
Chapter 5

Probabilistic planning

Probabilistic planning is an extension of nondeterministic planning with exact information on the
probabilities of nondeterministic events.

Exact probabilities are important because it is not just important to get things done, but to get
them done efficiently, and for goals for which there is no guarantee that they are reached, it is
important to reach them as likely as possible.

The introduction of probabilities complicates planning, both conceptually and computationally.
Whereas in the non-probabilistic of conditional planning with partial observability it is sufficient
to work in a finite discrete belief space, the introduction of probabilities makes the belief space
continuous and thereby infinite. This means that there are no algorithms for doing planning, that
is, there is no program that either delivers a plan (with a given property) or announces that no plans
exist.

However, despite these difficulties one is forced to face, probabilities are important in many
types of applications, and algorithms for probabilistic planning are therefore worth studying.

In this section we discuss a number of algorithms for probabilistic planning, starting from al-
gorithms for the conditional planning problem with full observability. The use of probabilities
allows to consider more general plan quality criteria than those that were considered in connection
with non-probabilistic planning problems. A main difference is that there is no necessity to re-
strict to planning with the objective of reaching one of designated goal states. Instead, actions and
states are associated with rewards/costs, and the objective is to maximize the rewards (or minimize
costs) over the execution of a plan. This kind of problems naturally generalize to plan executions
of infinite length.

5.1 Stochastic transition systems with rewards

In Section 2.1 we gave a basic definition of deterministic and nondeterministic transition systems.
For expressing exact transition probabilities we need a new definition of transition systems.

A stochastic transition system consists of a finite setS of states. The actions do not just associate
a set of possible successor states to each state, but a probability distribution on the set of possible
successor states.

An action is a partial function fromS to probability distributions overS. Partiality means that
not all actions are applicable in all states. A probability distributionp is a function that mapsS to
real numbersr ∈ [0, 1] so that

∑
s∈S p(s) = 1.0. The probability distribution indicates how likely

109

CHAPTER 5. PROBABILISTIC PLANNING 110

each state is as a successor state of a given state.
In many types of probabilistic planning problems considered in the literature the objective is

not to reach one of a set of designated goal states. Instead, the objective is to act in a way that
maximizes therewardsor minimizes thecosts. Planning problems with a designated set of goal
states can be expressed in terms of rewards, but not vice versa.

Definition 5.1 A stochastic transition system with rewardsis a 4-tuple〈S, A, p, R, 〉 where

• S is a finite set of states,

• A is a finite set of actions,

• p is a partial function that maps each states ∈ S and actiona ∈ A to a probability
distribution onS, and

• R : S×A → R is a reward function which maps each states ∈ S and actiona ∈ A to real
number.

A major difference to the definition of Markov decision processes[Puterman, 1994] is thatp is
a partial function, that is, not all states are assigned a probability distribution. This is for having a
match between the definition of operators in AI planning, where not all actions are applicable in
all states. Below, we will denote the set of actions applicable in a states ∈ S by A(S). We also
require thatA(s) is non-empty for everys ∈ S.

Notice that we have not defined initial states or a probability distribution on possible initial
states: the most important algorithms find plans that reach the goals from any initial state. Clearly,
when the number of states is very high and the sets of initial states are small, more efficient
planning could be obtained by taking information about the set of initial states into account.

Stochastic transition systems can be described in terms of state variables and operators just like
the transition systems earlier discussed in this lecture. A nondeterministic operator〈c, e〉, as given
in Definition 4.1, assigns a probability distribution corresponding toe, as given in Definition 4.2,
to any states such thats |= c.

5.2 Problem definition

A given plan produces infinite sequences of rewardsr1, r2, Clearly, if the planning problem
has several initial states or if the actions are nondeterministic this sequence of rewards is not
unique. In either case, possible plans are assessed in terms of these rewards, and there are several
possibilities how good plans are defined. Because the sequences are infinite, we in general cannot
simply take their sum and compare them. Instead, several other possibilities have been considered.

1. Expected total rewards over a finite horizon.

This is a natural alternative that allows using the normal arithmetic sum of the rewards.
However, there is typically no natural bound on the horizon length.

2. Expected average rewards over an infinite horizon.

This is probably the most natural way of assessing plans. However, there are several tech-
nical complications that make average rewards difficult to use.

CHAPTER 5. PROBABILISTIC PLANNING 111

3. Expected discounted rewards over an infinite horizon.

This is the most often used criterion in connection with Markov decision processes. Dis-
counting means multiplying theith reward byλi−1 and it means that early rewards are
much more important than rewards obtained much later. The discount constantλ has a
value strictly between 0.0 and 1.0. The sum of the geometrically discounted rewards is
finite. Like with choosing the horizon length when evaluating plans with respect to their
behavior within a finite horizon, it is often difficult to say why a certain discount constantλ
is used.

For the latter two infinite horizon problems there always is an optimal plan that is a mapping
from states to actions, and this is the type of plan used in most of this section.

In the first case with a bounded horizon the optimal plans cannot be represented as mappings
from state to actionsif it really is the case that the length of the plan execution indeed equals the
horizon length, and instead mappings from states and time points to actions are needed. This is
because for example at the last stage all rewards that are obtained are from the last action. The
optimal plans are therefore time-dependent. However, nothing prevents using the first stage of the
finite horizon plan as a normal plan, that is, as a mapping from states to actions.

We state the probabilistic conditional planning problem in the general form. Like with non-
probabilistic conditional planning, observability restrictions are expressed in terms of a set of state
variables that are observable.

Definition 5.2 A 5-tuple〈A, I, O, B,R〉 consisting of a setA of state variables, a probability
distributionI over valuations ofA, a setO of operators, a reward functionR, and a setB ⊆ A
of state variables isa problem instance in probabilistic nondeterministic planning.

I is a set{〈φ1, p1〉, 〈φ2, p2〉, . . . , 〈φn, pn〉} that expresses a probability distribution over valua-
tions ofA. We require thatφi |= ¬φj for every{i, j} ⊆ {1, . . . , n}.

R(o) for everyo ∈ O is a set{〈φ1, r1〉, 〈φ2, r2〉, . . . , 〈φm, rm〉} that expresses the rewards
obtained wheno is applied: ifo is applied ins ands |= φk, then reward isrk. We require that
φi |= ¬φj for every{i, j} ⊆ {1, . . . ,m}.

Definition 5.3 A plan for a problem instance is a functionπ : S → A that assigns each state an
action.

A plan is executed in the obvious way: when the current state iss ∈ S, then executeπ(s) to
reach a new current state, and so on. Plan execution does not terminate.

5.3 Algorithms for finding finite horizon plans

Conceptually the simplest probabilistic planning is when plan executions are restricted to have a
finite horizon of lengthN . We briefly describe this problem to illustrate the techniques that are
used in connection with the infinite horizon planning problems.

The optimum valuesvi(s) that can be obtained in states ∈ S at time pointi ∈ {1, . . . , N}
fulfill the following equations.

vN (s) = max
a∈A(s)

R(s, a)

CHAPTER 5. PROBABILISTIC PLANNING 112

vi(s) = max
a∈A(s)

(
R(s, a) +

∑
s′∈S

p(s′|s, a)vi+1(s′)

)
, for i ∈ {1, . . . , N − 1}

The value at the last stageN is simply the best immediate reward that can be obtained, and
values of states for the other stages are obtained in terms of the values of states for the later stages.

These equations also directly yield an algorithm for computing the optimal values and optimal
plans: first computevN , thenvN−1, vN−2 and so on, untilv1 is obtained. The action to be taken
in states ∈ S at time pointi is π(s, i) defined by

π(s,N) = arg max
a∈A(s)

R(s, a)

π(s, i) = arg max
a∈A(s)

(
R(s, a) +

∑
s′∈S

p(s′|s, a)vi+1(s′)

)
, for i ∈ {1, . . . , N − 1}

5.4 Algorithms for finding plans under discounted rewards

The valuev(s) of a states ∈ S is the discounted sum of the expected rewards that can be obtained
by choosing the best possible action ins and assuming that the best possible actions are also
chosen in all the possible successor states. The following equations, one for each states ∈ S,
characterize the relations between the values of states of a stochastic transition system under an
optimal plan and geometrically discounted rewards with discount constantλ.

v(s) = max
a∈A(s)

(
R(s, a) +

∑
s′∈S

λp(s′|s, a)v(s′)

)
(5.1)

These equations are called the optimality equations or the Bellman equations, and they are
the basis of the most important algorithms for finding optimal plans for probabilistic planning
problems with full observability.

5.4.1 Evaluating the value of a given plan

Given a planπ its value under discounted rewards with discount constantλ satisfies the following
equation for everys ∈ S.

v(s) = R(s, π(s)) +
∑
s′∈S

λp(s′|s, π(s))v(s′) (5.2)

This yields a system of linear equation with|S| equations and unknowns. The solution of these
equations yields the value of the plan in each state.

5.4.2 Value iteration

The value iteration algorithm finds an approximation of the value of the optimalλ-discounted plan
within a constantε, and a plan with at least this value.

CHAPTER 5. PROBABILISTIC PLANNING 113

R=5

R=1

p=0.1

p=0.9

A

B D

E
C

Figure 5.1: A stochastic transition system

1. n := 0

2. Assign (arbitrary) initial values tov0(s) for all s ∈ S.

3. For eachs ∈ S, assign

vn+1(s) := max
a∈A(s)

(
R(s, a) +

∑
s′∈S

λp(s′|s, a)vn(s′)

)

If |vn+1(s)− vn(s)| < ε(1−λ)
2λ for all s ∈ S then go to step 4.

Otherwise, setn := n + 1 and go to step 3.

4. Assign

π(s) := arg max
a∈A(s)

(
R(s, a) +

∑
s′∈S

λp(s′|s, a)vn+1(s′)

)

Theorem 5.4 Let vπ be the value function of the plan produced by the value iteration algorithm,
and letv∗ be the value function of an optimal plan. Then|v∗(s)− vπ(s)| ≤ ε for all s ∈ S.

Notice that unlike in partially observable planning problems, under full observability there is
never a trade-off between the values of two states: if the optimal value for states1 is r1 and the
optimal value for states2 is r2, then there is one plan that achieves these both.

Example 5.5 Consider the stochastic transition system in Figure 5.1. Only one of the actions is
nondeterministic and only in sate B, and all the other actions and states have zero reward except
one of the actions in states A and D, with rewards 1 and 5, respectively. �

5.4.3 Policy iteration

The second, also rather widely used algorithm for finding plans, is policy iteration1. It is slightly
more complicated to implement than value iteration, but it typically converges after a smaller
number of iterations, and it is guaranteed to produce an optimal plan.

The idea is to start with an arbitrary plan (assignment of actions to states), compute its value,
and repeatedly choose for every state an action that is better than its old action.

1In connection with Markov decision processes the wordpolicy is typically used instead of the wordplan.

CHAPTER 5. PROBABILISTIC PLANNING 114

1. Assignn := 0.

2. Letπ0 be any mapping from states to actions.

3. Compute the valuesvn(s) of all s ∈ S underπn.

4. Letπn+1(s) = arg maxa∈A(s)

(
R(s, a) +

∑
s′∈S λp(s′|s, a)vn(s′)

)
.

5. Assignn := n + 1.

6. If n = 1 or vn 6= vn−1 then go to 3.

Theorem 5.6 The policy iteration algorithm terminates after a finite number of steps and returns
an optimal plan.

Proof: Outline: There is only a finite number of different plans, and at each step the new plan
assigns at least as high a value to each state as the old plan. �

It can be shown that the convergence rate of policy iteration is always at least as fast as that of
value iteration[Puterman, 1994], that is, the number of iterations needed for finding anε-optimal
plan for policy iteration is never higher than the number of iterations needed by value iteration.

In practise policy iteration often finds an optimal plan after just a few iterations. However,
the amount of computation in one round of policy iteration is substantially higher than in value
iteration, and value iteration is often considered more practical.

5.4.4 Implementation of the algorithms with ADDs

Similar to the techniques in Section 3.7 for deterministic planning with binary decision diagrams,
also probabilistic planning algorithms can be implemented with data structures that allow the
representation of much bigger states spaces than what is possible by enumerative representations.

A main difference to the non-probabilistic case (Sections 3.7, 4.3 is that for probabilistic plan-
ning propositional formulae and binary decision diagrams are not suitable for representing the
probabilities of nondeterministic operators nor the probabilities of the value functions needed in
the value and policy iteration algorithms. However, instead of BDDs, we can use algebraic deci-
sion diagrams (Section 2.2.3).

In Section 4.1.2 we showed how the incidence matrices expressing the transition probabilities
of nondeterministic operators can be represented as BDDs, when the exact probabilities can be
ignored, and it is only necessary to know whether a certain nondeterministic event is possible or
not.

Next we define a similar translation from nondeterministic operators to ADDs that does repre-
sent the exact probabilities.

Now we give the translation of an effecte restricted to state variablesB. This means that only
state variables inB may occur ine in atomic effects (but do not have to), and the formula does
not say anything about the change of state variables not inB (but may of course refer to them in
antecedents of conditionals.)

The last two cases, handling nondeterministic choice and conjunction of possibly nondetermin-
istic effects is with ADD operations of multiplying an ADD with a constant, summing ADDs, and
multiplying ADDs.

CHAPTER 5. PROBABILISTIC PLANNING 115

PLB(e) =
∧

({((a ∧ ¬EPC¬a(e)) ∨ EPCa(e)) ↔ a′|a ∈ B}
whene is deterministic

PLB(p1e1| · · · |pnen) = p1 · PLB(e1) + · · ·+ pn · PLB(en)
PLB(e1 ∧ · · · ∧ en) = PLB\(B2∪···∪Bn)(e1) · PLB2(e2) · . . . · PLBn(en)

whereBi = changes(ei) for all i ∈ {1, . . . , n}

The first part of the translation PLB(e) for deterministice is the translation of deterministic effects
we presented in Section 3.5.2, but restricted to state variables inB. The result of this translation
is a normal propositional formula, which can be further transformed to a BDD and an ADD with
only two terminal nodes 0 and 1. The other two cases cover all nondeterministic effects in normal
form.

The translation of an effecte in normal form into an ADD is PLA(e) whereA is the set of all
state variables. Translating an operators〈c, e〉 to an ADD representing its incidence matrix is as
c · PLA(e), wherec is the ADD representing the precondition.

Example 5.7 Consider effect(0.2¬A|0.8A)∧(0.5(B B ¬B)|0.5>). The two conjunct translated
to functions

AA′ fA

00 0.2
01 0.8
10 0.2
11 0.8

BB′ fB

00 1.0
01 0.0
10 0.5
11 0.5

Notice that the sum of the probabilities of the successor states is 1.0. These functions are below
depicted in the same table. Notice that the third column, with the two functions componentwise
multiplied, has the property that the sum of successor states of each state is 1.0.

ABA′B′ fA fB fA · fB

0000 0.2 1.0 0.2
0001 0.2 0.0 0.0
0010 0.8 1.0 0.8
0011 0.8 0.0 0.0
0100 0.2 0.5 0.1
0101 0.2 0.5 0.1
0110 0.8 0.5 0.4
0111 0.8 0.5 0.4
1000 0.2 1.0 0.2
1001 0.2 0.0 0.0
1010 0.8 1.0 0.8
1011 0.8 0.0 0.0
1100 0.2 0.5 0.1
1101 0.2 0.5 0.1
1110 0.8 0.5 0.4
1111 0.8 0.5 0.4

�

CHAPTER 5. PROBABILISTIC PLANNING 116

We represent the rewards produced by operatoro = 〈c, e〉 ∈ O in different states compactly as
a list R(o) = {〈φ1, r1〉, . . . , 〈φn, rn〉} of pairs〈φ, r〉, meaning that wheno is applied in a state
satisfyingφ the rewardr is obtained. In any state only one of the formulaeφi may be true, that
is φi |= ¬φj for all {i, j} ⊆ {1, . . . , n} such thati 6= j. If none of the formula is true in a given
state, then the reward is zero. HenceRo is simply a mapping from states to a real numbers.

The reward functionsR(o) can be easily translated to ADDs. First construct the BDDs for
φ1, . . . , φn and then multiply them with the respective rewards as

Ro = r1 · φ1 + · · ·+ rn · φn −∞ · ¬c.

The summand∞ · ¬c handles the case in which the precondition of the operator is not satisfied:
application yields immediate reward minus infinity. This prevent using the operator in any state.

Similarly, the probability distribution on possible initial states can be represented asI =
{〈φ1, p1〉, . . . , 〈φn, pn〉} and translated to an ADD.

Now the value iteration algorithm can be rephrased in terms of ADD operations as follows.

1. Assignn := 0 and letvn be an ADD that is constant 0.

2.

vn+1 := max
〈c,e〉=o∈O

(
Ro + λ · ∃A′.(To · (vn[A′/A])

)
for everys ∈ S

If all terminal nodes of ADD|vn+1 − vn| are< ε(1−λ)
2λ then stop.

Otherwise, setn := n + 1 and repeat step 2.

5.5 Probabilistic planning with partial observability

5.5.1 Problem definition

5.5.2 Value iteration

Value of a plan in a state

Let 〈C1, . . . , Cn〉 be the partition of the state spaceS to the observational classes. Heren ≥ 1.
The value of finite plansπ for a states ∈ S is defined recursively as follows. Here() is the

empty plan.

v(),s = 0

v(a,π1,...,πn),s =
{
−∞ if actiona is not applicable ins
R(s, a) + λ(

∑
s′∈C1

p(s′|s, a)vπ1,s′ + · · ·+
∑

s′∈Cn
p(s′|s, a)vπn,s′)

Given a belief stateB and the valuesvπ,s1 , . . . , vπ,sm of a planπ for all statesS ∈ {s1, . . . , sm},
the value ofπ for B is simply

∑
s∈S vπ,sB(s).

Eliminating dominated plans

The test whether planπ is for at least one belief state strictly better than any other plan inΠ =
{π1, . . . , πn} can be performed by linear programming.

CHAPTER 5. PROBABILISTIC PLANNING 117

s4

s3s1

s2 p=0.5

p=0.5

p=0.7
R=1

p=0.2

R=1

p=0.1

Figure 5.2: Stochastic transition system with two observational classes{s1, s2} and{s3, s4}

The variables in the LP ared andps for everys ∈ S, and the expression to be maximized is the
value ofd. The constantsvπ,s are values of plansπ in statess ∈ S.∑

s∈S psvπ,s ≥
∑

s∈S psvπ′,s + d for all π′ ∈ Π\{π}∑
s∈S ps = 1

ps ≥ 0 for all s ∈ S

The number of equations in the LP is|Π| + |S| and the number of unknowns is|S| + 1. If the
maximum value ofd is > 0, then there is a belief state in which the value ofπ is higher than the
value of any other plan. This belief state is expressed by the values of the variablesps, s ∈ S.

The main procedure of the algorithm

1. i := 0

2. Π0 := {()}

3. i := i + 1

4. Πi := {(a, π1, . . . , πn)|a ∈ A, {π1, . . . , πn} ⊆ Πi−1}

5. Evaluate the values of plans inΠi in all states.

6. As long as there isπ ∈ Πi that is dominated byΠi\{π}, setΠi := Πi\{π}.

7. If the difference between value functions represented byΠi andΠi−1 is > ε for some belief
state, go to 3.

Example 5.8 Consider the Now we run the value iteration algorithm for partially observable prob-
abilistic planning problems. We use the discounting constantλ = 0.5.

Plans of depth 1 with the corresponding value vectors for all statesS = {s1, s2, s3, s4} are the
following.

π1 = (RED, (), ()) v(π1) = 〈1.0,0.0,0.0,0.0〉
π2 = (BLUE, (), ()) v(π2) = 〈0.0,1.0,0.0,0.0〉

CHAPTER 5. PROBABILISTIC PLANNING 118

s1 s2

π1 π2

1.0

0.0 0.0

1.0

s3 s4

0.0 0.0
π1 π2

Plans of depth 2 and the corresponding value vectors are the following.

π3 = (RED, π1, π1) v(π3) = 〈1.0, 0.0, 0.0, 0.0〉
π4 = (RED, π1, π2) v(π4) = 〈1.0, 0.0, 0.0, 0.0〉
π5 = (RED, π2, π1) v(π5) = 〈1.35,0.0,0.0,0.0〉
π6 = (RED, π2, π2) v(π6) = 〈1.35, 0.0, 0.0, 0.0〉
π7 = (BLUE, π1, π1) v(π7) = 〈0.5,1.5,0.5,0.0〉
π8 = (BLUE, π1, π2) v(π8) = 〈0.5, 1.5, 0.5, 0.0〉
π9 = (BLUE, π2, π1) v(π9) = 〈0.0, 1.0, 0.0, 0.0〉

π10 = (BLUE, π2, π2) v(π10) = 〈0.0, 1.0, 0.0, 0.0〉

The graphical representation of these vectors is as follows.

s1 s2

0.0

1.35

π5

0.5

1.5

π7

s3 s4

0.0 0.0

0.5
π7

π5

Becauses1 and s2 are indistinguishable, but distinguishable froms3 and s4, the associated
value functions can be depicted in two diagrams, each depicting probability distributions on a set
of states that are indistinguishable from each other.

When enumerating plans of depthi + 1, it suffices to use as subplans only those plans of depth
i that are the best plans for at least one belief state. Hence from the depth 2 plans we can ignore
all but π5 andπ7. Notice that in this example, we accidentally can recognize those plans that are

CHAPTER 5. PROBABILISTIC PLANNING 119

better anywhere from the fact that they are strictly worse on all states, and all the remaining plans
are strictly better in at least one state. Plans of depth 3 and the corresponding value vectors are the
following.

π11 = (RED, π5, π5) v(π11) = 〈1.0, 0.0, 0.0, 0.0〉
π12 = (RED, π5, π7) v(π12) = 〈1.05, 0.125, 0.0, 0.25〉
π13 = (RED, π7, π5) v(π13) = 〈1.525, 0.0, 0.0, 0.0〉
π14 = (RED, π7, π7) v(π14) = 〈1.575,0.125,0.0,0.25〉
π15 = (BLUE, π5, π5) v(π15) = 〈0.675, 1.675, 0.675, 0.0〉
π16 = (BLUE, π5, π7) v(π16) = 〈0.675,1.675,0.675,0.25〉
π17 = (BLUE, π7, π5) v(π17) = 〈0.25, 1.25, 0.25, 0.0〉
π18 = (BLUE, π7, π7) v(π18) = 〈0.25, 1.25, 0.25, 0.25〉

s1 s2

1.575
1.675

0.125

0.675

π14 π16

s3 s4

0.0

0.675

0.25
π14

π16

Plans of depth 4 and the corresponding value vectors are the following.

π19 = (RED, π14, π14) v(π19) = 〈1.05625, 0.0625, 0.125, 0.0〉
π20 = (RED, π14, π16) v(π20) = 〈1.12375, 0.23125, 0.125, 0.3375〉
π21 = (RED, π16, π14) v(π21) = 〈1.59875, 0.0625, 0.125, 0.0〉
π22 = (RED, π16, π16) v(π22) = 〈1.66625,0.23125,0.125,0.3375〉
π23 = (BLUE, π14, π14) v(π23) = 〈0.7875, 1.7875, 0.7875, 0.0〉
π24 = (BLUE, π14, π16) v(π24) = 〈0.7875,1.7875,0.7875,0.3375〉
π25 = (BLUE, π16, π14) v(π25) = 〈0.3375, 1.3375, 0.3375, 0.0〉
π26 = (BLUE, π16, π16) v(π26) = 〈0.3375, 1.3375, 0.3375, 0.3375〉

CHAPTER 5. PROBABILISTIC PLANNING 120

s1 s2

1.667

1.788

0.231

0.788

π22

π24

s3 s4

0.788

0.125

π22
0.338

π24

The plan can be depicted as the following graph.

BLUE RED

RED BLUE

BLUE RED

RED

BLUE

π2 π1

π5 π7

π16 π14

π22

π24

�

5.6 Literature

A comprehensive book on (fully observable) Markov decision processes has been written by Put-
erman[1994], and our presentation of the algorithms in Section 5.4 (5.4.2 and 5.4.3) follows that
of Puterman. The book represents the traditional research on MDPs and uses exclusively enu-
merative representations of state spaces and transition probabilities. The book discusses all the
main optimality criteria as well as algorithms for solving MDPs by iterative techniques and linear
programming. There are also many other books on solving MDPs.

A planning system that implements the value iteration algorithm with ADDs is described by
Hoey et al. [1999] and is shown to be capable of solving problems that could not be efficiently
solved by conventional implementations of value iteration.

CHAPTER 5. PROBABILISTIC PLANNING 121

The best known algorithms for solving partially observable Markov decision processes were
presented by Sondik and Smallwood in the early 1970’s[Sondik, 1978; Smallwood and Sondik,
1973] and even today most of the work on POMDPs is based on those algorithms[Kaelbling
et al., 1998]. In this section we have presented the standard value iteration algorithm with the
simplification that there is no sensing uncertainty, that is, for every state the same observation,
dependent on the state, is always made.

The most general infinite-horizon planning problems and POMDP solution construction are
undecidable[Madaniet al., 2003]. The complexity of probabilistic planning has been investigated
for example by Mundhenk et al.[2000] and Littman[1997].

Bonet and Geffner[2000] and Hansen and Zilberstein[2001] have presented algorithms for
probabilistic planning with Markov decision processes that use heuristic search.

5.7 Exercises

5.1Prove that on each step of policy iteration the policy improves.

