Bibliography

[Allen et al., 1990] J. Allen, J. A. Hendler, and A. Tate, editors. Readings in Planning. Morgan Kaufmann Publishers, 1990.
[Alur et al., 1997] R. Alur, R. K. Brayton, T. A. Henzinger, S. Qadeer, and S. K. Rajamani. Partial-order reduction in symbolic state space exploration. In Computer Aided Verification, 9th International Conference, CAV '97, Haifa, Israel, June 22-25, 1997, Proceedings, volume 1254 of Lecture Notes in Computer Science, pages 340-351. Springer-Verlag, 1997.
[Bacchus and Kabanza, 2000] F. Bacchus and F. Kabanza. Using temporal logics to express search control knowledge for planning. Artificial Intelligence, 116(1-2):123-191, 2000.
[Bäckström and Nebel, 1995] C. Bäckström and B. Nebel. Complexity results for SAS ${ }^{+}$planning. Computational Intelligence, 11(4):625-655, 1995.
[Bahar et al., 1997] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii, A. Pardo, and F. Somenzi. Algebraic decision diagrams and their applications. Formal Methods in System Design: An International Journal, 10(2/3):171-206, 1997.
[Balcázar et al., 1988] J. L. Balcázar, J. Díaz, and J. Gabarró. Structural Complexity I. SpringerVerlag, Berlin, 1988.
[Balcázar et al., 1990] J. L. Balcázar, J. Díaz, and J. Gabarró. Structural Complexity II. SpringerVerlag, Berlin, 1990.
[Bertoli et al., 2001] P. Bertoli, A. Cimatti, M. Roveri, and P. Traverso. Planning in nondeterministic domains under partial observability via symbolic model checking. In B. Nebel, editor, Proceedings of the 17th International Joint Conference on Artificial Intelligence, pages 473478. Morgan Kaufmann Publishers, 2001.
[Blum and Furst, 1997] A. L. Blum and M. L. Furst. Fast planning through planning graph analysis. Artificial Intelligence, 90(1-2):281-300, 1997.
[Bonet and Geffner, 2000] B. Bonet and H. Geffner. Planning with incomplete information as heuristic search in belief space. In S. Chien, S. Kambhampati, and C. A. Knoblock, editors, Proceedings of the Fifth International Conference on Artificial Intelligence Planning Systems, pages 52-61. AAAI Press, 2000.
[Bonet and Geffner, 2001] B. Bonet and H. Geffner. Planning as heuristic search. Artificial Intelligence, 129(1-2):5-33, 2001.
[Brooks, 1991] R. A. Brooks. Intelligence without representation. Artificial Intelligence, 47:139159, 1991.
[Bryant, 1992] R. E. Bryant. Symbolic Boolean manipulation with ordered binary decision diagrams. ACM Computing Surveys, 24(3):293-318, September 1992.
[Burch et al., 1994] J. R. Burch, E. M. Clarke, D. E. Long, K. L. MacMillan, and D. L. Dill. Symbolic model checking for sequential circuit verification. IEEE Transactions on ComputerAided Design of Integrated Circuits and Systems, 13(4):401-424, 1994.
[Bylander, 1994] T. Bylander. The computational complexity of propositional STRIPS planning. Artificial Intelligence, 69(1-2):165-204, 1994.
[Chandra et al., 1981] A. Chandra, D. Kozen, and L. Stockmeyer. Alternation. Journal of the ACM, 28(1):114-133, 1981.
[Cimatti et al., 2003] A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. Weak, strong, and strong cyclic planning via symbolic model checking. Artificial Intelligence, 147(1-2):35-84, 2003.
[Clarke et al., 1994] E. Clarke, O. Grumberg, K. McMillan, and X. Zhao. Efficient generation of counterexamples and witnesses in symbolic model checking. Technical Report CS-94-204, Carnegie Mellon University, School of Computer Science, October 1994.
[Darwiche, 2001] A. Darwiche. Decomposable negation normal form. Journal of the ACM, 48(4):1-42, 2001.
[de Bakker and de Roever, 1972] J. W. de Bakker and W. P. de Roever. A calculus of recursive program schemes. In Proceedings of the First International Colloquium on Automata, Languages and Programming, pages 167-196. North-Holland, 1972.
[Dijkstra, 1976] E. W. Dijkstra. A Discipline of Programming. Prentice Hall, Englewood Cliffs, New Jersey, 1976.
[Emerson and Sistla, 1996] E. A. Emerson and A. P. Sistla. Symmetry and model-checking. Formal Methods in System Design: An International Journal, 9(1/2):105-131, 1996.
[Ernst et al., 1969] G. Ernst, A. Newell, and H. Simon. GPS: A Case Study in Generality and Problem Solving. Academic Press, 1969.
[Erol et al., 1995] K. Erol, D. S. Nau, and V. S. Subrahmanian. Complexity, decidability and undecidability results for domain-independent planning. Artificial Intelligence, 76(1-2):75-88, 1995.
[Etzioni et al., 1992] O. Etzioni, S. Hanks, D. Weld, D. Draper, N. Lesh, and M. Williamson. An approach to planning with incomplete information. In B. Nebel, C. Rich, and W. Swartout, editors, Principles of Knowledge Representation and Reasoning: Proceedings of the Third International Conference ($K R$ '92), pages 115-125. Morgan Kaufmann Publishers, October 1992.
[Fikes and Nilsson, 1971] R. E. Fikes and N. J. Nilsson. STRIPS: a new approach to the application of theorem proving to problem solving. Artificial Intelligence, 2(2-3):189-208, 1971.
[Fujita et al., 1997] M. Fujita, P. C. McGeer, and J. C.-Y. Yang. Multi-terminal binary decision diagrams: an efficient data structure for matrix representation. Formal Methods in System Design: An International Journal, 10(2/3):149-169, 1997.
[Ginsberg and Smith, 1988] M. L. Ginsberg and D. E. Smith. Reasoning about action I: A possible worlds approach. Artificial Intelligence, 35(2):165-195, 1988.
[Ginsberg, 1989] M. L. Ginsberg. Universal planning: An (almost) universally bad idea. AI Magazine, 10(4):40-44, 1989.
[Godefroid, 1991] P. Godefroid. Using partial orders to improve automatic verification methods. In E. M. Clarke, editor, Proceedings of the 2nd International Conference on Computer-Aided Verification (CAV '90), Rutgers, New Jersey, 1990, number 531 in Lecture Notes in Computer Science, pages 176-185. Springer-Verlag, 1991.
[Green, 1969] C. Green. Application of theorem-proving to problem solving. In D. E. Walker and L. M. Norton, editors, Proceedings of the 1st International Joint Conference on Artificial Intelligence, pages 219-239. William Kaufmann, 1969.
[Hansen and Zilberstein, 2001] E. A. Hansen and S. Zilberstein. LAO *: A heuristic search algorithm that finds solutions with loops. Artificial Intelligence, 29(1-2):35-62, 2001.
[Hart et al., 1968] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of minimum-cost paths. IEEE Transactions on System Sciences and Cybernetics, SSC-4(2):100-107, 1968.
[Haslum and Geffner, 2000] P. Haslum and H. Geffner. Admissible heuristics for optimal planning. In S. Chien, S. Kambhampati, and C. A. Knoblock, editors, Proceedings of the Fifth International Conference on Artificial Intelligence Planning Systems, pages 140-149. AAAI Press, 2000.
[Haslum and Jonsson, 2000] P. Haslum and P. Jonsson. Some results on the complexity of planning with incomplete information. In S. Biundo and M. Fox, editors, Recent Advances in AI Planning. Fifth European Conference on Planning (ECP'99), number 1809 in Lecture Notes in Artificial Intelligence, pages 308-318. Springer-Verlag, 2000.
[Hoey et al., 1999] J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier. SPUDD: Stochastic planning using decision diagrams. In K. B. Laskey and H. Prade, editors, Uncertainty in Artificial Intelligence, Proceedings of the Fifteenth Conference (UAI-99), pages 279-288. Morgan Kaufmann Publishers, 1999.
[Hoffmann and Nebel, 2001] J. Hoffmann and B. Nebel. The FF planning system: Fast plan generation through heuristic search. Journal of Artificial Intelligence Research, 14:253-302, 2001.
[Hopcroft and Ullman, 1979] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley Publishing Company, 1979.
[Ichikawa and Hiraishi, 1988] A. Ichikawa and K. Hiraishi. Analysis and control of discrete-event systems represented as Petri nets. In P. Varaiya and B. Kurzhanski, editors, Discrete Event

Systems: Models and Applications, IIASA Conference, Soprpon Hungary, August 3-7, 1987, number 103 in Lecture Notes in Control and Information Sciences, pages 115-134. SpringerVerlag, 1988.
[Kaelbling et al., 1998] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observable stochastic domains. Artificial Intelligence, 101(1-2):99-134, 1998.
[Kautz and Selman, 1992] H. Kautz and B. Selman. Planning as satisfiability. In B. Neumann, editor, Proceedings of the 10th European Conference on Artificial Intelligence, pages 359-363. John Wiley \& Sons, 1992.
[Kautz and Selman, 1996] H. Kautz and B. Selman. Pushing the envelope: planning, propositional logic, and stochastic search. In Proceedings of the Thirteenth National Conference on Artificial Intelligence and the Eighth Innovative Applications of Artificial Intelligence Conference, pages 1194-1201. AAAI Press, August 1996.
[Kirkpatrick et al., 1983] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by simulated annealing. Science, 220(4598):671-680, May 1983.
[Knuth, 1998] D. E. Knuth. Art of Computer Programming, Volume 3: Sorting and Searching. Addison-Wesley Publishing Company, 1998.
[Korf, 1985] R. E. Korf. Depth-first iterative deepening: an optimal admissible tree search. Artificial Intelligence, 27(1):97-109, 1985.
[Kupferman and Vardi, 1999] O. Kupferman and M. Y. Vardi. Church's problem revisited. The Bulletin of Symbolic Logic, pages 245-263, 1999.
[Li and Wonham, 1993] Y. Li and W. M. Wonham. Control of vector discrete-event system I - the base model. IEEE Transactions on Automatic Control, 38(8):1214-1227, 1993.
[Littman, 1997] M. L. Littman. Probabilistic propositional planning: Representations and complexity. In Proceedings of the 14th National Conference on Artificial Intelligence (AAAI-97) and 9th Innovative Applications of Artificial Intelligence Conference (IAAI-97), pages 748-754, Menlo Park, July 1997. AAAI Press.
[Lozano and Balcázar, 1990] A. Lozano and J. L. Balcázar. The complexity of graph problems for succinctly represented graphs. In M. Nagl, editor, Graph-Theoretic Concepts in Computer Science, 15th International Workshop, WG'89, number 411 in Lecture Notes in Computer Science, pages 277-286, Castle Rolduc, The Netherlands, 1990. Springer-Verlag.
[Madani et al., 2003] O. Madani, S. Hanks, and A. Condon. On the undecidability of probabilistic planning and related stochastic optimization problems. Artificial Intelligence, 147(1-2):5-34, 2003.
[McAllester and Rosenblitt, 1991] D. A. McAllester and D. Rosenblitt. Systematic nonlinear planning. In T. L. Dean and K. McKeown, editors, Proceedings of the 9th National Conference on Artificial Intelligence, volume 2, pages 634-639. AAAI Press / The MIT Press, 1991.
[Meyer and Stockmeyer, 1972] A. R. Meyer and L. J. Stockmeyer. The equivalence problem for regular expressions with squaring requires exponential time. In Proceedings of the 13th Annual Symposium on Switching and Automata Theory, pages 125-129, Long Beach, California, 1972. IEEE Computer Society.
[Mundhenk et al., 2000] M. Mundhenk, J. Goldsmith, C. Lusena, and E. Allender. Complexity of finite-horizon Markov decision process problems. Journal of the ACM, 47(4):681-720, 2000.
[Muscettola et al., 1998] N. Muscettola, P. P. Nayak, B. Pell, and B. C. Williams. Remote Agent: to boldly go where no AI system has gone before. Artificial Intelligence, 103(1-2):5-47, 1998.
[Papadimitriou and Yannakakis, 1986] C. H. Papadimitriou and M. Yannakakis. A note on succinct representations of graphs. Information and Control, 71:181-185, 1986.
[Papadimitriou, 1994] C. H. Papadimitriou. Computational Complexity. Addison-Wesley Publishing Company, 1994.
[Pearl, 1984] J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley Publishing Company, Reading, Massachusetts, 1984.
[Peot and Smith, 1992] M. A. Peot and D. E. Smith. Conditional nonlinear planning. In J. Hendler, editor, Proceedings of the First International Conference on Artificial Intelligence Planning Systems, pages 189-197, San Mateo, California, 1992. Morgan Kaufmann Publishers.
[Pixley et al., 1992] C. Pixley, S.-W. Jeong, and G. D. Hachtel. Exact calculation of synchronization sequences based on binary decision diagrams. In Proceedings of the 29th Design Automation Conference, pages 620-623, 1992.
[Pryor and Collins, 1996] L. Pryor and G. Collins. Planning for contingencies: A decision-based approach. Journal of Artificial Intelligence Research, 4:287-339, 1996.
[Puterman, 1994] M. L. Puterman. Markov decision processes: discrete stochastic dynamic programming. John Wiley \& Sons, 1994.
[Ramadge and Wonham, 1987] P. Ramadge and W. Wonham. Supervisory control of a class of discrete-event processes. SIAM Journal of Control and Optimization, 25(1):206-230, January 1987.
[Rintanen et al., 2004] J. Rintanen, K. Heljanko, and I. Niemelä. Parallel encodings of classical planning as satisfiability. In J. J. Alferes and J. Leite, editors, Logics in Artificial Intelligence: 9th European Conference, JELIA 2004, Lisbon, Portugal, September 27-30, 2004. Proceedings, number 3229 in Lecture Notes in Computer Science, pages 307-319. Springer-Verlag, 2004.
[Rintanen, 1998] J. Rintanen. A planning algorithm not based on directional search. In A. G. Cohn, L. K. Schubert, and S. C. Shapiro, editors, Principles of Knowledge Representation and Reasoning: Proceedings of the Sixth International Conference ($K R$ '98), pages 617-624. Morgan Kaufmann Publishers, June 1998.
[Rintanen, 2004] J. Rintanen. Distance estimates for planning in the discrete belief space. In Proceedings of the Eighteenth National Conference on Artificial Intelligence (AAAI-2004) and the Thirteenth Conference on Innovative Applications of Artificial Intelligence (IAAI-2004), pages 525-530. AAAI Press, 2004.
[Rosenschein, 1981] S. J. Rosenschein. Plan synthesis: A logical perspective. In P. J. Hayes, editor, Proceedings of the 7th International Joint Conference on Artificial Intelligence, pages 331-337, Los Altos, California, August 1981. William Kaufmann.
[Sacerdoti, 1974] E. D. Sacerdoti. Planning in a hierarchy of abstraction spaces. Artificial Intelligence, 5:115-135, 1974.
[Sacerdoti, 1975] E. D. Sacerdoti. The nonlinear nature of plans. In Proceedings of the 4th International Joint Conference on Artificial Intelligence, pages 206-214, 1975.
[Sandewall, 1994a] E. Sandewall. Features and Fluents. The Representation of Knowledge about Dynamic Systems., volume I. Oxford University Press, 1994.
[Sandewall, 1994b] E. Sandewall. The range of applicability of nonmonotonic logics for the inertia problem. Journal of Logic and Computation, 4(5):581-615, 1994.
[Schoppers, 1987] M. J. Schoppers. Universal plans for real-time robots in unpredictable environments. In Proceedings of the 10th International Joint Conference on Artificial Intelligence, pages 1039-1046, Milano, 1987.
[Shoham, 1988] Y. Shoham. Chronological ignorance: Experiments in nonmonotonic temporal reasoning. Artificial Intelligence, 36(3):279-331, October 1988.
[Smallwood and Sondik, 1973] R. D. Smallwood and E. J. Sondik. The optimal control of partially observable Markov processes over a finite horizon. Operations Research, 21:1071-1088, 1973.
[Sondik, 1978] E. J. Sondik. The optimal control of partially observable Markov processes over the infinite horizon: discounted costs. Operations Research, 26(2):282-304, 1978.
[Starke, 1991] P. H. Starke. Reachability analysis of Petri nets using symmetries. Journal of Mathematical Modelling and Simulation in Systems Analysis, 8(4/5):293-303, 1991.
[Stein and Morgenstern, 1994] L. A. Stein and L. Morgenstern. Motivated action theory: a formal theory of causal reasoning. Artificial Intelligence, 71:1-42, 1994.
[Stockmeyer and Chandra, 1979] L. J. Stockmeyer and A. K. Chandra. Provably difficult combinatorial games. SIAM Journal on Computing, 8(2):151-174, 1979.
[Valmari, 1991] A. Valmari. Stubborn sets for reduced state space generation. In G. Rozenberg, editor, Advances in Petri Nets 1990. 10th International Conference on Applications and Theory of Petri Nets, Bonn, Germany, number 483 in Lecture Notes in Computer Science, pages 491515. Springer-Verlag, 1991.
[Vardi and Stockmeyer, 1985] M. Vardi and L. Stockmeyer. Improved upper and lower bounds for modal logics of programs. In Proceedings of the 17th Annual ACM Symposium on Theory of Computing, pages 240-251. Association for Computing Machinery, 1985.
[Wonham, 1988] W. M. Wonham. A control theory for discrete-event systems. In M. Denham and A. Laub, editors, Advanced Computing Concepts and Techniques in Control Engineering, pages 129-169. Springer-Verlag, 1988.

Index

$E P C_{l}(e), 28$
$\operatorname{app}_{o}(s), 19$
$\operatorname{regr}_{e}(\phi), 29$
$\operatorname{regr}_{o}(\phi), 29,71$
2-EXP, 24, 101
$\mathrm{A} *, 32$
active effects, 18
acyclic plan, 74
ADD, 16, 114
AEXPSPACE, 24, 101
alternating Turing machine, 23, 95, 101
APSPACE, 24, 95
arithmetic existential abstraction, 17
BDD, 14, 54, 75
belief space, 72
belief state, 72
Bellman equation, 112
binary decision diagram, 14
causal link planning, 7
clause, 12
completeness, 24
composition of operators, 31
conjunctive normal form, 13
consistency, 12
cost, 110
deterministic action, 9
deterministic Turing machine, 23, 60, 99
discrete event systems, 6
disjunctive normal form, 13
execution graph, 74
existential abstraction, 15, 17, 54
EXP, 24, 95
EXPSPACE, 24, 99
Graphplan, 7, 63
ground operator, 22
hardness, 24
hierarchical planning, 4
IDA*, 32
image, 70
image (of a set of states), 55
intractable, 24
invariant, 47
linear programming, 116, 120
literal, 12
logical consequence, 12
maintenance goal, 74, 80
many-one reduction, 24
memoryless plan, 76
motion planning, 2
NEXP, 24
nondeterministic action, 9
nondeterministic operator, 66, 110
nondeterministic Turing machine, 23
normal form II, nondeterministic operators, 68
normal form, deterministic operators, 20
normal form, nondeterministic operators, 68
NP, 24, 62
observability, 72
operator, 18,66
optimality equation, 112
P, 24
partial-order planning, 7, 33, 108
path planning, 2
planning graphs, 8,63
preimage, 56
program synthesis, 6
progression, for formulae, 57
progression, for states, 19, 27
PSPACE, 24, 58
qualification problem, 6
quantified Boolean formula, 12, 46, 84, 106
ramification problem, 6
regression, 29, 56, 71
reward, 110
satisfiability, 12
scheduling, 2
schematic operator, 21
sensing action, 72
sequential composition, 19, 32
Shannon expansion, 15
simulated annealing, 32
sorting networks, 82
state, 9
state space, 9
state variable, 17
STRIPS, 7
STRIPS operators, 8, 31, 49
strong preimage, 70
strongest invariant, 47
succinct representation, 18,25
task planning, 2
tautology, 12
tractable, 24
transition system, 9
Turing machine, 23
universal abstraction, 71
validity, 12
WA*, 32
weak preimage, 56, 70

