Chapter 5

Probabilistic planning

Probabilistic planning is an extension of nondeterministic planning with exact information on the
probabilities of nondeterministic events.

Exact probabilities are important because it is not just important to get things done, but to get
them done efficiently, and for goals for which there is no guarantee that they are reached, it is
important to reach them as likely as possible.

The introduction of probabilities complicates planning, both conceptually and computationally.
Whereas in the non-probabilistic of conditional planning with partial observability it is sufficient
to work in a finite discrete belief space, the introduction of probabilities makes the belief space
continuous and thereby infinite. This means that there are no algorithms for doing planning, that
is, there is no program that either delivers a plan (with a given property) or announces that no plans
exist.

However, despite these difficulties one is forced to face, probabilities are important in many
types of applications, and algorithms for probabilistic planning are therefore worth studying.

In this section we discuss a number of algorithms for probabilistic planning, starting from al-
gorithms for the conditional planning problem with full observability. The use of probabilities
allows to consider more general plan quality criteria than those that were considered in connection
with non-probabilistic planning problems. A main difference is that there is no necessity to re-
strict to planning with the objective of reaching one of designated goal states. Instead, actions and
states are associated with rewards/costs, and the objective is to maximize the rewards (or minimize
costs) over the execution of a plan. This kind of problems naturally generalize to plan executions
of infinite length.

5.1 Stochastic transition systems with rewards

In Section 2.1 we gave a basic definition of deterministic and nondeterministic transition systems.
For expressing exact transition probabilities we need a new definition of transition systems.

A stochastic transition system consists of a finite%et states. The actions do not just associate
a set of possible successor states to each state, but a probability distribution on the set of possible
successor states.

An action is a partial function fron$' to probability distributions ovef. Partiality means that
not all actions are applicable in all states. A probability distributios a function that maps to
real numbers < [0,1] sothaty | __¢ p(s) = 1.0. The probability distribution indicates how likely
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each state is as a successor state of a given state.

In many types of probabilistic planning problems considered in the literature the objective is
not to reach one of a set of designated goal states. Instead, the objective is to act in a way that
maximizes theewardsor minimizes thecosts Planning problems with a designated set of goal
states can be expressed in terms of rewards, but not vice versa.

Definition 5.1 A stochastic transition system with rewaigs 4-tuple(S, A, p, R, ) where
e S is a finite set of states,
e Ais afinite set of actions,

e p is a partial function that maps each statec S and actiona € A to a probability
distribution onS, and

e R:Sx A — Risareward function which maps each state S and actiona € A to real
number.

A major difference to the definition of Markov decision procedsagerman, 1994s thatp is
a partial function, that is, not all states are assigned a probability distribution. This is for having a
match between the definition of operators in Al planning, where not all actions are applicable in
all states. Below, we will denote the set of actions applicable in a stat& by A(S). We also
require that4(s) is non-empty for every € S.

Notice that we have not defined initial states or a probability distribution on possible initial
states: the most important algorithms find plans that reach the goals from any initial state. Clearly,
when the number of states is very high and the sets of initial states are small, more efficient
planning could be obtained by taking information about the set of initial states into account.

Stochastic transition systems can be described in terms of state variables and operators just like
the transition systems earlier discussed in this lecture. A nondeterministic operaoas given
in Definition 4.1, assigns a probability distribution corresponding, tas given in Definition 4.2,
to any states such thats = c.

5.2 Problem definition

A given plan produces infinite sequences of rewafdss, . ... Clearly, if the planning problem

has several initial states or if the actions are nondeterministic this sequence of rewards is not
unique. In either case, possible plans are assessed in terms of these rewards, and there are several
possibilities how good plans are defined. Because the sequences are infinite, we in general cannot
simply take their sum and compare them. Instead, several other possibilities have been considered.

1. Expected total rewards over a finite horizon.
This is a natural alternative that allows using the normal arithmetic sum of the rewards.
However, there is typically no natural bound on the horizon length.

2. Expected average rewards over an infinite horizon.

This is probably the most natural way of assessing plans. However, there are several tech-
nical complications that make average rewards difficult to use.
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3. Expected discounted rewards over an infinite horizon.

This is the most often used criterion in connection with Markov decision processes. Dis-
counting means multiplying théth reward by\‘~! and it means that early rewards are
much more important than rewards obtained much later. The discount conslest a
value strictly between 0.0 and 1.0. The sum of the geometrically discounted rewards is
finite. Like with choosing the horizon length when evaluating plans with respect to their
behavior within a finite horizon, it is often difficult to say why a certain discount constant

is used.

For the latter two infinite horizon problems there always is an optimal plan that is a mapping
from states to actions, and this is the type of plan used in most of this section.

In the first case with a bounded horizon the optimal plans cannot be represented as mappings
from state to actions it really is the case that the length of the plan execution indeed equals the
horizon length and instead mappings from states and time points to actions are needed. This is
because for example at the last stage all rewards that are obtained are from the last action. The
optimal plans are therefore time-dependent. However, nothing prevents using the first stage of the
finite horizon plan as a normal plan, that is, as a mapping from states to actions.

We state the probabilistic conditional planning problem in the general form. Like with non-
probabilistic conditional planning, observability restrictions are expressed in terms of a set of state
variables that are observable.

Definition 5.2 A 5-tuple (A, I, O, B, R) consisting of a setl of state variables, a probability
distribution I over valuations of4, a setO of operators, a reward functio®, and a setB C A
of state variables ia problem instance in probabilistic nondeterministic planning

TLisasef{{(¢p1,p1), (¢d2,p2), ..., (dn, pn)} that expresses a probability distribution over valua-
tions of A. We require thab; = —¢; for every{i, j} C {1,...,n}.

R(o) for everyo € O is a set{(¢1,71), (¢p2,72), ..., {dm, m)} that expresses the rewards
obtained whem is applied: ifo is applied ins ands = ¢y, then reward ig,. We require that

¢i = —o; forevery{i, j} C {1,...,m}.

Definition 5.3 A planfor a problem instance is a functian: S — A that assigns each state an
action.

A plan is executed in the obvious way: when the current statedsS, then executer(s) to
reach a new current state, and so on. Plan execution does not terminate.

5.3 Algorithms for finding finite horizon plans

Conceptually the simplest probabilistic planning is when plan executions are restricted to have a
finite horizon of lengthV. We briefly describe this problem to illustrate the techniques that are
used in connection with the infinite horizon planning problems.

The optimum value®;(s) that can be obtained in statec S at time pointi € {1,..., N}
fulfill the following equations.

= R(s,
oN(s) Jnax, (s, a)
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vi(s) = max( sa—i—z (s'|s,a)vit1(s )),forie{l,...,N—l}

a€A(s) ey

The value at the last stag€ is simply the best immediate reward that can be obtained, and
values of states for the other stages are obtained in terms of the values of states for the later stages.
These equations also directly yield an algorithm for computing the optimal values and optimal
plans: first computey, thenvy_1, vy_2 and so on, untib; is obtained. The action to be taken

in states € S at time point; is 7 (s, 7) defined by

,N) = R
(s, N) arg agl?();) (s,a)
7(s,i) = arg mj(x) <R(s,a) + E p(5’|s,a)vi+1(s')> ,forie{l,...,N —1}
acA(s
s'eS

5.4 Algorithms for finding plans under discounted rewards

The valuev(s) of a states € S is the discounted sum of the expected rewards that can be obtained
by choosing the best possible actionsrand assuming that the best possible actions are also
chosen in all the possible successor states. The following equations, one for eacghestéate
characterize the relations between the values of states of a stochastic transition system under an
optimal plan and geometrically discounted rewards with discount constant

v(s) = max (R(s,a) + Z Ap(s’]s,a)v(s’)) (5.1)

a€A(s) Jcs

These equations are called the optimality equations or the Bellman equations, and they are
the basis of the most important algorithms for finding optimal plans for probabilistic planning
problems with full observability.

5.4.1 Evaluating the value of a given plan

Given a planr its value under discounted rewards with discount constasattisfies the following
equation for every € S.

v(s) = R(s,m(s))+ Z Ap(s'|s, m(s))v(s") (5.2)

s'eS
This yields a system of linear equation wjt#| equations and unknowns. The solution of these
equations yields the value of the plan in each state.
5.4.2 Value iteration

The value iteration algorithm finds an approximation of the value of the opfirdédcounted plan
within a constant, and a plan with at least this value.
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Figure 5.1: A stochastic transition system

1. n:=0
2. Assign (arbitrary) initial values ta’(s) for all s € S.

3. For eachs € S, assign

If [o"F1(s) —v™(s)| < 6(12;” for all s € S then go to step 4.
Otherwise, set := n + 1 and go to step 3.

4. Assign
7(s) ;= arg max <R(s,a) + Z Ap(s'\s,a)v"“(s’))

a€A(s) Jes

Theorem 5.4 Letv, be the value function of the plan produced by the value iteration algorithm,
and letv* be the value function of an optimal plan. Thefi(s) — v.(s)| < eforall s € S.

Notice that unlike in partially observable planning problems, under full observability there is
never a trade-off between the values of two states: if the optimal value forsstate; and the
optimal value for state, is ro, then there is one plan that achieves these both.

Example 5.5 Consider the stochastic transition system in Figure 5.1. Only one of the actions is
nondeterministic and only in sate B, and all the other actions and states have zero reward except
one of the actions in states A and D, with rewards 1 and 5, respectively. [

5.4.3 Policy iteration

The second, also rather widely used algorithm for finding plans, is policy itetatibis slightly
more complicated to implement than value iteration, but it typically converges after a smaller
number of iterations, and it is guaranteed to produce an optimal plan.

The idea is to start with an arbitrary plan (assignment of actions to states), compute its value,
and repeatedly choose for every state an action that is better than its old action.

1In connection with Markov decision processes the wasticy is typically used instead of the wopdan.
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1. Assignn := 0.
. Let7” be any mapping from states to actions.

. Compute the values'(s) of all s € S underr™.

2
3
4. Letn" 1 (s) = argmax,e a(s) (R(s,a) + 2 ycg Ap(s']s, a)v™(s)).
5. Assignn :=n + 1.

6

. Ifn =1orv™ # v" ! then go to 3.

Theorem 5.6 The policy iteration algorithm terminates after a finite number of steps and returns
an optimal plan.

Proof: Outline: There is only a finite number of different plans, and at each step the new plan
assigns at least as high a value to each state as the old plan. O

It can be shown that the convergence rate of policy iteration is always at least as fast as that of
value iteratior{ Puterman, 1994 that is, the number of iterations needed for finding-aptimal
plan for policy iteration is never higher than the number of iterations needed by value iteration.

In practise policy iteration often finds an optimal plan after just a few iterations. However,
the amount of computation in one round of policy iteration is substantially higher than in value
iteration, and value iteration is often considered more practical.

5.4.4 Implementation of the algorithms with ADDs

Similar to the techniques in Section 3.7 for deterministic planning with binary decision diagrams,
also probabilistic planning algorithms can be implemented with data structures that allow the
representation of much bigger states spaces than what is possible by enumerative representations.

A main difference to the non-probabilistic case (Sections 3.7, 4.3 is that for probabilistic plan-
ning propositional formulae and binary decision diagrams are not suitable for representing the
probabilities of nondeterministic operators nor the probabilities of the value functions needed in
the value and policy iteration algorithms. However, instead of BDDs, we can use algebraic deci-
sion diagrams (Section 2.2.3).

In Section 4.1.2 we showed how the incidence matrices expressing the transition probabilities
of nondeterministic operators can be represented as BDDs, when the exact probabilities can be
ignored, and it is only necessary to know whether a certain nondeterministic event is possible or
not.

Next we define a similar translation from nondeterministic operators to ADDs that does repre-
sent the exact probabilities.

Now we give the translation of an effectestricted to state variablgs. This means that only
state variables i3 may occur ine in atomic effects (but do not have to), and the formula does
not say anything about the change of state variables nBt(iout may of course refer to them in
antecedents of conditionals.)

The last two cases, handling nondeterministic choice and conjunction of possibly nondetermin-
istic effects is with ADD operations of multiplying an ADD with a constant, summing ADDs, and
multiplying ADDs.
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PLg(e) = A({((a A-EPC.4(e))VEPG,(e)) « d'|a € B}
whene is deterministic
PLg(pie1] -+ |pnen) = p1-Plp(er) + -+ pn-Plp(en)
PLB<61 JARERIVAN 6n) = PLB\(BQU"'UBH) (61) -PLp,(e2)-...-PLp, <6n)
whereB; = changese;) foralli € {1,...,n}

The first part of the translation Ri(e) for deterministic is the translation of deterministic effects
we presented in Section 3.5.2, but restricted to state variablBs he result of this translation
is a normal propositional formula, which can be further transformed to a BDD and an ADD with
only two terminal nodes 0 and 1. The other two cases cover all nondeterministic effects in normal
form.
The translation of an effeetin normal form into an ADD is Pl(e) whereA is the set of alll
state variables. Translating an operat@rs) to an ADD representing its incidence matrix is as
¢ - PLy(e), wherec is the ADD representing the precondition.

Example 5.7 Consider effect0.2-A|0.84) A (0.5(B > —B)|0.5T). The two conjunct translated
to functions

Notice that the sum of the probabilities of the successor states is 1.0. These functions are below
depicted in the same table. Notice that the third column, with the two functions componentwise
multiplied, has the property that the sum of successor states of each state is 1.0.

ABA'B" | fa fB fa-fB
0000 | 0.2 1.0 0.2
0001 | 0.2 0.0 0.0
0010 | 0.8 1.0 0.8
0011 | 0.8 0.0 0.0
0100 | 0.2 0.5 0.1
0101 | 0.2 0.5 0.1
0110 | 0.8 0.5 0.4
0111 | 0.8 0.5 0.4
1000 | 0.2 1.0 0.2
1001 | 0.2 0.0 0.0
1010 | 0.8 1.0 0.8
1011 |1 0.8 0.0 0.0
1100 | 0.2 0.5 0.1
1101 1 0.2 0.5 0.1
11101 0.8 0.5 0.4
1111 1 0.8 0.5 0.4
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We represent the rewards produced by operater(c, e) € O in different states compactly as
alistR(o) = {{(¢1,71),...,{én, )} Of pairs(¢,r), meaning that when is applied in a state
satisfying¢ the reward- is obtained. In any state only one of the formulganay be true, that
is ¢; = —¢; forall {4,5} € {1,...,n} suchthat # j. If none of the formula is true in a given
state, then the reward is zero. Heriggis simply a mapping from states to a real numbers.

The reward functions?(o) can be easily translated to ADDs. First construct the BDDs for
o1, - .., dn and then multiply them with the respective rewards as

Ro=ri-¢p14+--+ry ¢ —00-—cC.

The summando - —~¢ handles the case in which the precondition of the operator is not satisfied:
application yields immediate reward minus infinity. This prevent using the operator in any state.
Similarly, the probability distribution on possible initial states can be representdd -as
{{¢p1,p1), -, {¢n,pn)} and translated to an ADD.
Now the value iteration algorithm can be rephrased in terms of ADD operations as follows.

1. Assignn := 0 and letv™ be an ADD that is constant 0.
2.

"= o N (Ro+ X -3A (T, - (v*[A'/A])) foreverys € S
c,e)=0€

e(1-X)

If all terminal nodes of ADDjv" ! — v"| are< 1% then stop.

Otherwise, set := n + 1 and repeat step 2.

5.5 Probabilistic planning with partial observability

5.5.1 Problem definition
5.5.2 Value iteration
Value of a plan in a state

Let (C1,...,C,) be the partition of the state spagdo the observational classes. Here> 1.
The value of finite plans for a states € S is defined recursively as follows. He(gis the
empty plan.

’U()75 =0
B { —oo if actiona is not applicable irs
R(Sv CL) + )\(ZS’ECl p(S,‘S, a“)IUﬂ"LSI + -+ Zs’ECn p(8/|57 CL)’Uﬂms/)

U(a’77r1 ,...77'('”)75

Given a belief staté? and the values; ;,, ..., vr s, Of a plant for all statesS € {s1, ..., sm},
the value ofr for B is simply) g vr s B(s).
Eliminating dominated plans

The test whether plan is for at least one belief state strictly better than any other pldh ia
{m1,...,m,} can be performed by linear programming.
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A

Figure 5.2: Stochastic transition system with two observational cldsses,} and{ss, s4}

The variables in the LP areandp, for everys € S, and the expression to be maximized is the
value ofd. The constants, ; are values of plans in statess € .S.

Y oecgPsUns = D gcgPstn s +dforalla’ e I\{n}
ZSES bs = 1
ps > Oforallse S

The number of equations in the LP|i| + |S| and the number of unknowns [i§| 4 1. If the
maximum value ofl is > 0, then there is a belief state in which the valuerd higher than the
value of any other plan. This belief state is expressed by the values of the varighles S.

The main procedure of the algorithm
1.2:=0
2. o :=={()}
1=1+1
IL; .= {(a,71,...,m)|a € A {m,...,mn} CI;_1}
Evaluate the values of planslih in all states.

As long as there is € II; that is dominated byl;\{~}, setll; := IL;\{~}.

S L

If the difference between value functions representeld andIl;_, is > e for some belief
state, go to 3.

Example 5.8 Consider the Now we run the value iteration algorithm for partially observable prob-
abilistic planning problems. We use the discounting constaat0.5.
Plans of depth 1 with the corresponding value vectors for all states{sy, so, s3, s4} are the
following.
m = (RED,(),()) w(m) = (1.0,0.0,0.0,0.0)
m = (BLUE,(),()) wv(m) = (0.0,1.0,0.0,0.0)
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0.0

00 0.0

Plans of depth 2 and the corresponding value vectors are the following.

3
T4
5
6
7
8
9

10

RED, 7T1,7T1

RED T2, T

BLUE, 1, 72
BLUE , T2, 71

(
(
(
(
(BLUE 1,71
(
(
(BLUE, 72, o

)
m2)
1) v
)

v(
o
v(
v(mg
v(
o

(

(1.0,0.0,0.0,0.0)
(1.0,0.0,0.0,0.0)
(1.35,0.0,0.0,0.0)
(1.35,0.0,0.0,0.0)
(0.5,1.5,0.5,0.0)
(0.5,1.5,0.5,0.0)
(0.0,1.0,0.0,0.0)
(0.0,1.0,0.0,0.0)

The graphical representation of these vectors is as follows.

0.5+

™

00 0.0

v
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Becauses; and s, are indistinguishable, but distinguishable fremand s4, the associated
value functions can be depicted in two diagrams, each depicting probability distributions on a set
of states that are indistinguishable from each other.

When enumerating plans of depth- 1, it suffices to use as subplans only those plans of depth
i that are the best plans for at least one belief state. Hence from the depth 2 plans we can ignore
all but7; andz7. Notice that in this example, we accidentally can recognize those plans that are
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better anywhere from the fact that they are strictly worse on all states, and all the remaining plans
are strictly better in at least one state. Plans of depth 3 and the corresponding value vectors are the
following.

T11 = (RED s, 7'['5) ’1)(7'['11) = <10,00, 00, OO>
ms = (RED,ms,m7) w(ma) = (1.05,0.125,0.0,0.25)
My = (RED 7T7,7T5) 7}(7'['13) = <1525,00,00,00>
m4 = (RED,mp,m7) w(ms) = (1.575,0.125,0.0,0.25)
75 = (BLUE,ms,m5) w(ms) = (0.675,1.675,0.675,0.0)
me = (BLUE,ms,m7) v(me) = (0.675,1.675,0.675,0.25)
mr = (BLUE,mr,ms) wv(mz) = (0.25,1.25,0.25,0.0)
ms = (BLUE,m7,m) v(ms) = (0.25,1.25,0.25,0.25)
sl 2 s3 4
l 1675 ] i
1.575| B | B
ma e
0675| I 0675 6 I
i L i L 0.25
0.125 4
00

Plans of depth 4 and the corresponding value vectors are the following.

mo = (RED,my,my) wo(me) = (1.05625,0.0625,0.125,0.0)

mo = (RED,m,mg) o(mo) = (1.12375,0.23125,0.125,0.3375)
791 = (RED,mg, ) w(myn) = (1.59875,0.0625,0.125,0.0)

m2 = (RED,mg me) v(me) = (1.66625,0.23125,0.125,0.3375)
mo3 = (BLUE,myg,m) v(ms) = (0.7875,1.7875,0.7875,0.0)

w4 = (BLUE,my,me) v(m) = (0.7875,1.7875,0.7875,0.3375)
mo5 = (BLUE,mg,ma) v(ms) = (0.3375,1.3375,0.3375,0.0)

me = (BLUE,mg, mg) o(mg) = (0.3375,1.3375,0.3375,0.3375)
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sl 2 3 4
i 11.788 _ B

1.667 o4
_ 02 L _ L
0.788| | 0.788| o4 |

0.338
— — TQZ —
0.231
0.125

The plan can be depicted as the following graph.

BLUE
2
RED
n:L6i T4
BLUE RED
™ 1174

RED BLUE

BLUE RED

5.6 Literature

A comprehensive book on (fully observable) Markov decision processes has been written by Put-
erman[1994, and our presentation of the algorithms in Section 5.4 (5.4.2 and 5.4.3) follows that

of Puterman. The book represents the traditional research on MDPs and uses exclusively enu-
merative representations of state spaces and transition probabilities. The book discusses all the
main optimality criteria as well as algorithms for solving MDPs by iterative techniques and linear

programming. There are also many other books on solving MDPs.

A planning system that implements the value iteration algorithm with ADDs is described by
Hoey et al.[1999 and is shown to be capable of solving problems that could not be efficiently

solved by conventional implementations of value iteration.
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The best known algorithms for solving partially observable Markov decision processes were
presented by Sondik and Smallwood in the early 19¥8&ndik, 1978; Smallwood and Sondik,
1973 and even today most of the work on POMDPs is based on those algoffitaetbling
et al, 1994. In this section we have presented the standard value iteration algorithm with the
simplification that there is no sensing uncertainty, that is, for every state the same observation,
dependent on the state, is always made.

The most general infinite-horizon planning problems and POMDP solution construction are
undecidabléMadaniet al,, 2003. The complexity of probabilistic planning has been investigated
for example by Mundhenk et 2000 and Littman[1997.

Bonet and Geffnef200d and Hansen and Zilberste[2001] have presented algorithms for
probabilistic planning with Markov decision processes that use heuristic search.

5.7 Exercises

5.1Prove that on each step of policy iteration the policy improves.



