ignore
all butπ5 andπ7. Notice that in this example, we accidentally can recognize those plans that are



5.5. PROBABILISTIC PLANNING WITH PARTIAL OBSERVABILITY 119

better anywhere from the fact that they are strictly worse on all states, and all the remaining plans
are strictly better in at least one state. Plans of depth 3 and the corresponding value vectors are the
following.

π11 = (RED, π5, π5) v(π11) = 〈1.0, 0.0, 0.0, 0.0〉
π12 = (RED, π5, π7) v(π12) = 〈1.05, 0.125, 0.0, 0.25〉
π13 = (RED, π7, π5) v(π13) = 〈1.525, 0.0, 0.0, 0.0〉
π14 = (RED, π7, π7) v(π14) = 〈1.575,0.125,0.0,0.25〉
π15 = (BLUE, π5, π5) v(π15) = 〈0.675, 1.675, 0.675, 0.0〉
π16 = (BLUE, π5, π7) v(π16) = 〈0.675,1.675,0.675,0.25〉
π17 = (BLUE, π7, π5) v(π17) = 〈0.25, 1.25, 0.25, 0.0〉
π18 = (BLUE, π7, π7) v(π18) = 〈0.25, 1.25, 0.25, 0.25〉

s1 s2

1.575
1.675

0.125

0.675

π14 π16

s3 s4

0.0

0.675

0.25
π14

π16

Plans of depth 4 and the corresponding value vectors are the following.

π19 = (RED, π14, π14) v(π19) = 〈1.05625, 0.0625, 0.125, 0.0〉
π20 = (RED, π14, π16) v(π20) = 〈1.12375, 0.23125, 0.125, 0.3375〉
π21 = (RED, π16, π14) v(π21) = 〈1.59875, 0.0625, 0.125, 0.0〉
π22 = (RED, π16, π16) v(π22) = 〈1.66625,0.23125,0.125,0.3375〉
π23 = (BLUE, π14, π14) v(π23) = 〈0.7875, 1.7875, 0.7875, 0.0〉
π24 = (BLUE, π14, π16) v(π24) = 〈0.7875,1.7875,0.7875,0.3375〉
π25 = (BLUE, π16, π14) v(π25) = 〈0.3375, 1.3375, 0.3375, 0.0〉
π26 = (BLUE, π16, π16) v(π26) = 〈0.3375, 1.3375, 0.3375, 0.3375〉



120 CHAPTER 5. PROBABILISTIC PLANNING

s1 s2

1.667

1.788

0.231

0.788

π22

π24

s3 s4

0.788

0.125

π22
0.338

π24

The plan can be depicted as the following graph.

BLUE RED

RED BLUE

BLUE RED

RED

BLUE

π2 π1

π5 π7

π16 π14

π22

π24

�

5.6 Literature

A comprehensive book on (fully observable) Markov decision processes has been written by Put-
erman[1994], and our presentation of the algorithms in Section 5.4 (5.4.2 and 5.4.3) follows that
of Puterman. The book represents the traditional research on MDPs and uses exclusively enu-
merative representations of state spaces and transition probabilities. The book discusses all the
main optimality criteria as well as algorithms for solving MDPs by iterative techniques and linear
programming. There are also many other books on solving MDPs.

A planning system that implements the value iteration algorithm with ADDs is described by
Hoey et al. [1999] and is shown to be capable of solving problems that could not be efficiently
solved by conventional implementations of value iteration.



5.7. EXERCISES 121

The best known algorithms for solving partially observable Markov decision processes were
presented by Sondik and Smallwood in the early 1970’s[Sondik, 1978; Smallwood and Sondik,
1973] and even today most of the work on POMDPs is based on those algorithms[Kaelbling
et al., 1998]. In this section we have presented the standard value iteration algorithm with the
simplification that there is no sensing uncertainty, that is, for every state the same observation,
dependent on the state, is always made.

The most general infinite-horizon planning problems and POMDP solution construction are
undecidable[Madaniet al., 2003]. The complexity of probabilistic planning has been investigated
for example by Mundhenk et al.[2000] and Littman[1997].

Bonet and Geffner[2000] and Hansen and Zilberstein[2001] have presented algorithms for
probabilistic planning with Markov decision processes that use heuristic search.

5.7 Exercises

5.1Prove that on each step of policy iteration the policy improves.



Bibliography

[Allen et al., 1990] J. Allen, J. A. Hendler, and A. Tate, editors.Readings in Planning. Morgan
Kaufmann Publishers, 1990.

[Alur et al., 1997] R. Alur, R. K. Brayton, T. A. Henzinger, S. Qadeer, and S. K. Rajamani.
Partial-order reduction in symbolic state space exploration. InComputer Aided Verification,
9th International Conference, CAV ’97, Haifa, Israel, June 22-25, 1997, Proceedings, volume
1254 ofLecture Notes in Computer Science, pages 340–351. Springer-Verlag, 1997.

[Bacchus and Kabanza, 2000] F. Bacchus and F. Kabanza. Using temporal logics to express
search control knowledge for planning.Artificial Intelligence, 116(1–2):123–191, 2000.

[Bäckstr̈om and Nebel, 1995] C. Bäckstr̈om and B. Nebel. Complexity results for SAS+ plan-
ning. Computational Intelligence, 11(4):625–655, 1995.

[Baharet al., 1997] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii, A. Pardo,
and F. Somenzi. Algebraic decision diagrams and their applications.Formal Methods in System
Design: An International Journal, 10(2/3):171–206, 1997.

[Balcázaret al., 1988] J. L. Balćazar, J. D́ıaz, and J. Gabarró. Structural Complexity I. Springer-
Verlag, Berlin, 1988.

[Balcázaret al., 1990] J. L. Balćazar, J. D́ıaz, and J. Gabarró. Structural Complexity II. Springer-
Verlag, Berlin, 1990.

[Bertoli et al., 2001] P. Bertoli, A. Cimatti, M. Roveri, and P. Traverso. Planning in nondeter-
ministic domains under partial observability via symbolic model checking. In B. Nebel, editor,
Proceedings of the 17th International Joint Conference on Artificial Intelligence, pages 473–
478. Morgan Kaufmann Publishers, 2001.

[Blum and Furst, 1997] A. L. Blum and M. L. Furst. Fast planning through planning graph anal-
ysis. Artificial Intelligence, 90(1-2):281–300, 1997.

[Bonet and Geffner, 2000] B. Bonet and H. Geffner. Planning with incomplete information as
heuristic search in belief space. In S. Chien, S. Kambhampati, and C. A. Knoblock, editors,
Proceedings of the Fifth International Conference on Artificial Intelligence Planning Systems,
pages 52–61. AAAI Press, 2000.

[Bonet and Geffner, 2001] B. Bonet and H. Geffner. Planning as heuristic search.Artificial Intel-
ligence, 129(1-2):5–33, 2001.

122



BIBLIOGRAPHY 123

[Brooks, 1991] R. A. Brooks. Intelligence without representation.Artificial Intelligence, 47:139–
159, 1991.

[Bryant, 1992] R. E. Bryant. Symbolic Boolean manipulation with ordered binary decision dia-
grams.ACM Computing Surveys, 24(3):293–318, September 1992.

[Burchet al., 1994] J. R. Burch, E. M. Clarke, D. E. Long, K. L. MacMillan, and D. L. Dill.
Symbolic model checking for sequential circuit verification.IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 13(4):401–424, 1994.

[Bylander, 1994] T. Bylander. The computational complexity of propositional STRIPS planning.
Artificial Intelligence, 69(1-2):165–204, 1994.

[Chandraet al., 1981] A. Chandra, D. Kozen, and L. Stockmeyer. Alternation.Journal of the
ACM, 28(1):114–133, 1981.

[Cimatti et al., 2003] A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. Weak, strong, and strong
cyclic planning via symbolic model checking.Artificial Intelligence, 147(1–2):35–84, 2003.

[Clarkeet al., 1994] E. Clarke, O. Grumberg, K. McMillan, and X. Zhao. Efficient generation
of counterexamples and witnesses in symbolic model checking. Technical Report CS-94-204,
Carnegie Mellon University, School of Computer Science, October 1994.

[Darwiche, 2001] A. Darwiche. Decomposable negation normal form.Journal of the ACM,
48(4):1–42, 2001.

[de Bakker and de Roever, 1972] J. W. de Bakker and W. P. de Roever. A calculus of recursive
program schemes. InProceedings of the First International Colloquium on Automata, Lan-
guages and Programming, pages 167–196. North-Holland, 1972.

[Dijkstra, 1976] E. W. Dijkstra. A Discipline of Programming. Prentice Hall, Englewood Cliffs,
New Jersey, 1976.

[Emerson and Sistla, 1996] E. A. Emerson and A. P. Sistla. Symmetry and model-checking.For-
mal Methods in System Design: An International Journal, 9(1/2):105–131, 1996.

[Ernstet al., 1969] G. Ernst, A. Newell, and H. Simon.GPS: A Case Study in Generality and
Problem Solving. Academic Press, 1969.

[Erol et al., 1995] K. Erol, D. S. Nau, and V. S. Subrahmanian. Complexity, decidability and
undecidability results for domain-independent planning.Artificial Intelligence, 76(1–2):75–88,
1995.

[Etzioniet al., 1992] O. Etzioni, S. Hanks, D. Weld, D. Draper, N. Lesh, and M. Williamson. An
approach to planning with incomplete information. In B. Nebel, C. Rich, and W. Swartout,
editors,Principles of Knowledge Representation and Reasoning: Proceedings of the Third
International Conference (KR ’92), pages 115–125. Morgan Kaufmann Publishers, October
1992.

[Fikes and Nilsson, 1971] R. E. Fikes and N. J. Nilsson. STRIPS: a new approach to the applica-
tion of theorem proving to problem solving.Artificial Intelligence, 2(2-3):189–208, 1971.



124 BIBLIOGRAPHY

[Fujitaet al., 1997] M. Fujita, P. C. McGeer, and J. C.-Y. Yang. Multi-terminal binary decision
diagrams: an efficient data structure for matrix representation.Formal Methods in System
Design: An International Journal, 10(2/3):149–169, 1997.

[Ginsberg and Smith, 1988] M. L. Ginsberg and D. E. Smith. Reasoning about action I: A possi-
ble worlds approach.Artificial Intelligence, 35(2):165–195, 1988.

[Ginsberg, 1989] M. L. Ginsberg. Universal planning: An (almost) universally bad idea.AI Mag-
azine, 10(4):40–44, 1989.

[Godefroid, 1991] P. Godefroid. Using partial orders to improve automatic verification methods.
In E. M. Clarke, editor,Proceedings of the 2nd International Conference on Computer-Aided
Verification (CAV ’90), Rutgers, New Jersey, 1990, number 531 in Lecture Notes in Computer
Science, pages 176–185. Springer-Verlag, 1991.

[Green, 1969] C. Green. Application of theorem-proving to problem solving. In D. E. Walker
and L. M. Norton, editors,Proceedings of the 1st International Joint Conference on Artificial
Intelligence, pages 219–239. William Kaufmann, 1969.

[Hansen and Zilberstein, 2001] E. A. Hansen and S. Zilberstein. LAO∗: A heuristic search algo-
rithm that finds solutions with loops.Artificial Intelligence, 29(1-2):35–62, 2001.

[Hartet al., 1968] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic
determination of minimum-cost paths.IEEE Transactions on System Sciences and Cybernetics,
SSC-4(2):100–107, 1968.

[Haslum and Geffner, 2000] P. Haslum and H. Geffner. Admissible heuristics for optimal plan-
ning. In S. Chien, S. Kambhampati, and C. A. Knoblock, editors,Proceedings of the Fifth
International Conference on Artificial Intelligence Planning Systems, pages 140–149. AAAI
Press, 2000.

[Haslum and Jonsson, 2000] P. Haslum and P. Jonsson. Some results on the complexity of plan-
ning with incomplete information. In S. Biundo and M. Fox, editors,Recent Advances in AI
Planning. Fifth European Conference on Planning (ECP’99), number 1809 in Lecture Notes in
Artificial Intelligence, pages 308–318. Springer-Verlag, 2000.

[Hoeyet al., 1999] J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier. SPUDD: Stochastic planning
using decision diagrams. In K. B. Laskey and H. Prade, editors,Uncertainty in Artificial Intel-
ligence, Proceedings of the Fifteenth Conference (UAI-99), pages 279–288. Morgan Kaufmann
Publishers, 1999.

[Hoffmann and Nebel, 2001] J. Hoffmann and B. Nebel. The FF planning system: Fast plan
generation through heuristic search.Journal of Artificial Intelligence Research, 14:253–302,
2001.

[Hopcroft and Ullman, 1979] J. E. Hopcroft and J. D. Ullman.Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley Publishing Company, 1979.

[Ichikawa and Hiraishi, 1988] A. Ichikawa and K. Hiraishi. Analysis and control of discrete-event
systems represented as Petri nets. In P. Varaiya and B. Kurzhanski, editors,Discrete Event



BIBLIOGRAPHY 125

Systems: Models and Applications, IIASA Conference, Soprpon Hungary, August 3-7, 1987,
number 103 in Lecture Notes in Control and Information Sciences, pages 115–134. Springer-
Verlag, 1988.

[Kaelblinget al., 1998] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting
in partially observable stochastic domains.Artificial Intelligence, 101(1-2):99–134, 1998.

[Kautz and Selman, 1992] H. Kautz and B. Selman. Planning as satisfiability. In B. Neumann,
editor,Proceedings of the 10th European Conference on Artificial Intelligence, pages 359–363.
John Wiley & Sons, 1992.

[Kautz and Selman, 1996] H. Kautz and B. Selman. Pushing the envelope: planning, proposi-
tional logic, and stochastic search. InProceedings of the Thirteenth National Conference on
Artificial Intelligence and the Eighth Innovative Applications of Artificial Intelligence Confer-
ence, pages 1194–1201. AAAI Press, August 1996.

[Kirkpatrick et al., 1983] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by
simulated annealing.Science, 220(4598):671–680, May 1983.

[Knuth, 1998] D. E. Knuth. Art of Computer Programming, Volume 3: Sorting and Searching.
Addison-Wesley Publishing Company, 1998.

[Korf, 1985] R. E. Korf. Depth-first iterative deepening: an optimal admissible tree search.Arti-
ficial Intelligence, 27(1):97–109, 1985.

[Kupferman and Vardi, 1999] O. Kupferman and M. Y. Vardi. Church’s problem revisited.The
Bulletin of Symbolic Logic, pages 245–263, 1999.

[Li and Wonham, 1993] Y. Li and W. M. Wonham. Control of vector discrete-event system I - the
base model.IEEE Transactions on Automatic Control, 38(8):1214–1227, 1993.

[Littman, 1997] M. L. Littman. Probabilistic propositional planning: Representations and com-
plexity. In Proceedings of the 14th National Conference on Artificial Intelligence (AAAI-97)
and 9th Innovative Applications of Artificial Intelligence Conference (IAAI-97), pages 748–754,
Menlo Park, July 1997. AAAI Press.

[Lozano and Balćazar, 1990] A. Lozano and J. L. Balćazar. The complexity of graph problems
for succinctly represented graphs. In M. Nagl, editor,Graph-Theoretic Concepts in Computer
Science, 15th International Workshop, WG’89, number 411 in Lecture Notes in Computer Sci-
ence, pages 277–286, Castle Rolduc, The Netherlands, 1990. Springer-Verlag.

[Madaniet al., 2003] O. Madani, S. Hanks, and A. Condon. On the undecidability of probabilistic
planning and related stochastic optimization problems.Artificial Intelligence, 147(1–2):5–34,
2003.

[McAllester and Rosenblitt, 1991] D. A. McAllester and D. Rosenblitt. Systematic nonlinear
planning. In T. L. Dean and K. McKeown, editors,Proceedings of the 9th National Conference
on Artificial Intelligence, volume 2, pages 634–639. AAAI Press / The MIT Press, 1991.



126 BIBLIOGRAPHY

[Meyer and Stockmeyer, 1972] A. R. Meyer and L. J. Stockmeyer. The equivalence problem for
regular expressions with squaring requires exponential time. InProceedings of the 13th Annual
Symposium on Switching and Automata Theory, pages 125–129, Long Beach, California, 1972.
IEEE Computer Society.

[Mundhenket al., 2000] M. Mundhenk, J. Goldsmith, C. Lusena, and E. Allender. Complexity of
finite-horizon Markov decision process problems.Journal of the ACM, 47(4):681–720, 2000.

[Muscettolaet al., 1998] N. Muscettola, P. P. Nayak, B. Pell, and B. C. Williams. Remote Agent:
to boldly go where no AI system has gone before.Artificial Intelligence, 103(1-2):5–47, 1998.

[Papadimitriou and Yannakakis, 1986] C. H. Papadimitriou and M. Yannakakis. A note on suc-
cinct representations of graphs.Information and Control, 71:181–185, 1986.

[Papadimitriou, 1994] C. H. Papadimitriou.Computational Complexity. Addison-Wesley Pub-
lishing Company, 1994.

[Pearl, 1984] J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Addison-Wesley Publishing Company, Reading, Massachusetts, 1984.

[Peot and Smith, 1992] M. A. Peot and D. E. Smith. Conditional nonlinear planning. In
J. Hendler, editor,Proceedings of the First International Conference on Artificial Intelligence
Planning Systems, pages 189–197, San Mateo, California, 1992. Morgan Kaufmann Publishers.

[Pixleyet al., 1992] C. Pixley, S.-W. Jeong, and G. D. Hachtel. Exact calculation of synchro-
nization sequences based on binary decision diagrams. InProceedings of the 29th Design
Automation Conference, pages 620–623, 1992.

[Pryor and Collins, 1996] L. Pryor and G. Collins. Planning for contingencies: A decision-based
approach.Journal of Artificial Intelligence Research, 4:287–339, 1996.

[Puterman, 1994] M. L. Puterman.Markov decision processes: discrete stochastic dynamic pro-
gramming. John Wiley & Sons, 1994.

[Ramadge and Wonham, 1987] P. Ramadge and W. Wonham. Supervisory control of a class of
discrete-event processes.SIAM Journal of Control and Optimization, 25(1):206–230, January
1987.

[Rintanenet al., 2004] J. Rintanen, K. Heljanko, and I. Niemelä. Parallel encodings of classical
planning as satisfiability. In J. J. Alferes and J. Leite, editors,Logics in Artificial Intelligence:
9th European Conference, JELIA 2004, Lisbon, Portugal, September 27-30, 2004. Proceedings,
number 3229 in Lecture Notes in Computer Science, pages 307–319. Springer-Verlag, 2004.

[Rintanen, 1998] J. Rintanen. A planning algorithm not based on directional search. In A. G.
Cohn, L. K. Schubert, and S. C. Shapiro, editors,Principles of Knowledge Representation
and Reasoning: Proceedings of the Sixth International Conference (KR ’98), pages 617–624.
Morgan Kaufmann Publishers, June 1998.

[Rintanen, 2004] J. Rintanen. Distance estimates for planning in the discrete belief space. In
Proceedings of the Eighteenth National Conference on Artificial Intelligence (AAAI-2004) and
the Thirteenth Conference on Innovative Applications of Artificial Intelligence (IAAI-2004),
pages 525–530. AAAI Press, 2004.



BIBLIOGRAPHY 127

[Rosenschein, 1981] S. J. Rosenschein. Plan synthesis: A logical perspective. In P. J. Hayes,
editor,Proceedings of the 7th International Joint Conference on Artificial Intelligence, pages
331–337, Los Altos, California, August 1981. William Kaufmann.

[Sacerdoti, 1974] E. D. Sacerdoti. Planning in a hierarchy of abstraction spaces.Artificial Intel-
ligence, 5:115–135, 1974.

[Sacerdoti, 1975] E. D. Sacerdoti. The nonlinear nature of plans. InProceedings of the 4th
International Joint Conference on Artificial Intelligence, pages 206–214, 1975.

[Sandewall, 1994a] E. Sandewall.Features and Fluents. The Representation of Knowledge about
Dynamic Systems., volume I. Oxford University Press, 1994.

[Sandewall, 1994b] E. Sandewall. The range of applicability of nonmonotonic logics for the
inertia problem.Journal of Logic and Computation, 4(5):581–615, 1994.

[Schoppers, 1987] M. J. Schoppers. Universal plans for real-time robots in unpredictable envi-
ronments. InProceedings of the 10th International Joint Conference on Artificial Intelligence,
pages 1039–1046, Milano, 1987.

[Shoham, 1988] Y. Shoham. Chronological ignorance: Experiments in nonmonotonic temporal
reasoning.Artificial Intelligence, 36(3):279–331, October 1988.

[Smallwood and Sondik, 1973] R. D. Smallwood and E. J. Sondik. The optimal control of par-
tially observable Markov processes over a finite horizon.Operations Research, 21:1071–1088,
1973.

[Sondik, 1978] E. J. Sondik. The optimal control of partially observable Markov processes over
the infinite horizon: discounted costs.Operations Research, 26(2):282–304, 1978.

[Starke, 1991] P. H. Starke. Reachability analysis of Petri nets using symmetries.Journal of
Mathematical Modelling and Simulation in Systems Analysis, 8(4/5):293–303, 1991.

[Stein and Morgenstern, 1994] L. A. Stein and L. Morgenstern. Motivated action theory: a formal
theory of causal reasoning.Artificial Intelligence, 71:1–42, 1994.

[Stockmeyer and Chandra, 1979] L. J. Stockmeyer and A. K. Chandra. Provably difficult combi-
natorial games.SIAM Journal on Computing, 8(2):151–174, 1979.

[Valmari, 1991] A. Valmari. Stubborn sets for reduced state space generation. In G. Rozenberg,
editor,Advances in Petri Nets 1990. 10th International Conference on Applications and Theory
of Petri Nets, Bonn, Germany, number 483 in Lecture Notes in Computer Science, pages 491–
515. Springer-Verlag, 1991.

[Vardi and Stockmeyer, 1985] M. Vardi and L. Stockmeyer. Improved upper and lower bounds
for modal logics of programs. InProceedings of the 17th Annual ACM Symposium on Theory
of Computing, pages 240–251. Association for Computing Machinery, 1985.

[Wonham, 1988] W. M. Wonham. A control theory for discrete-event systems. In M. Denham
and A. Laub, editors,Advanced Computing Concepts and Techniques in Control Engineering,
pages 129–169. Springer-Verlag, 1988.



Index

EPCl(e), 28
appo(s), 19
regre(φ), 29
regro(φ), 29, 71
2-EXP, 24, 101

A∗, 32
active effects, 18
acyclic plan, 74
ADD, 16, 114
AEXPSPACE, 24, 101
alternating Turing machine, 23, 95, 101
APSPACE, 24, 95
arithmetic existential abstraction, 17

BDD, 14, 54, 75
belief space, 72
belief state, 72
Bellman equation, 112
binary decision diagram, 14

causal link planning, 7
clause, 12
completeness, 24
composition of operators, 31
conjunctive normal form, 13
consistency, 12
cost, 110

deterministic action, 9
deterministic Turing machine, 23, 60, 99
discrete event systems, 6
disjunctive normal form, 13

execution graph, 74
existential abstraction, 15, 17, 54
EXP, 24, 95
EXPSPACE, 24, 99

Graphplan, 7, 63

ground operator, 22

hardness, 24
hierarchical planning, 4

IDA∗, 32
image, 70
image (of a set of states), 55
intractable, 24
invariant, 47

linear programming, 116, 120
literal, 12
logical consequence, 12

maintenance goal, 74, 80
many-one reduction, 24
memoryless plan, 76
motion planning, 2

NEXP, 24
nondeterministic action, 9
nondeterministic operator, 66, 110
nondeterministic Turing machine, 23
normal form II, nondeterministic operators,

68
normal form, deterministic operators, 20
normal form, nondeterministic operators, 68
NP, 24, 62

observability, 72
operator, 18, 66
optimality equation, 112

P, 24
partial-order planning, 7, 33, 108
path planning, 2
planning graphs, 8, 63
preimage, 56
program synthesis, 6

128



INDEX 129

progression, for formulae, 57
progression, for states, 19, 27
PSPACE, 24, 58

qualification problem, 6
quantified Boolean formula, 12, 46, 84, 106

ramification problem, 6
regression, 29, 56, 71
reward, 110

satisfiability, 12
scheduling, 2
schematic operator, 21
sensing action, 72
sequential composition, 19, 32
Shannon expansion, 15
simulated annealing, 32
sorting networks, 82
state, 9
state space, 9
state variable, 17
STRIPS, 7
STRIPS operators, 8, 31, 49
strong preimage, 70
strongest invariant, 47
succinct representation, 18, 25

task planning, 2
tautology, 12
tractable, 24
transition system, 9
Turing machine, 23

universal abstraction, 71

validity, 12

WA∗, 32
weak preimage, 56, 70


