
Chapter 4

Conditional planning

Now we relax the two assumptions that characterize deterministic planning, the determinism of
the operators and the restriction to one initial state. Instead of an initial state, we will have a
formula describing a set of initial states, and our definition of operators will be extended to cover
nondeterministic actions.

These extensions to the planning problem mean that the notion of plans as sequences of oper-
ators is not sufficient, because the states that will be visited are not uniquely determined by the
actions taken so far: different initial states may require different actions, and nondeterministic
actions lead to several alternative successor states.

Plans will be mappings from the observations made so far to the next actions to be taken. There
are several possibilities in representing such mapping. Our definition of plans has the form of
programs consisting of operators, sequences of operators, and conditional that choose subplans
based on observations.

What observations can be made has a strong effect on how planning can be done. There are
two special cases we will discuss separately from the general conditional planning problem, those
with no observations possible and with everything observable.

When there are no observations, the definition of plans reduces to sequences of actions like in
deterministic planning, but executing the plans does not always generate the same sequence of
states because of nondeterminism and multiple initial states.

For the fully observable case planning algorithms are much simpler than when observability is
only partial. In this case plans can alternatively be defined as mappings from states to actions,
and there is no need for the plans to have memory in the way program-like plans have, a form of
program counter that keeps track which location of the plan is currently executed.

In this chapter we first discuss nondeterministic actions and transition systems, then define
what conditional plans are, and then discuss algorithms for the three types of conditional plan-
ning, starting from the simplest case of planning with full observability, followed by planning
without observability, and finally the general partially observable planning problem. The chapter
is concluded by a discussion of the computational complexity of conditional planning.

4.1 Nondeterministic operators

There is often uncertainty about what the exacts effects of an action are. This is because not all
aspects of the world can be exactly formalized, and part of the things that are not formalized may

65

CHAPTER 4. CONDITIONAL PLANNING 66

affect the outcomes of the actions.
Consider for example a robot that plays basket ball. However well the robot is designed, there

is still always small uncertainty about the exact physical properties of the ball and the hands the
robot uses for throwing the ball. Therefore it is possible to predict the outcome of throwing the ball
only up to a certain precision, and a ball thrown by the robot may still miss the basket. This would
be a typical situation in which we would formalize an action as nondeterministic. It succeeds with
a certain probability, and fails otherwise, and the exact conditions that lead to success or failure
are outside the formalization of the action.

In other cases nondeterminism arises because formalizing all the things affecting the outcomes
of an action does not bring further benefit. Consider a robot that makes and serves coffee for the
members of the research lab. It might be well known that certain lab members never drink coffee,
that certain lab members always drink coffee right after lunch, and so on. But it would often not
be very relevant for the robot to know these things, as its task is simply to make and serve a cup
of coffee whenever somebody requests it to do so. So for the coffee making robot we could just
formalize the event that somebody requests coffee as a nondeterministic event, even though there
are well known deeper regularities that govern these requests.

In this section we extend the definition of operators first given in Section 2.3 to cover nondeter-
minism and discuss two normal forms for nondeterministic operators, We then present a translation
of nondeterministic operators into the propositional logic, and in the next sections we discuss sev-
eral planning algorithms that can be efficiently implemented with binary decision diagrams that
represent transition relations corresponding to nondeterministic actions.

Probabilities can often be associated with the alternative nondeterministic effects an operator
may have, and we include the probabilities in our definition of nondeterministic operators. How-
ever, the algorithms discussed in this chapter ignore these probabilities, and they will be only
needed later for the probabilistic variants of conditional planning in Chapter 5.

Definition 4.1 LetA be a set of state variables. Anondeterministic operatoris a pair〈c, e〉 where
c is a propositional formula overA describing the precondition, ande is a nondeterministic effect.
Effects are recursively defined as follows.

1. a and¬a for state variablesa ∈ A are effects.

2. e1 ∧ · · · ∧ en is an effect overA if e1, . . . , en are effects overA (the special case withn = 0
is the empty conjunction>.)

3. c B e is an effect overA if c is a formula overA ande is an effect overA.

4. p1e1| · · · |pnen is an effect overA if e1, . . . , en for n ≥ 2 are effects overA, pi > 0 for all
i ∈ {1, . . . , n} and

∑n
i=1 pi = 1.

The definition extends Definition 2.7 by allowing nondeterministic choice asp1e1| · · · |pnen.
Next we give a formal semantics for the application of a nondeterministic operator. The def-

inition of deterministic operator application (Definition 2.8) assigned a state to every state and
operator. The new definition assigns a probability distribution over the set of successor states for
a given state and operator.

Definition 4.2 (Nondeterministic operator application) Let 〈c, e〉 be an operator overA. Lets
be a state, that is an assignment of truth values toA. The operator is applicable ins if s |= c.

CHAPTER 4. CONDITIONAL PLANNING 67

Recursively assign each effecte a set[e]s of pairs〈p, l〉 wherep is a probability0 < p ≤ 1 and l
is a set of literalsa and¬a for a ∈ A.

1. [a]s = {〈1, {a}〉} and[¬a]s = {〈1, {¬a}〉} for a ∈ A.

2. [e1 ∧ · · · ∧ en]s = {〈Πn
i=1pi,

⋃n
i=1 fi〉|〈p1, f1〉 ∈ [e1]s, . . . , 〈pn, fn〉 ∈ [en]s}.

3. [c′ B e′]s = [e′]s if s |= c′ and[c′ B e′]s = {〈1, ∅〉} otherwise.

4. [p1e1| · · · |pnen]s = {〈p1 · p, e〉|〈p, e〉 ∈ [e1]s} ∪ · · · ∪ {〈pn · p, e〉|〈p, e〉 ∈ [en]s}

Above in (4) the union of sets is defined so that for example{〈0.2, {a}〉} ∪ {〈0.2, {a}〉} =
{〈0.4, {a}〉}, that is, same sets of changes are combined by summing their probabilities.

The successor states ofs under the operator are ones that are obtained froms by making the
literals in f for 〈p, f〉 ∈ [e]s true and retaining the truth-values of state variables not occurring in
f . The probability of a successor state is the sum of the probabilitiesp for 〈p, f〉 ∈ [e]s that lead
to it.

Each〈p, l〉means that with probabilityp the literals that become true are those inl, and hence in-
dicate the probabilities of the possible successor states ofs. For any[e]s = {〈p1, l1〉, . . . , 〈pn, ln〉}
the sum of probabilities is

∑n
i=1 pi = 1.

In non-probabilistic variants of planning we also use a semantics that ignores the probabilities.
The following definition gives those successor states that have a non-zero probability according to
the preceding definition.

Definition 4.3 (Nondeterministic operator application II) Let〈c, e〉 be an operator overA. Let
s be a state, that is an assignment of truth values toA. The operator is applicable ins if s |= c.
Recursively assign each effecte a set[e]s of literalsa and¬a for a ∈ A.

1. [a]s = {{a}} and[¬a]s = {{¬a}} for a ∈ A.

2. [e1 ∧ · · · ∧ en]s = {
⋃n

i=1 fi|f1 ∈ [e1]s, . . . , fn ∈ [en]s}.

3. [c′ B e′]s = [e′]s if s |= c′ and[c′ B e′]s = {∅} otherwise.

4. [p1e1| · · · |pnen]s = [e1]s ∪ · · · ∪ [en]s

The successor states under〈c, e〉 are obtained froms by assigning the sets of literals in[e]s
true.

4.1.1 Normal forms for nondeterministic operators

We can generalize the normal form defined in Section 2.3.2 to nondeterministic effects and op-
erators. In the normal formal form the nondeterministic choices together with conjunctions are
outside, and all atomic effects are as consequents of conditionals.

For showing that every nondeterministic effect can be transformed into normal form we have
extended our set of equivalences on effects to cover nondeterministic choice. The whole set of
equivalences is given in Table 4.1.

CHAPTER 4. CONDITIONAL PLANNING 68

c B (e1 ∧ · · · ∧ en) ≡ (c B e1) ∧ · · · ∧ (c B en) (4.1)

c B (c′ B e) ≡ (c ∧ c′) B e (4.2)

c B (p1e1| · · · |pnen) ≡ p1(c B e1)| · · · |pn(c B en) (4.3)

(c1 B e) ∧ (c2 B e) ≡ (c1 ∨ c2) B e (4.4)

e ∧ (c B e) ≡ e (4.5)

e ≡ > B e (4.6)

e ∧ (p1e1| · · · |pnen) ≡ p1(e ∧ e1)| · · · |pn(e ∧ en) (4.7)

p1(p′1e
′
1| · · · |p′ne′n)|p2e2| · · · |pnen ≡ (p1p

′
1)e

′
1| · · · |(p1p

′
n)e′n|p2e2| · · · |pnen (4.8)

p1(e′ ∧ (c B e1))|p2e2| · · · |pnen ≡ (c B (p1(e′ ∧ e1)|p2e2| · · · |pnen)) (4.9)

∧(¬c B (p1e
′|p2e2| · · · |pnen)) (4.10)

Table 4.1: Equivalences on effects

Definition 4.4 (Normal form for nondeterministic operators) An effect is innormal formif it
can be derived as follows.

A deterministic effect is in normal form if it is a conjunction (0 or more conjuncts) of effects
c B p andc B ¬p, with at most one occurrence ofp and¬p for any state variablep ∈ A.

A nondeterministic effect is in normal form if it isp1e1| · · · |pnen for deterministic effectsei that
are in normal form, or it is a conjunction of nondeterministic effects in normal form.

A nondeterministic operator〈c, e〉 is in normal form if its effect is in normal form.

Theorem 4.5 For every operator there is an equivalent one in normal form. There is one that has
a size that is polynomial in the size of the former.

Proof: By using equivalences 4.1, 4.2 and 4.3 in Table 4.1 we can transform any effect so that all
atomic effectsl occur as consequents of conditionalc B l. By further using equivalence 4.7 we
can transform the effect to normal form. �

Example 4.6 The effect

a B (0.3b|0.7(c ∧ f)) ∧ (0.2(d ∧ e)|0.8(b B e))

in normal form is

(0.3(a B b)|0.7((a B c) ∧ (a B f))) ∧ (0.2((> B d) ∧ (> B e))|0.8(b B e)).

�

In certain cases, for example for defining regression for nondeterministic operators, it is best
to restrict to operators in a slightly more restrictive normal form, in which nondeterminism may
appear only at the topmost structure in the effect.

Definition 4.7 (Normal form II for nondeterministic operators) An effect is innormal form II
if it can be derived as follows.

CHAPTER 4. CONDITIONAL PLANNING 69

A deterministic effect is in normal formal II if it is a conjunction (0 or more conjuncts) of effects
c B p andc B ¬p, with at most one occurrence ofp and¬p for any state variablep ∈ A.

A nondeterministic effect is in normal form II if it is of formp1e1| · · · |pnen whereei are deter-
ministic effects in normal form II.

A nondeterministic operator〈c, e〉 is in normal form if its effect is in normal form.

4.1.2 Translation of nondeterministic operators into propositional logic

In Section 3.5.2 we gave a translation of deterministic operators into the propositional logic. In
this section we extend this translation to nondeterministic operators.

For expressing the translation we define for a given effecte a setchanges(e) of state variables
as follows. This is the set of state variables possibly changed by the effect, or in other words, the
set of state variables occurring in the effect not in the antecedentc of a conditionalc B e.

changes(a) = {a}
changes(¬a) = {a}

changes(c B e) = changes(e)
changes(e1 ∧ · · · ∧ en) = changes(e1) ∪ · · · ∪ changes(en)

changes(p1e1| · · · |pnen) = changes(e1) ∪ · · · ∪ changes(en)

We make the following assumption to slightly simplify the translation.

Assumption 4.8 Leta ∈ A be a state variable. Lete1∧· · ·∧en occur in the effect of an operator.
If e1, . . . , en are not all deterministic, thena or ¬a may occur as an atomic effect in at most one
of e1, . . . , en.

This assumption rules out effects like(0.5a|0.5b) ∧ (0.5¬a|0.5c) that may makea simultane-
ously true and false. It also rules out effects like(0.5(d B a)|0.5b) ∧ (0.5(¬d B ¬a)|c) that
are well-defined and could be translated into the propositional logic. However, the additional
complexity to the translation outweights the benefit of allowing them.

We define the translation of effects satisfying Assumption 4.8 into propositional logic recur-
sively. The problem in the translation that does not show up with deterministic operators is that
for nondeterministic choicesp1e1| · · · |pnen the formula for each alternativeei has to express for
exactly the same set of state variables what changes take or do not take place. This becomes a bit
tricky when we have a lot of nesting of nondeterministic choice and conjunctions.

Now we give the translation of an effecte (in normal form) restricted to state variablesB. This
means that only state variables inB may occur ine in atomic effects (but do not have to), and
the formula does not say anything about the change of state variables not inB (but may of course
refer to them in antecedents of conditionals.)

PLB(e) =
∧

a∈B (((a ∧ ¬EPC¬a(e)) ∨ EPCa(e)) ↔ a′)
whene is deterministic

PLB(p1e1| · · · |pnen) = PLB(e1) ∨ · · · ∨ PLB(en)
PLB(e1 ∧ · · · ∧ en) = PLB\(B2∪···∪Bn)(e1) ∧ PLB2(e2) ∧ · · · ∧ PLBn(en)

whereBi = changes(ei) for all i ∈ {1, . . . , n}

The first part of the translation PLB(e) for deterministice is the translation of deterministic effects
we presented in Section 3.5.2, but restricted to state variables inB. The other two cover all

CHAPTER 4. CONDITIONAL PLANNING 70

nondeterministic effects in normal form. The idea of the translation of a conjunctione1 ∧ · · · ∧ en

of nondeterministic effects is that only the translation of the first effecte1 indicates when state
variables occurring inB do not change.

Additionally, we require that operators are not applied in states in which some state variable
would be set simultaneously both true and false.

XPLB(e) =
∧

a∈B (¬(EPC¬a(e) ∧ EPCa(e)))
whene is deterministic

XPLB(p1e1| · · · |pnen) = XPLB(e1) ∧ · · · ∧ XPLB(en)
XPLB(e1 ∧ · · · ∧ en) = XPLB\(B2∪···∪Bn)(e1) ∧ XPLB2(e2) ∧ · · · ∧ XPLBn(en)

whereBi = changes(ei) for all i ∈ {1, . . . , n}

The translation of an effecte in normal form into the propositional logic is PLA(e) ∧ XPLA(e)
whereA is the set of all state variables.

Example 4.9 We translate the effect

e = (0.5A|0.5(C B A)) ∧ (0.5B|0.5C)

into a propositional formula. The set of state variables isA = {A,B, C, D}.

PL{A,B,C,D}(e) = PL{A,D}(0.5A|0.5(C B A)) ∧ PL{B,C}(0.5B|0.5C)
= (PL{A,D}(A) ∨ PL{A,D}(C B A))∧

(PL{B,C}(B) ∨ PL{B,C}(C))
= ((A′ ∧ (D ↔ D′)) ∨ (((A ∨ C) ↔ A′) ∧ (D ↔ D′)))∧

((B′ ∧ (C ↔ C ′)) ∨ ((B ↔ B′) ∧ C ′))

�

4.1.3 Operations on nondeterministic transitions represented as formulae

In Section 3.7.1 we discussed the image and preimage computations of transition relations ex-
pressed as propositional formulae. In this section we consider also nondeterministic transition
relations and want to compute the set of states from which reaching a state in a given set of states
is certain, not just possible. The (weak) preimage operation in Section 3.7 does not do this. For
example, the weak preimage ofa with respect to the relation{〈b, a〉, 〈b, c〉} is {b}, although also
c is a possible successor state ofb.

The strong preimage of a set of states consists of those states from which only states inside the
given set are reached. This is formally defined as follows.

spreimgR(S) = {s|s′ ∈ S, 〈s, s′〉 ∈ R, imgR(s) ⊆ S}

Lemma 4.10 Images, strong preimages and weak preimages of sets of states are related to each
other as follows.

1. spreimgo(S) ⊆ wpreimgo(S)

2. imgo(spreimgo(S)) ⊆ S

3. wpreimgo(S) = spreimgo(S) wheno is deterministic.

CHAPTER 4. CONDITIONAL PLANNING 71

Proof: �

Strong preimages can be computed by formula manipulation when sets of states and transition
relations are represented as propositional formulae.

(∀A′.(Ro(A,A′)→(φ[a′1/a1, . . . , a
′
n/an]))) ∧ (∃A′.Ro(A,A′))

Here∀a.φ is universal abstractionwhich is defined analogously to existential abstraction as

∀a.φ = φ[>/a] ∧ φ[⊥/a].

4.1.4 Regression for nondeterministic operators

Regression for deterministic operators was given as Definition 3.6. It is straightforward to gener-
alize this definition for nondeterministic operators in the second (more restricted) normal form.

Definition 4.11 (Regression)Let φ be a propositional formula describing a set of states. Let
〈z, e〉 be an operator in normal form II withe = p1e1| · · · |pnen.

Theregressionofφ with respect too = 〈z, e〉 is defined as the formula regro(φ) = regr〈z,e1〉(φ)∧
· · · ∧ regr〈z,en〉(φ) where regr〈z,e〉(φ) refers to regression of deterministic operators as given in
Definition 3.6.

It is presumably possible to define regression for nodeterministic operators in the first normal
with no restriction on nesting of nondeterminism and conjunctions, but the definition is more
complicated, and we do not discuss the topic further here.

Theorem 4.12 LetS′ = {s′|s′ |= φ}. Then spreimgo(S) = {s|s |= regro(φ)}.

Proof: This is because a state inφ has to be reached no matter which effectei is chosen, so we
take the intersection/conjunction of the states obtained by regression with〈z, e1〉, . . . , 〈z, en〉. �

Example 4.13 Let o = 〈A, (0.5B|0.5¬C)〉. Then

regro(B ↔ C) = regr〈A,B〉(B ↔ C) ∧ regr〈A,¬C〉(B ↔ C)
= (A ∧ (> ↔ C)) ∧ (A ∧ (B ↔ ⊥))
≡ (A ∧ C) ∧ (A ∧ ¬B)
≡ A ∧ C ∧ ¬B

�

4.2 Problem definition

We state the conditional planning problem in the general form. Because the number of observa-
tions that are possible has a very strong effect on the type of solution techniques that are applicable,
we will discuss algorithms for three classes of planning problems that are defined in terms of re-
strictions on the setB of observable state variables.

CHAPTER 4. CONDITIONAL PLANNING 72

Definition 4.14 A 5-tuple〈A, I,O,G, B〉 consisting of a setA of state variables, a propositional
formulaI overA, a setO of operators overA, a propositional formulaG overA, and a setB ⊆ A
of state variables isa problem instance in nondeterministic planning.

The setB did not appear in the definition of deterministic planning. This is the set ofobservable
state variables. The idea is that plans can make decisions about what operations to apply and how
the execution proceeds based on the values of the observable state variables. Restrictions on
observability and sensing emerge because of various restrictions on the sensors human beings and
robots have: typically only a small part of the world can be observed.

The task in nondeterministic planning is the same as in deterministic planning (Section 3.1): to
find a plan that starting from any state inI is guaranteed to reach a state inG.

However, because of nondeterminism and the possibility of more than one initial state, it is in
general not possible to use the same sequence of operators for reaching the goals from all the
initial states, and a more general notion of plans has to be used.

Nondeterministic planning problems under certain restrictions have very different properties
than the problem in its full generality. In Chapter 3 we had the restriction to one initial state (I
was defined as a valuation) and deterministic operators. We relax these two restrictions in this
chapter, but still consider two special cases obtained by restrictions on the setB of observable
state variables.

1. Full observability.

This is the most direct extension of the deterministic planning problem of the previous
chapter. The difference is that we have to use a more general notion of plans with branches
(and with loops, if there is no upper bound on the number of actions that might be needed
to reach the goals.)

2. No observability.

Planning without observability can be considered more difficult than planning with full ob-
servability, although they are in many respects not directly comparable.

The main difference to deterministic planning as discussed in Chapter 3 and to planning
with full observability is that during plan execution it is not known what the actual current
state is, and there are several possible current states. This complication means that planning
takes place inthe belief space: the role of individual states in deterministic planning is taken
by sets of states, calledbelief states.

Because no observations can be made, branching is not possible, and plans are still just
sequences of actions, just like in deterministic planning with one initial state.

The type of observability we consider in this lecture is very restricted as only values of in-
dividual state variables can be observed (as opposed to arbitrary formulae) and observations are
independent of what operators have been executed before. Hence we cannot for example directly
express special sensing actions. However, extensions to the above definition like sensing actions
can be relatively easily reduced to the basic definition but we will not discuss this topic further.

4.2.1 Conditional plans

Plans are directed graphs with nodes of degree 1 labeled with operators and edges from nodes of
degree≥ 2 labeled with formulae.

CHAPTER 4. CONDITIONAL PLANNING 73

Definition 4.15 Let 〈A, I,O,G, B〉 be a problem instance in nondeterministic planning. Acon-
ditional planis a triple 〈N, b, l〉 where

• N is a finite set of nodes,

• b ∈ N is the initial node,

• l : N → (O×N)∪ 2L×N is a function that assigns each node an operator and a successor
node〈o, n〉 ∈ O ×N or a set of conditions and successor nodes〈φ, n〉.
Hereφ are formulae overB.

Plan execution begins from the initial nodeb, and the sequence of operators and states generated
when executing a plan is determined as follows.

Let n ∈ N be a node in the plan. Ifl(n) = 〈o, n′〉 thenn is an operator node. Ifl(n) = ∅
thenn is a terminal node. Otherwisen is a branch node andl(n) = {〈φ1, n1〉, . . . , 〈φm, nm〉} for
somem.

Execution in an operator node with label〈o, n〉 proceeds by applying operatoro and makingn
the current plan node.

Execution in a branch noden with labell(n) = {〈φ1, n1〉, . . . , 〈φm, nm〉} proceeds by evaluat-
ing the formulaeφi with respect to the valuations of the observable state variables, and ifs |= φi,
then makingni the current plan node.1

Plan execution ends in a terminal noden ∈ N, l(n) = ∅.
The plans can of course be written in the same form as programs in conventional programming

languages by usingcasestatements for branching andgotostatements for jumping to the successor
nodes of a plan node.

Example 4.16 Consider the plan〈N, b, l〉 for a problem instance with the operatorsO = {o1, o2, o3},
where

N = {1, 2, 3, 4, 5}
b = 1

l(1) = 〈o3, 2〉
l(2) = {〈φ1, 1〉, 〈φ2, 3〉, 〈φ3, 4〉}
l(3) = 〈o2, 4〉
l(4) = {〈φ4, 1〉, 〈φ5, 5〉}
l(5) = ∅

This could be visualized as the program.
1: o3

2: CASE
φ1: GOTO 1
φ2: GOTO 3
φ3: GOTO 4

3: o2

4: CASE
φ4: GOTO 1
φ5: GOTO 5

5:

1The result of plan execution is undefined if there are several formulae true in the states.

CHAPTER 4. CONDITIONAL PLANNING 74

Every plan〈N, b, l〉 can be written as such a program. Nodesn with l(n) = ∅ corresponds to
gotos to the program’s last label after which nothing follows. �

A plan isacyclic if it is a directed acyclic graph in the usual graph theoretic sense.

4.2.2 Execution graph

We define the satisfaction of plan objectives in terms of the transition system that is obtained when
the original transition system is being controlled by a plan, that is, the plan chooses which of the
transitions possible in a state is taken. For goal reachability, without unbounded looping it would
be required that any maximal path from an initial state has finite length and ends in a goal state.
With unbounded looping it would be required that from any state to which there is a path from an
initial state that does not visit a goal state there is a path of length≥ 0 to a goal state.

Definition 4.17 (Execution graph of a plan) Let〈A, I,O,G, B〉 be a problem instance andπ =
〈N, b, l〉 be a plan. Then we definethe execution graphof π as a pair〈M,E〉 where

1. M = S ×N , whereS is the set of Boolean valuations ofA,

2. E ⊆ M ×M has an edge from〈s, n〉 to 〈s′, n′〉 if and only if

(a) n ∈ N is an operator node withl(n) = 〈o, n′〉 ands′ ∈ imgo(s), or

(b) n ∈ N is a branch node with〈φ, n′〉 ∈ l(n) ands′ = s ands |= φ.

Definition 4.18 (Reachability goals RG)A planπ = 〈N, b, l〉 solves a problem instance〈A, I, O,G, B〉
under theReachability(RG) criterion if its execution graph fulfills the following.

For all statess such thats |= I, for every(s′, n) to which there is a path from(s, b) that does
not visit (s′′′, n′′) for anys′′′ such thats′′′ |= G and terminal noden′′ there is also a path from
(s′, n) to some(s′′, n′) such thats′′ |= G andn′ is a terminal node.

This plan objective with unbounded looping can be interpreted probabilistically. For every
nondeterministic choice in an operator we have to assume that each of the alternatives has a non-
zero probability. Then for goal reachability, a plan with unbounded looping is simply a plan that
has no finite upper bound on the length of its executions, but that with probability 1 eventually
reaches a goal state. A non-looping plan also reaches a goal state with probability 1, but there is a
finite upper bound on the execution length.

Definition 4.19 (Maintenance goals MG)A planπ = 〈N, b, l〉 solves a problem instance〈A, I, O, G, B〉
under theMaintenance(MG) criterion if its execution graph fulfills the following.

For all statess ands′ and plan nodesn ∈ N such thats |= I, if there is a path of length≥ 0
from (s, b) to some(s′, n), thens′ |= G and(s′, n) has a successor.

We can also define a plan objective that combines the reachability and maintenance criteria:
visit infinitely often one of the goal states. This is a proper generalization of both of the criteria
because we can rather easily reduce both special cases to the general case. Algorithms for the
general case generalize algorithms for both special cases.

CHAPTER 4. CONDITIONAL PLANNING 75

4.3 Planning with full observability

When during plan execution the current state is always exactly known, plans can be found by the
same kind of state space traversal algorithms already used for deterministic planning in Section
3.7.

The differences to algorithms for deterministic planning stem from nondeterminism. The main
difference is that successor states are not uniquely determined by the current state and the action,
and different action may be needed for each successor state. Further, nondeterminism may require
loops. Consider tossing a die until it yields 6. Plan for this task involves tossing the die over
and over, and there is no upper bound on the number of tosses that might be needed.2 Hence we
need plans with loops for representing the sequences of actions of unbounded length required for
solving the problem.

Below in Section 4.3.1 we first discuss the simplest algorithm for planning with nondeterminism
and full observability. The plans this algorithm produces are acyclic, and the algorithm does
not find plans for problem instances that only have plans with loops. Then in Section 4.3.2 we
present an algorithm that also produces plans with loops. The structure of the algorithm is more
complicated. Efficient implementation of these algorithms requires the use of binary decision
diagrams or similar representations of sets and transition relations, as discussed in Section 3.7.
Like in the BDD-based algorithms for deterministic planning, these algorithm assign a distance
to all the states, with a different meaning of distance in different algorithms, and based on the
distances either synthesize a program-like plan, or a plan execution mechanism uses the distances
directly for selecting the operators to execute. The algorithms in this section are best implemented
by representing the formulae as BDDs.

Deterministic planning has both a forward and a backward algorithm that are similar to each
other, as described in Section 3.7. However, for nondeterministic problems forward search does
not seem to be a good way of doing planning. For backward distances, distancei of states means
that there is a plan for reaching the goals with at mosti operators. But there does not seem to
be a useful interpretation of the distances computed forwards from the initial states as images of
nondeterministic operators. That a goal state or all goal states can be reached by applying some
i nondeterministic operators does not say anything about the possible plans, because executing
thosei operators might also lead to states that are not goal states and from which goal states could
be much more difficult to reach.

4.3.1 An algorithm for constructing acyclic plans

The algorithm for constructing acyclic plans is an extension of the algorithm for deterministic
planning given in Section 3.7.3. In the first phase the algorithm computes distances of the states. In
the second phase the algorithm constructs a plan based on the distances. The distance computation
is almost identical to the algorithm for deterministic planning. The only difference is the use of
strong preimages instead of the preimages.3 The second phase is more complicated, and uses the
distances for constructing a plan according to Definition 4.15.

The algorithm is given in Figure 4.1. We call the distances computed by the algorithmstrong

2However, for everyp > 0 there is a finite plan that reaches the goal with probabilityp or higher.
3The algorithm for deterministic planning could use the slightly more complicated strong preimage computation

just as well, because strong and weak preimages coincide for deterministic operators. However, this would not have
any advantage for deterministic planning.

CHAPTER 4. CONDITIONAL PLANNING 76

procedureFOplan(I,O,G)
D0 := G;
i := 0;
while I 6⊆ Di and (i = 0 or Di−1 6= Di) do

i := i + 1;
Di := Di−1 ∪

⋃
o∈O spreimgo(Di−1);

end
N := ∅;
l(j) := ∅ for all j;
cnt := 1;
FOplanconstruct(0,I);

Figure 4.1: Algorithm for nondeterministic planning with full observability

G

d=1d=2d=3d=48d= d=0

Figure 4.2: Goal distances in a nondeterministic transition system

distancesbecause they are tight upper bounds on the number of operators needed for reaching
the goals: if the distance of a state isi, then no more thani operators are needed, but it may be
possible that a goal state is also reached with less thani operators if the relevant operators are
nondeterministic and the right nondeterministic effects take place.

Example 4.20 We illustrate the distance computation by the diagram in Figure 4.2. The set of
states with distance 0 is the set of goal statesG. States with distancei are those for which at least
one action always leads to states with distancei−1 or smaller. In this example the action depicted
by the red arrow has this property for every state. States for which there is no finite upper bound
on the number of actions for reaching a goal state have distance∞. �

Lemma 4.21 Let a states be inDj . Then there is a plan that reaches a goal state froms by at
mostj operator applications.

The distances alone could be directly used by a plan execution mechanism. The plan execution
proceeds by observing the current state, looking up its distancej such thats ∈ Dj\Dj−1, selecting
an operatoro ∈ O so thatimgo({s}) ⊆ Dj−1, and executing the operator.

Similarly, a mapping from states to operators could be directly constructed. This kind of plan
is calledmemorylessbecause the plan execution mechanism does not have to keep track of plan

CHAPTER 4. CONDITIONAL PLANNING 77

procedureFOplanconstruct(n,S)
if S ⊆ G then return ; (* Goal reached for all states. *)
for eacho ∈ O

S′ := the maximal subset ofS such that progress(o, S′);
if S′ 6= ∅ then (* Is operatoro useful for some of the states? *)

begin
S := S\S′;
cnt := cnt+2;
N := N ∪ {cnt-2,cnt-1}; (* Create two new plan nodes. *)
l(n) := l(n) ∪ {〈S′,cnt−2〉}; (* First is reached from noden. *)
l(cnt−2) := 〈o,cnt−1〉; (* Second is an operator node. *)
FOplanconstruct(cnt−1,imgo(S′)); (* Continue from successors ofS′. *)

end
end
if S 6= ∅ then (* If something remains inS they must be goal states. *)

begin
cnt := cnt+1;
l(n) := l(n) ∪ {〈S,cnt−1〉}; (* Create a terminal node for them. *)

end

Figure 4.3: Algorithm for extracting an acyclic plan from goal distances

procedureprogress(o, S)
for j := 1 to i do (* Doeso take all states closer to goals? *)

if imgo(S ∩Dj) 6⊆ Dj−1 then return false;
end
return true;

Figure 4.4: Test whether successor states are closer to the goal states

nodes. It just chooses the next operator on the basis of the current state. This corresponds to a
plan that consists of a loop in which each operator is selected for some subset of possible current
states, a terminal node is selected for the goal states, and then the loop repeats again.

Memoryless plans are sufficienty powerful only for the simplest form of conditional planning
in which the current state can be observed uniquely (full observability). Later we will see that
when there are restrictions on which observations can be made it is necessary to have memory in
the plan.

Figure 4.3 gives an algorithm for generating a plan according to Definition 4.15. The algorithm
works forward starting from the set of initial states. Every operator is tried out, and for an operator
that takes some of the states toward the goals a successor node is created, and the algorithm is
recursively called for the states that are reached by applying the operator.

The functionprogresswhich is give in Figure 4.4 tests for a given operator and a setS of states
that for every states ∈ S all the successor states are at least one step closer to the goals.

CHAPTER 4. CONDITIONAL PLANNING 78

procedureprune(O,W ,G);
i := 0;
W0 := W ;
repeat

i := i + 1;
k := 0;
S0 := G; (* States from whichG is reachable with 0 steps. *)
repeat

k := k + 1; (* States from whichG is reachable with≤ k steps. *)
Sk := Sk−1 ∪

⋃
o∈O(wpreimgo(Sk−1) ∩ spreimgo(Wi−1));

until Sk = Sk−1; (* States that stay withinWi−1 and eventually reachG. *)
Wi := Wi−1 ∩ Sk;

until Wi = Wi−1; (* States inWi stay withinWi and eventually reachG. *)
return Wi;

Figure 4.5: Algorithm for detecting a loop that eventually makes progress

4.3.2 An algorithm for constructing plans with loops

There are many nondeterministic planning problems that require plans with loops because there is
no finite upper bound on the number of actions that might be needed for reaching the goals. These
plan executions with an unbounded length cannot be handled in acyclic plans of a finite size. For
unbounded execution lengths we have to allow loops (cycles) in the plans.

Example 4.22 �

The problem is those states that do not have a finite strong distance as defined Section 4.3.1.
Reaching the goals from these states is either impossible or there is no finite upper bound on the
number of actions that might be needed. For the former states nothing can be done, but the latter
states can be handled by plans with loops.

We present an algorithm based on a generalized notion of distances that does not require reacha-
bility by a finitely bounded number of actions. The algorithm is based on the procedureprunethat
identifies a set of states for which reaching a goal state eventually is guaranteed. The procedure
prunegiven in Figure 4.5.

Lemma 4.23 (Procedure prune)Let O be a set of operators andW andG sets of states. Then
W ′ = prune(O,W ,G) is a set such thatW ′ ⊆ W and there is functionx : W ′ → O such that

1. for everys ∈ W ′ there is a sequences0, s1, . . . , sn with n ≥ 0 such thats = s0, sn ∈ G
andsi+1 ∈ imgx(si)({si}) for all i ∈ {0, . . . , n− 1},

2. imgx(s)({s}) ⊆ W ′ for everys ∈ W ′\G, and

3. for nos ∈ W\W ′ there is a plan that guarantees reaching a state inG.

Proof:
Let W0 be the value ofW when the procedure is called, andW1,W2, . . . the values ofW at the

end of therepeat-untilloop on each iteration.
Induction hypothesis: Ifi ≥ 1 then there is functionx : Wi → O such that

CHAPTER 4. CONDITIONAL PLANNING 79

1. for everys ∈ Wi there is a sequences0, s1, . . . , sn with n ≥ 0 such thats = s0, sn ∈ G
andsj+1 ∈ imgx(sj)({sj}) for all j ∈ {0, . . . , n− 1}, and

2. imgx(s)({s}) ⊆ Wi−1 for everys ∈ Wi\G.

Base casei = 0: Trivial because nothing aboutWi is claimed.
Inductive casei ≥ 1:
For the innerrepeat-untilloop we prove inductively the following. LetS0 = G be the value of

S before the loop, andS1, S2, . . . the values ofS in the end of each iteration.
Induction hypothesis: Ifi ≥ 1 then there is functionx : Sk → O such that

1. for everys ∈ Sk there is a sequences0, s1, . . . , sn with n ∈ {0, . . . , k} such thats = s0,
sn ∈ G andsj+1 ∈ imgx(sj)({sj}) for all j ∈ {0, . . . , n− 1}, and

2. imgx(s)({s}) ⊆ Wi−1 for everys ∈ Sk\G.

Base casek = 0:

1. BecauseS0 = G, for everys ∈ S0 there is the sequence of statess0 = s such that the initial
state is inS0 and the final state is inG.

2. BecauseS0 = G there are no states inS0\G.

Inductive casek ≥ 1: Let s be a state inSk. If s ∈ Sk−1 then we obtain the property by the
induction hypothesis.

Otherwises ∈ Sk\Sk−1. Therefore by definition ofSk, s ∈ wpreimgo(Sk−1)∩spreimgo(Wi−1)
for someo ∈ O.

1. Becauses ∈ wpreimgo(Sk−1), there is a states′ ∈ Sk−1 such thats′ ∈ imgo({s}). By
the induction hypothesis there is a sequence of states starting froms′ that ends in a goal
state. Fors such a sequence is obtained from the sequence ofs′ by prefixing it withs. The
corresponding operator is assigned tos by x.

2. Becauses ∈ spreimgo(Wi−1), by Lemma 4.10imgo({s}) ⊆ Wi−1.

This completes the inner induction. To establish the induction step of the outer induction con-
sider the following. The inner repeat-until loops ends whenSk = Sk−1. This means thatSz = Sk

for all z ≥ k. Hence the upper boundn ≤ k on the length of sequencess0, s1, . . . , sn is infinite.
The outer induction hypothesis is obtained from the inner induction hypothesis by removing the
upper boundn ≤ k and replacingSk by Wi. By definitionWi = Wi−1 ∩ Sk. What happens
here???

keskenThis finishes the outer induction proof. The claim of the lemma is obtained from the
outer induction hypothesis by noticing that the outer loop exits whenWi = Wi−1 (it will exit after
a finite number of steps because the cardinality ofW0 = W is finite and it decreases on every
iteration) and then we can replace bothWi andWi−1 by W ′ to obtain the claim of the lemma.�

Our first algorithm, given in Figure 4.6, is directly based on the procedurepruneand identifying
a set of states from which a goal state is reachable by some execution and no execution leads to a
state outside the set.

CHAPTER 4. CONDITIONAL PLANNING 80

procedureFOplanL2(I,O,G)
W0 := G;
i := 0;
while I 6⊆ prune(O,Wi,G) and (i = 0 or Wi−1 6= Wi) do

i := i + 1;
Wi := Wi−1 ∪

⋃
o∈O wpreimgo(Wi−1);

end
S := G;
i := 0;
Di := G;
L := prune(O,Wi,G);
repeat

S′ := S;
S := S ∪

⋃
o∈O(wpreimgo(S) ∩ spreimgo(L ∪ S));

i := i + 1;
Di := L ∩ S;

until S = S′

Figure 4.6: Algorithm for nondeterministic planning with full observability

procedureFOplanMAINTENANCE(I,O,G)
i := 0;
G0 := G;
repeat

i := i + 1; (* Subset ofGi−1 from whichGi−1 can be always reached. *)
Gi :=

⋃
o∈O (spreimgo(Gi−1) ∩Gi−1);

until Gi = Gi−1;
return Gi;

Figure 4.7: Algorithm for nondeterministic planning with full observability and maintenance goals

4.3.3 An algorithm for constructing plans for maintenance goals

There are many important planning problems in which the objective is not to reach a goal state
and then stop execution. When the objective is to keep the state of the system in any of a number
of goal states indefinitely, we talk aboutmaintenance goals.

Plans that satisfy a maintenance goal have only infinite executions.
Figure 4.7 gives an algorithm for finding plans for maintenance goals. The algorithm starts with

the setG of all states that satisfy the property to be maintained. Then iteratively such states are
removed fromG for which the satisfaction of the property cannot be guaranteed in the next time
point. More precisely, the setsGi for i ≥ 0 consist of all those states in which the goal objective
can be maintained for the nexti time points. For somei the setsGi andGi−1 coincide, and then
Gj = Gi for all j ≥ i. This means that starting from the states inGi the goal objective can be
maintained indefinitely.

Theorem 4.24 Let I be a set of initial states,O a set of operator andG a set of goal states. Let
G′ be the set returned by the procedure FOplanMAINTENANCE in Figure 4.7.

CHAPTER 4. CONDITIONAL PLANNING 81

PASTURE

RIVER

DEATH

DESERT

PASTURE

RIVER

DESERT

PASTURE

RIVER

DESERT

PASTURE

RIVER

DESERT

Figure 4.8: Example run of the algorithm for maintenance goals

Then for every states ∈ G′ there is an operatoro ∈ O such that imgo({s}) ⊆ G′. If I ⊆ G′

then the corresponding plan satisfies the maintenance criterion for〈I, O, G〉.

Proof: �

Example 4.25 Consider the problem depicted in Figure 4.8. An animal may drink at a river and
eat at a pasture. To get from the river to the pasture it must go through a desert. Its hunger and
thirst increase after every time period. If either one reaches level 3 the animal dies. The hunger
and thirst levels are indicated by different colors: the upper halves of the rectanges show thirst
level and the lower halves the hunger level, and blue means no hunger or thirst and red means
much hunger or thirst. The upper left diagram shows all the possible actions the animal can take.
The objective of the animal is to stay alive. The three iterations of the algorithm for finding a plan
that satisfies the goal of staying alive are depicted by the remaining three diagrams. The diagram
on upper right depicts all the states that satisfy the goal. The diagram on lower left depicts all the
states that satisfy the goal and after which the satisfaction of the goal can be guaranteed for at least
one time period. The diagram on lower right depicts all the states that satisfy the goal and after
which the satisfaction of the goal can be guaranteed for at least two time periods.

Further iterations of the algorithm do not eliminate further states, and hence the last diagram
depicts all those states for which the satisfaction of the goal can be guaranteed indefinitely.

CHAPTER 4. CONDITIONAL PLANNING 82

o2

o1

o0

i2

i0

i1

Figure 4.9: A sorting network with three inputs

Hence the only plan says that the animal has to go continuously back and forth between the
pasture and the river. The only choice the animal has is in the beginning if in the initial state it is
not at all hungry or thirsty. For instance, if it is in the desert initially, then it may freely choose
whether to first go to the pasture or the river. �

4.4 Planning with partial observability

4.4.1 Planning without observability by heuristic search

Planning under unobservability is similar to deterministic planning in the sense that the problem
is to find a path from the initial state(s) to the goal states. For unobservable planning, however, the
nodes in the graph do not correspond to individual states but to belief states, and the size of the
belief space is exponentially higher than the size of the state space. Algorithms for deterministic
planning have direct counterparts for unobservable planning, which is not the case for conditional
planning with full or partial observability.

Example 4.26 A sorting network[Knuth, 1998, Section 5.3.4 in 2nd edition] consists of a se-
quence of gates acting on a number of input lines. Each gate combines a comparator and a swap-
per: if the first value is greater than the second, then swap them. The goal is to sort any given input
sequence. The sorting network always has to perform the same operations irrespective of the input,
and hence constructing a sorting network corresponds to planning without observability. Figure
4.9 depicts a sorting network with three inputs. An important property of sorting networks is that
any network that sorts any sequence of zeros and ones will also sort any sequence of arbitrary
numbers. Hence it suffices to consider Boolean 0-1 input values only.

Construction of sorting networks is essentially a planning problem without observability, be-
cause there are several initial states and a goal state has to be reached by using the same sequence
of actions irrespective of the initial states.

For the 3-input sorting net the initial states are000, 001, 010, 011, 100, 101, 110, 111. and the
goal states are000, 001, 011, 111 Now we can compute the images and strong preimages of the
three sorting actions, sort12, sort02 and sort01 respectively starting from the initial or the goal
states. These yield the following belief states at different stages of the sorting network.

000, 001, 010, 011, 100, 101, 110, 111 initially
000, 001, 011, 100, 101, 111 after sort12
000, 001, 011, 101, 111 after sort02
000, 001, 011, 111 after sort01

�

The most obvious approaches to planning with unobservability is to use regression, strong
preimages or images, and to perform backward or forward search in the belief space. The dif-

CHAPTER 4. CONDITIONAL PLANNING 83

ference to forward search with deterministic operators and one initial state is that belief states are
used instead of states. The difference to backward search for deterministic planning is that re-
gression for nondeterministic operators has to be used and testing whether (a subset of) the initial
belief state has been reached involves the co-NP-hard inclusion test|= I→ regro(φ) for the belief
states. With one initial state this is an easy polynomial time testI |= regro(φ) of whetherregro(φ)
is true in the initial state.

Deriving good heuristics for heuristic search in the belief space is more difficult than in de-
terministic planning. The main approaches have been to use distances in the state space as an
estimate for distances in the belief space, and to use the cardinalities of belief spaces as a measure
of progress.

Many problems cannot be solved by blindly taking actions that reduce the cardinality of the
current belief state: the cardinality of the belief state may stay the same or increase during plan
execution, and hence the decrease in cardinality is not characteristic to belief space planning in
general, even though in many problems it is a useful measure of progress.

Similarly, distances in the state space ignore the most distinctive aspect of planning with partial
observability: the same action must be used in two states if the states are not observationally
distinguishable. A given (optimal) plan for an unobservable problem may increase the actual
current state-space distance to the goal states (on a given execution) when the distance in the
belief-space monotonically decreases, and vice versa. Hence, the state space distances may yield
wildly misleading estimates of the distances in the corresponding belief space.

Heuristics based on state-space distances

The most obvious distance heuristics are based on the strong distances in the state space.

D0 = G
Di+1 = Di ∪

⋃
o∈O spreimgo(Di) for all i ≥ 1

A lower bound on plan length for belief stateZ is j if Z ⊆ Dj andZ 6⊆ Dj−1.
Next we derive distance heuristics for the belief space based on state space distances. Strong

distances yield an admissible distance heuristic for belief states.

Definition 4.27 (State space distance)Thestate space distanceof a belief stateB is d ≥ 1 when
B ⊆ Dd andB 6⊆ Dd−1, and it is0 whenB ⊆ D0 = G.

Even though computing the exact distances for the operator based representation of state spaces
is PSPACE-hard, the much higher complexity of planning problems with partial observability
still often justifies it: this computation would in many cases be an inexpensive preprocessing
step, preceding the much more expensive solution of the partially observable planning problem.
Otherwise cheaper approximations can be used.

Heuristics based on belief state cardinality

The second heuristic that has been used in algorithms for partial observability is simply based on
the cardinality of the belief states.

In forward search, prefer operators that maximally decrease the cardinality of the belief state.
In backward search, prefer operators that maximally increase the cardinality of the belief state.

CHAPTER 4. CONDITIONAL PLANNING 84

These heuristics are not in general admissible, because there is no direct connection between
the distance to a goal belief state and the cardinalities of the current belief state and a goal belief
state. The belief state cardinality can decrease or increase arbitrarily much by one step.

4.4.2 Planning without observability by evaluation of QBF

In this section we extend the techniques from Section 3.5 to unobservable planning. Because
of nondeterminism and several initial states, one plan may have several different executions. It
turns out that propositional logic is not suitable for representing planning with unobservability,
and the language of quantified Boolean formulae is needed instead. Intuitively, the reason for
this is that we have to quantify over an exponential number of plan executions: we want to say
“there is a plan so that for all executions...”, and expressing this concisely in the propositional
logic does not seem possible. We theoretically justify this in Section 4.5.4 by showing that testing
the existence of plans for problems instances without observability even when restricting to plans
with a polynomial length is complete for the complexity classΣ2, and not contained in NP as
the corresponding problem for deterministic planning. This strongly suggests, because of widely
accepted complexity theoretic conjectures, that there is no efficient representation of the problem
in the propositional logic.

In Section 4.1.2 we showed how nondeterministic operators can be translated into formulae
in the propositional logic. The purpose of that translation was the use of the formulae in BDD-
based planning algorithms for computing the images and preimages of sets of states. For the QBF
representation of nondeterministic operators we have to have a possibility to universally quantify
over all possible successor states an operator produces, and this cannot be easily expressed with
the formulae derived in Section 4.1.2, so we give a new translation that uses quantified Boolean
formulae (see Section 2.2.1.)

Translation of nondeterministic operators into propositional logic

For handling nondeterminism we need to universally quantify over all the nondeterministic choices,
because for every choice the remaining operators in the plan must lead to a goal state. For an ef-
fect with n nondeterministic alternatives this can be achieved by usingm = dlog2 ne universally
quantified auxiliary variables. For every valuation of these variables one of the alternative effects
is chosen.

We assign to every atomic effect a formula that is true if and only if that effect takes place.
This is similar to and extends the functionsEPCl(e) in Definition 3.3. The extension concerns
nondeterminism: for literall to become true, the auxiliary variables for nondeterminism have to
have values corresponding to an effect makingl true.

The condition for atomic effectl to take place when effecte is executed isnEPCl(e, σ, t). The
sequenceσ of integers is for deriving unique names for auxiliary variables innEPCl(e, σ, t), and
t is formula on the auxiliary variables for deciding when to executee. The effect is assumed to be
in normal form I.

nEPCl(e, σ, t) = EPCl(e) ∧ t if e is deterministic
nEPCl(p1e1| · · · |pnen, σ, t) = nEPCl(e1, σ; 1, cn

1 (σ) ∧ t) ∨ · · · ∨ nEPCl(en, σ;n, cn
n(σ) ∧ t)

nEPCl(e1 ∧ · · · ∧ en, σ, t) = nEPCl(e1, σ; 1, t) ∨ · · · ∨ nEPCl(en, σ;n, t)

The functioncn
i (σ) constructs a formula for selecting theith effect fromn alternatives. This

formula is usually a conjunction of literals over the auxiliary propositionsAm
σ = {aσ,1, . . . , aσ,m}

CHAPTER 4. CONDITIONAL PLANNING 85

corresponding to one valuation ofAm
σ . Herem = dlog2 ne. Whenn is not a power of 2, the last

effecten corresponds to more than one valuation ofAm
σ . Define

dm
i (σ) =

∧
({aσ,j ∈ Am

σ |jth bit of i− 1 is 1}{¬aσ,j |aσ,j ∈ Am
σ , jth bit of i− 1 is 0}).

Wheni ∈ {1, . . . , n− 1} (and in the special casei = n = 2m), we definecn
i (σ) asdm

i (σ). When
i = n we definecn

i (σ) as
dm

n (σ) ∨ · · · ∨ dm
2m(σ)

Hence effectse1 to en−1 correspond to binary encodings of numbers0 to n− 2 anden covers all
the remaining valuations ofAm

σ .
The following frame axioms express the conditions under which the state variablea ∈ A may

change from false to true and from true to false. We assume that the operators inO = {o1, . . . , on}
have a unique numbering1, . . . , n.

(¬a ∧ a′)→((o1 ∧ nEPCa(e1, 1,>)) ∨ · · · ∨ (on ∧ nEPCa(en, n,>)))
(a ∧ ¬a′)→((o1 ∧ nEPC¬a(e1, 1,>)) ∨ · · · ∨ (on ∧ nEPC¬a(en, n,>)))

For every operatoro = 〈z, e〉 ∈ O we have formulae for describing values of state variables in the
predecessor and in the successor states when the operator is applied. LetA = {a1, . . . , ak} be the
state variables. The formulae describing the effects and preconditions of the operatoroi ∈ O are
the following.

(oi ∧ nEPCa1(ei, i,>)) → a′1
(oi ∧ nEPC¬a1(ei, i,>)) → ¬a′1

...
(oi ∧ nEPCak

(ei, i,>)) → a′k
(oi ∧ nEPC¬ak

(ei, i,>)) → ¬a′k
oi → z

Example 4.28 Consider the operatorso1 = 〈A, (0.5B|0.5(C B D))〉 ando2 = 〈B, (0.5(D B
B)|0.5C)〉. The application of these operators is described by the following formula.

example missing �

Two operators may be applied in parallel only if they do not interfere, so we have

¬oi ∨ ¬oj

for all operatorsi andj such thati 6= j and the operators interfere.
The conjunction of all the above formulae is denoted by

R3(A,A′)

When renaming the propositions for time pointt, also the propositionso for operatorso ∈ O and
the propositionsa ∈ A must be renamed, and for this we use then notation

Rt
3(A

t, At+1).

CHAPTER 4. CONDITIONAL PLANNING 86

Finding plans by evaluating QBF

In deterministic planning in propositional logic (Section 3.5) the problem is to find a sequence
of operators so that a goal state is reached when the operators are applied starting in the initial
state. When there is nondeterminism, the problem is to find a seqence of operators so that a goal
state is reached for all possible executions of the sequence of operators. The number of executions
of one sequence of operators may be higher than one because there may be several initial states
and because the operators may be deterministic. Expressing the quantification over all possible
executions of a sequence of operators cannot be concisely expressed in the propositional logic,
and this is the reason why quantified Boolean formulae have to be used instead.

∃Vplan

∀Vexec

∃Vrest

I0→(R3(A0, A1) ∧R3(A1, A2) ∧ · · · ∧ R3(An−1, An) ∧Gn)

Here Vexec = A0 ∪ A0 ∪ · · · ∪ At−1 whereA is the set of auxiliary variables occurring in
nEPCl(e, ε,>) for some〈c, e〉 ∈ O and l ∈ {a,¬a} for somea ∈ A. The plan is expressed
in terms of the variablesoi whereo ∈ O andi ∈ {0, . . . , t−1}. The truth-values of the remaining
variablesVrest = A1 ∪ · · · ∪ At are determined by the operators and the execution chosen by
propositions inVexec.

There are algorithms for evaluating QBF that extend the Davis-Putnam procedure and that
traversing and-or trees. And-nodes correspond to universally quantified propositions and or-nodes
correspond to existentially quantified propositions. These algorithms return the valuation of the
outermost existential propositions if the QBF has valuetrue.

Finding plans for nondeterministic problems without observability may be more efficient than
using standard search algorithms with regression or image/preimage computation with BDDs
when the plans are short and there are many operators that can be applied in parallel. If long
plans are required and there is little parallelism, the algorithms that traverse the belief space ap-
pear to be more efficient.

4.4.3 Algorithms for planning with partial observability

Planning with partial observability is much more complicated than its two special cases with full
and no observability. Like planning without observability, the notion of belief states becomes very
important. Like planning with full observability, formalization of plans as sequences of operators
is insufficient. However, plans also cannot be formalized as mappings from states to operators be-
cause partial observability implies that the current state is not necessarily unambiguously known.
Hence we will need the general definition of plans introduced in Section 4.2.1.

When executing operatoro in belief stateB the set of possible successor states isimgo(B), and
based on the observation that are made, this set is restricted toB′ = imgo(B) ∩ C whereC is the
equivalence class of observationally indistinguishable states corresponding to the observation.

In planning with unobservability, a backward search algorithm starts from the goal belief state
and uses regression or strong preimages for finding predecessor belief states until a belief state
covering the initial belief state is found.

With partial observability, plans do not just contain operators but may also branch. With branch-
ing the sequence of operators may depend on the observations, and this makes it possible to reach

CHAPTER 4. CONDITIONAL PLANNING 87

goals also when no fixed sequence of operators reaches the goals. Like strong preimages in back-
ward search correspond to images, the question arises what does branching correspond to in back-
ward search?

Assume that we have for belief statesB1 andB2 respectively the plansπ1 andπ2 that reach the
goals, and that these belief states are observationally distinguishable, that is, they are included in
different observational classes. Now we can construct a planπ12 that starts with a branch node
that makes an observation and continues withπ1 or with π2, depending on which observation was
made. If we are initially in any state inB1 ∪ B2, the planπ12 always takes us to a goal state. We
can continue extendingπ12 with operators. For example, ifB = wpreimgo(B1 ∪ B2), then the
plan that first executes the operatoro and then continues withπ will lead to a goal state starting
from any state inB.

Next we formalize these ideas and derive an algorithm that constructs branching plans in the
backward direction starting from the goal states.

Let Π = 〈C1, . . . , Cn〉 be a partition of the state space to observational classes, each consisting
of observationally indistinguishable states.

Sets of belief states generated by traversing the belief space backwards starting from the goal
states contain many regularities induced by observability. For example, if we have plans for reach-
ing the goals from three belief statesB1, B2 andB3, and these have non-empty intersections with
then observational classes, we may construct3n different branching plans for3n different sets of
states. These3n sets have a concise representation in a factored form, simply as

〈{B1∩C1, B2∩C1, B3∩C1}, {B1∩C2, B2∩C2, B3∩C2}, . . . , {B1∩Cn, B2∩Cn, B3∩Cn}〉

from which the sets can be obtained by taking the Cartesian product and then the union of then
components of each of the3n tuples. This motivates the following definitions.

Definition 4.29 (Factored belief space)Let Π = 〈C1, . . . , Cn〉 be a partition of the set of all
states. Then a factored belief space is〈G1, . . . , Gn〉 wheres ⊂ s′ for no {s, s′} ⊆ Gi and
Gi ⊆ 2Ci for all i ∈ {1, . . . , n}.

Intuitively, a factored belief space is a set of belief states, partitioned to subsets corresponding
to the observational classes. This is just a technical definition that makes it easier to talk about
the belief states corresponding to the same observational class. Notice the minimality condition:
none of the belief states in a factored belief space may be a subset of another. We want to have
the minimality condition because we use factored belief spaces as representations of those sets of
states for which a plan exists. If a plan exists for some belief stateB, then the same plan also
works for any belief stateB′ such thatB′ ⊆ B.

The factored representation of a one-element setS of states is simplyF(S) = 〈{C1∩S}, . . . , {Cn∩
S}〉. When it is obvious from the context, we often write simplyS instead ofF(S).

When we have two sets of belief states in the factored form, we may combine them and keep
the result in the factored form.

Definition 4.30 (Combination of factored belief spaces)LetG = 〈G1, . . . , Gn〉 andH = 〈H1, . . . ,Hn〉
be factored belief spaces. DefineG⊕H as〈G1 dH1, . . . , Gn dHn〉, where the operationd takes
union of two sets of sets and eliminates sets that are not set-inclusion maximal. It is formally
defined asG d H = {R ∈ G ∪H|R ⊂ K for noK ∈ G ∪H}.

CHAPTER 4. CONDITIONAL PLANNING 88

Important in this combination operation is that the minimality condition is preserved: any belief
state that is a subset of another belief state is eliminated.

The combination operator has the following properties.

Lemma 4.31 (Belief spaces with⊕ are commutative monoids) The operator⊕ is associative,
commutative and its identity element is〈∅, . . . , ∅〉.

A factored belief spaceG = 〈G1, . . . , Gn〉 can be viewed as representing the set of sets of states
flat(G) = {s1∪· · ·∪sn|si ∈ Gi for all i ∈ {1, . . . , n}}, and its cardinality is|G1| · |G2| · . . . · |Gn|.
The cardinality may be exponential on the size of the factored representation. Assuming that we
have a plan for all belief states inG, we also have a plan for any sets in flat(G). This plan starts by
a branch according to an observationC that is made, and then follows the plan for the respective
belief stateB ∩ C.

Definition 4.32 (Inclusion relation on belief spaces)A factored belief spaceG is included in
factored belief spaceH if for all S ∈ flat(G) there isS′ ∈ flat(H) such thatS ⊆ S′. We
write thisG v H.

The definitions have the property thatS ∈ flat(G) if and only ifF(S) v G.
We discuss the complexity of certain operations on belief spaces. The basic operations needed

in the planning algorithms are testing the membership of a set of states in a factored belief space,
and finding a set of states whose preimage with respect to an operator is not contained in the belief
space. This last operation is needed in the backup steps of our planning algorithm: find a plan that
covers belief states for which we did not have a plan earlier.

Theorem 4.33 TestingG v H for factored belief spacesG andH is polynomial time.

Proof: Testing〈G1, . . . , Gn〉 v 〈H1, . . . ,Hn〉 is simply by testing whether for alli ∈ {1, . . . , n}
and alls ∈ Gi there ist ∈ Hi such thats ⊆ t. �

Example 4.34 Consider the blocks world with three blocks with the goal state in which all the
blocks are on the table. There are three operators, each of which picks up one block (if there is
nothing on top of it) and places it on the table. We can only observe which blocks are not below
another block. This splits the state space to seven observational classes, corresponding to the
valuations of the state variables clear-A, clear-B and clear-C in which at least one block is clear.

The plan construction steps are given in Figure 4.10. Starting from the top left, the first diagram
depicts the goal belief state. The second diagram depicts the belief states obtained by computing
the strong preimage of the goal belief state with respect to the move-A-onto-table action and
splitting the set of states to belief states corresponding to the observational classes. The next two
diagrams are similarly for strong preimages of move-B-onto-table and move-C-onto-table.

The fifth diagram depicts the computation of the strong preimage from the union of two existing
belief states in which the block A is on the table and C is on B or B is on C. In the resulting belief
state A is the topmost block in a stack containing all three blocks. The next two diagrams similarly
construct belief states in which respectively B and C are the topmost blocks.

The last three diagrams depict the most interesting cases, constructing belief states that subsume
two existing belief states in one observational class. The first diagram depicts the construction of
the belief state consisting of both states in which A and B are clear and C is under either A or B.

CHAPTER 4. CONDITIONAL PLANNING 89

CA B
?
?

C
?
?

B
?
?

A

? ?
B C

? ?
A C

? ?
BA

CA B

CA B
?
?

C
?
?

B
?
?

A

? ?
B C

? ?
A C

? ?
BA

CA B A
BC

A
B C

CA B

A
BC

?
?

C
?
?

B
?
?

A

? ?
B C

? ?
A C

? ?
BA

A
B C

CA B
A
B

C

A
B
C

CA B

A
BC

?
?

C
?
?

B
?
?

A

? ?
B C

? ?
A C

? ?
BA

A
B C

CA B
A
B

C

AB
C

A B
C

A
B
C

CA B
?
?

C
?
?

B
?
?

A

? ?
B C

? ?
A C

? ?
BA

CA B A
B C

A
B
C

A

B
C

A
BC A

B
C

A
B
C A B

C
AB
C

CA B
?
?

C
?
?

B
?
?

A

? ?
B C

? ?
A C

? ?
BA

A

B
C

A
B
C

CA B A
B C

B
A
C

A
BC

B

A
C

A
B

C

A
B
C A B

C
AB
C

CA B

A
BC

?
?

C
?
?

B
?
?

A

? ?
B C

? ?
A C

? ?
BA

A

B
C

A
B
C

B
A
C

B

A
C

CA B A
B C

C
B
A

C

B
AA

B
C

AB
C

A B
C

A
B
C

CA B
?
?

C
?
?

B
?
?

A

? ?
B C

? ?
A C

? ?
BA

A

B
C

A
B
C

B
A
C

B

A
C

C
B
A

A
B C

C

B
AA

B
C

CA B

A
B
C

A
B
C

A
BC

A
BC

A B
C

AB
C

CA B
?
?

C
?
?

B
?
?

A

? ?
B C

? ?
A C

? ?
BA

A

B
C

A
B
C

B
A
C

B

A
C

C
B
A

A
B C

C

B
A

CA B A
BC

A
B
C A B

C
AB
C

AB
C

A
B

C

A
B
C

A
BC

A
B

C

CA B
?
?

C
?
?

B
?
?

A

? ?
B C

? ?
A C

? ?
BA

A

B
C

A
B
C

B
A
C

B

A
C

C
B
A

C

B
A

CA B A
B C

AB
C

A
B
C

AB
C

A
B
C

A
BC A

B
C

A
BC A

B
C

A B
C

A
B C

A B
C

Figure 4.10: Solution of a simple blocks world problem

This belief state is obtained as the strong preimage of the union of two existing belief states, the
one in which all blocks are on the table and the one in which A is on the table and B is on top of
C. The action that moves A onto the table yields the belief state because if A is on C all blocks
will be on the table and if A is already on the table nothing will happen. Construction of the belief
states in which B and C are clear and A and C are clear is analogous and depicted in the last two
diagrams.

The resulting plan reaches the goal state from any state in the blocks world. The plan in the
program form is given in Figure 4.11 (order of construction is from the end to the beginning.)

�

The algorithm we give for extending factored belief spaces by computing the preimage of a
combination of some of its belief states is based on exhaustive search and runs in worst-case
exponential time. The algorithm is justified by the following theorem that shows that finding new
belief states is NP-hard. The proof is a reduction from SAT: represent each clause as the set of

CHAPTER 4. CONDITIONAL PLANNING 90

16:
IF clear-A AND clear-B AND clear-C THEN GOTO end
IF clear-A AND clear-C THEN GOTO 15
IF clear-B AND clear-C THEN GOTO 13
IF clear-A AND clear-B THEN GOTO 11
IF clear-A THEN GOTO 5
IF clear-B THEN GOTO 7
IF clear-C THEN GOTO 9

15:
move-C-onto-table

14:
IF clear-A AND clear-B AND clear-C THEN GOTO end
IF clear-A AND clear-C THEN GOTO 1

13:
move-B-onto-table

12:
IF clear-A AND clear-B AND clear-C THEN GOTO end
IF clear-B AND clear-C THEN GOTO 3

11:
move-A-onto-table

10:
IF clear-A AND clear-B AND clear-C THEN GOTO end
IF clear-A AND clear-B THEN GOTO 2

9:
move-C-onto-table

8:
IF clear-A AND clear-C THEN GOTO 1
IF clear-B AND clear-C THEN GOTO 2

7:
move-B-onto-table

6:
IF clear-A AND clear-B THEN GOTO 1
IF clear-B AND clear-C THEN GOTO 3

5:
move-A-onto-table

4:
IF clear-A AND clear-B THEN GOTO 2
IF clear-A AND clear-C THEN GOTO 3

3:
move-C-onto-table
GOTO end

2:
move-B-onto-table
GOTO end

1:
move-A-onto-table

end:

Figure 4.11: A plan for a partially observable blocks world problem

CHAPTER 4. CONDITIONAL PLANNING 91

literals that are not in it, and then a satisfying assignment is a set of literals that is not included in
any of the sets.

Theorem 4.35 Testing whetherG = 〈G1, . . . , Gn〉 contains a setS of states such that spreimgo(S)
is not inG is NP-complete. This holds also for deterministic operatorso.

Proof: Membership in NP is trivial: nondeterministically choosesi ∈ Gi for everyi ∈ {1, . . . , n},
compute the preimager of s1∪· · ·∪sn in deterministic polynomial time, and verify in polynomial
time that the intersectionr ∩ Ci of the preimage with one of the observational classesCi is not in
Gi.

LetT = {E1, . . . , Em} be a set of clauses over a set of propositional variablesA = {a1, . . . , ak}.
We construct a factored belief space based on a state space in which the variablesa andâ for a ∈ A
and all these variables witha replaced byz, are the states. The variablesẑ represent negative lit-
erals. Define

E′
i = (A\Ei) ∪ {â|a ∈ A,¬a 6∈ Ei} for i ∈ {1, . . . ,m}

G = 〈{E′
1, . . . , E

′
m}, {{z1}, {ẑ1}}, . . . , {{zk}, {ẑk}}〉

Let o mapai to zi andâi to ẑi for all i ∈ {1, . . . , k}.
We claim thatT is satisfiable if and only if flat(G) contains a belief stateB such thatspreimgo(B)

is not inG.
AssumeT is satisfiable, that is, there isM such thatM |= T . DefineM ′ = {zi|ai ∈ A,M |=

ai} ∪ {ẑi|ai ∈ A,M 6|= ai}. Clearly,M ′ is a belief state inG. DefineM ′′ = {ai ∈ A|M |=
ai} ∪ {âi|ai ∈ A,M 6|= ai}. Clearly,M ′′ is the preimage ofM ′ with respect too.

We show thatM ′′ is not inG. Take anyi ∈ {1, . . . ,m}. BecauseM |= Ei, there isaj ∈ A
such thataj ∈ Ei andM |= aj (the case¬a ∈ Ei goes similarly.) Nowaj ∈ M ′′. By definition
now aj 6∈ E′

j . As this holds for alli ∈ {1, . . . ,m}, M ′′ is not a subset of anyEi, and hence it
does not belong toG.

Assume there is belief stateB in G such that the preimage ofB with respect too is not inG.
Clearly,B is a subset ofA∪{â|a ∈ A} with at most one ofai or âi for anyi ∈ {1, . . . , k}. Define
a propositional modelM such thatM |= a if and only if a ∈ B. We show thatM |= T . Take
any clauseEi from T . As B is not inG, B 6⊆ E′

i. Hence there isaj or âj in B\E′
i. Consider the

case withaj (âj goes similarly.) Asaj 6∈ E′
i, aj ∈ Ei. By definition ofM , M |= aj and hence

M |= Ei. As this holds for alli ∈ {1, . . . ,m}, M |= T . This completes the proof. �

Example 4.36 The construction in the above proof can be illustrated by the following example.
We use an operator that maps a variablex to the variablex0. LetT = {A∨B ∨C,¬A∨B,¬C}.
The corresponding factored belief space is

〈 {{Â, B̂, Ĉ}, {A, B̂, C, Ĉ}, {A, Â,B, B̂, C}},
{{A0}, {Â0}},
{{B0}, {B̂0}},
{{C0}, {Ĉ0}}〉.

�

CHAPTER 4. CONDITIONAL PLANNING 92

procedurefindnew(o,A,F ,H);
if F = 〈〉 and spreimgo(A) 6⊆ S for noS ∈ flat(H) then return A;
if F = 〈〉 then return ∅;
F is 〈{f1, . . . , fm}, F2, . . . , Fk〉 for k ≥ 1;
for i := 1 to m do

S := findnew(o,A ∪ fi,〈F2, . . . , Fk〉,H);
if S 6= ∅ then return S;

end;
return ∅

Figure 4.12: An algorithm for finding new belief states

Next we give an algorithm for constructing conditional plans. The basic step in the algorithm
is finding a belief state for which a plan can be shown to exist, based on a set of belief states with
plans.

The procedure in Figure 4.12 performs this step: it finds a setS of states that is not contained
in H and that is the strong preimage of a setS′ of states inF with respect to an operatoro. The
procedure runs in exponential time on the size ofF , and consumes space linear in the size ofF .
By Theorem 4.35 this is the best that can be expected (unless it turns out thatP = NP).

Lemma 4.37 The procedure call findnew(o,∅,H,H ′) returns a setS′ such thatS′ = spreimgo(S)
for someS ∈ flat(H) andS′ ⊆ S′′ for noS′′ ∈ flat(H ′), and if no such set exists it returns∅.

Proof: The procedure goes through the elements〈S1, . . . , Sn〉 of F1 × · · · ×Fn and tests whether
spreimgo(S1 ∪ · · · ∪Sn) is in H. The setsS1 ∪ · · · ∪Sn are the elements of flat(F). The traversal
throughF1 × · · · × Fn is by generating a search tree with elements ofF1 as children of the root
node, elements ofF2 as children of every child of the root node, and testing whether the strong
preimage is in it. �

The implementation of the procedure can be improved in many ways. The setsf1, . . . , fm can
be ordered according to cardinality so that the bigger preimages are tried out first and a new belief
state is found sooner. Also other kinds of heuristics could be applied here, for example ones that
would try to produce belief states closer to the initial state for example according to the heuristics
discussed in Section 4.4.1.

Definealtimgo(S) asimgo(wpreimgo(S)). This is the set of states that could have been reached
when a state inS was reached instead. NowS ⊆ altimgo(S), and for deterministic operators
S = altimgo(S).

Pruning techniques based o strong and weak preimages offi are the following.

1. Let o be deterministic. Ifspreimgo(fi) ⊆ spreimgo(fj) and i > j, or spreimgo(fi) ⊂
spreimgo(fj), then we can ignorefi.

If the strong preimage offi is smaller than that offj , the strong preimage that is found with
fi cannot be bigger than that withfj , and hence usingfi is unnecessary.

2. Pruning techniques for nondeterministic operators are more complicated.

If wpreimgo(fi) ⊆ wpreimgo(fj) and altimgo(fi) ∩ fi ⊆ altimgo(fj) and i > j, or
wpreimgo(fi) ⊂ wpreimgo(fj) andaltimgo(fi) ∩ fi ⊂ altimgo(fj) thenfi can be ignored.

CHAPTER 4. CONDITIONAL PLANNING 93

procedureplan(I,O,G);
H := F(G);
progress := true;
while progress andI 6⊆ S for all S ∈ flat(H) do

progress := false;
for eacho ∈ O do

S := findnew(o,∅,H,H);
if S 6= ∅ then

begin
H := H ⊕F(spreimgo(S));
progress := true;

end;
end;

end;
if I ⊆ S for someS ∈ flat(H) then return true
else return false;

Figure 4.13: A backward search algorithm for partially observable planning

kesken

A more advanced version of this technique can be utilized during search. If sets included
in C1, . . . , Ck have already been chosen and their union isB, statess ∈ fi such that
altimgo({s}) ∩ ((

⋃
i{1,...,k} Ci)\B) 6= ∅ do not help in finding a new (bigger) belief state.

kesken

Figure 4.13 shows an algorithm for finding plans for partially observable problems. The algo-
rithm uses the subprocedurefindnewfor extending the belief space (this is the NP-hard subproblem
from Theorem 4.35). The plans the algorithm produces are not guaranteed to be optimal because
it does not produce all possible plans in a breadth-first manner.

We have not here described the book-keeping needed for outputting a plan, and the algorithm
just returnstrue or falsedepending on whether a plan exists or not. Extending the algorithm with
the necessary book-keeping is straightforward.

Lemma 4.38 AssumeS ∈ flat(H). Then there isS′ ∈ flat(H ⊕G) so thatS ⊆ S′.

Lemma 4.39 LetS1, . . . , Sn be sets of states so that for everyi ∈ {1, . . . , n} there isS′
i ∈ flat(H)

such thatSi ⊆ S′
i, and there is no observational classC such that for some{i, j} ⊆ {1, . . . , n}

bothi 6= j andSi∩C 6= ∅ andSj∩C 6= ∅. Then there isS′ ∈ flat(H) such thatS1∪· · ·∪Sn ⊆ S′.

Theorem 4.40 Whenever there exists a finite acyclic plan for a problem instance, the algorithm
in Figure 4.13 returnstrue.

Proof: So assume there is a plan for a problem instance〈A, I,O,G, B〉. Label all nodes of
the plan as follows. The root nodeN is labeled withI, that is, l(N) = I. When possible
parent nodes of a noden are labeled, we can compute the label forn. Let 〈o1, n〉, . . . , 〈om, n〉
be the annotations of all operator nodesn1, . . . , nm in the plan withn as the child node, and let
{〈φ1, n〉, . . .}, . . . , {〈φk, n〉, . . .} the respective annotations of all branch nodesn′1, . . . , n

′
k with n

CHAPTER 4. CONDITIONAL PLANNING 94

as one of the child nodes. Then the label ofn is imgo1(l(n1)) ∪ · · · ∪ imgom(l(nm)) ∪ (l(n′1) ∩
φ1) ∪ · · · ∪ (l(n′k) ∩ φk). This labeling simply says what are the possible current states for every
node of the plan when the plan is executed starting from some initial state.

We show that –assuming that the algorithm does not terminate earlier after producing a su-
perset ofI – the algorithm determines that for all node labels a plan for reachingG exists if plans
exist for its child nodes.

Induction hypothesis: For each plan noden such that all paths to a terminal node have lengthi
or less, its labelS = l(n) is a subset of someS′ ∈ flat(H), whereH is the value of the program
variableH after thewhile loop exits andH could not be extended further.

Base casei = 0: Terminal nodes of the plan are labeled with subsets ofG. By Lemma 4.38,
G′ ∈ flat(H) for some setG′ such thatG ⊆ G′ becauseG was inH initially.

Inductive casei ≥ 1: Let n be a plan node. By the induction hypothesis for all child nodesn′

of n, l(n′) ⊆ S for someS ∈ flat(H).
If n is a branch node with child nodesn1, . . . , nk and respective conditionsφ1, . . . , φk, then

l(n) ∩ φ1, . . ., l(n) ∩ φk all occupy disjoint observational classes and superset ofl(n) ∩ φi for
everyi ∈ {1, . . . , k} is in flat(H). Hence by Lemma 4.39l(n) ⊆ S for someS ∈ flat(H).

If n is an operator node with operatoro and child noden′, then imgo(l(n)) ⊆ l(n′), and by
the induction hypothesisl(n′) ⊆ S′ for someS′ ∈ flat(H). We have to show thatl(n) ⊆ S′′ for
someS′′ ∈ flat(H). Assume that there is no suchS′′. But now by Lemma 4.37 findnew(o,∅,H,H)
would returnS′′′ such thatspreimgo(S′′′) ⊆ S for no S ∈ flat(H), and thewhile loop could not
have exited withH, contrary to our assumption aboutH. �

Theorem 4.41 Let Π = 〈A, I,O,G, B〉 be a problem instance. If procedure plan(I,O,G) in
Figure 4.13 returnstrue, thenΠ has a solution plan.

Proof: Let H0,H1, . . . be the sequence of factored belief spacesH produced by the algorithm.
We show that for alli ≥ 0, for every set of states inH i there is a plan that reachesG.

Induction hypothesis:H i contains only such setsS ∈ flat(H i) for which a plan reachingG
exists.

Base casei = 0: Initially H0 = F(G) and the only set inH0 is G. The empty plan reachesG
from G.

Inductive casei ≥ 1: H i+1 is obtained asH i⊕F(spreimgo(S)) whereS =findnew(o,∅,H i,H i).
By Lemma 4.37S ∈ flat(H i) andspreimgo(S) ⊆ S′ for no S′ ∈ flat(H i). BecauseS is in H i,
there is a planπ for reachingG from S. The plan that executeso followed byπ reachesG from
spreimgo(S).

Let Z be any member of flat(H i+1). We show that forZ there is a plan for reachingG. The
plan forZ starts by a branch4. We show that for every possible observation, corresponding to one
observational class, there is a plan that reachesG. Let Cj be thejth observational class. When
observingCj , the current state is inZj = Z ∩ Cj . Now for Zj there isZ ′

j ∈ H i+1
j with Zj ⊆ Z ′

j ,

whereH i+1
j is thejth component ofH i+1. Now by induction hypothesis there is a plan forZ ′

j

if Z ′
j ∈ H i

j , and if Z ′
j ∈ H i+1

j \H i
j , then for branch corresponding toCj we use the plan for

spreimgo(S), asZ ′
j must bespreimgo(S) ∩ Cj . �

4Some of the branches might not be needed, and if the intersection ofZ with only one observational class is non-
empty the plan could start with an operator node instead of a degenerate branch node.

CHAPTER 4. CONDITIONAL PLANNING 95

4.5 Computational complexity

In this section we analyze the computational complexity of the main decision problems related
to nondeterministic planning. The conditional planning problem is a generalization of the deter-
ministic planning problem from Chapter 3, and therefore the plan existence problem is at least
PSPACE-hard. In this section we discuss the computational complexity of each of the three plan-
ning problems, the fully observable, the unobservable, and the general partially observable plan-
ning problem, showing them respectively complete for the complexity classes EXP, EXPSPACE
and 2-EXP.

4.5.1 Planning with full observability

We first show that the plan existence problem for nondeterministic planning with full observability
is EXP-hard and then that the problem is in EXP.

The EXP-hardness proof in Theorem 4.42 is by simulating polynomial-space alternating Tur-
ing machines by nondeterministic planning problems with full observability and the using the fact
that the complexity classes EXP and APSPACE are the same (see Section 2.4.) The most inter-
esting thing in the proof is the representation of alternation. Theorem 3.42 already showed how
deterministic Turing machines with a polynomial space bound are simulated, and the difference is
that we now have nondeterminism, that is, a configuration of the TM may have several successor
configurations, and that there are both∀ and∃ states.5

The∀ states mean that all successor configurations must be accepting (terminal or non-terminal)
configurations. The∃ states mean that at least one successor configuration must be an accepting
(terminal or non-terminal) configuration. Both of these requirements can be represented in the
nondeterministic planning problem.

The transitions from a configuration with a∀ state will correspond to one nondeterministic oper-
ator. That all successor configurations must be accepting (terminal or non-terminal) configurations
corresponds to requirement in planning that from all successor states of a state a goal state must
be reached.

Every transition from a configuration with∃ state will correspond to a deterministic operator,
that is, the transition may be chosen, as only one of the successor configurations needs to be
accepting.

Theorem 4.42 The problem of testing the existence of an acyclic plan for problem instances with
full observability is EXP-hard.

Proof: Let 〈Σ, Q, δ, q0, g〉 be any alternating Turing machine with a polynomial space boundp(x).
Let σ be an input string of lengthn.

We construct a problem instance in nondeterministic planning with full observability for sim-
ulating the Turing machine. The problem instance has a size that is polynomial in the size of the
description of the Turing machine and the input string.

The setA of state variables in the problem instance consists of

1. q ∈ Q for denoting the internal states of the TM,

2. si for every symbols ∈ Σ ∪ {|,�} and tape celli ∈ {0, . . . , p(n)}, and

5Restricting the proof of Theorem 4.42 to∃ states with nondeterministic transitions would yield a proof of the
NPSPACE-hardness of deterministic planning, but this is not interesting as PSPACE=NPSPACE.

CHAPTER 4. CONDITIONAL PLANNING 96

3. hi for the positions of the R/W headi ∈ {0, . . . , p(n) + 1}.

The unique initial state of the problem instance represents the initial configuration of the TM.
The corresponding formula is the conjunction of the following literals.

1. q0

2. ¬q for all q ∈ Q\{q0}.

3. si for all s ∈ Σ andi ∈ {1, . . . , n} such thatith input symbol iss.

4. ¬si for all s ∈ Σ andi ∈ {1, . . . , n} such thatith input symbol is nots.

5. ¬si for all s ∈ Σ andi ∈ {0, n + 1, n + 2, . . . , p(n)}.

6. �i for all i ∈ {n + 1, . . . , p(n)}.

7. ¬�i for all i ∈ {0, . . . , n}.

8. |0

9. ¬|i for all n ∈ {1, . . . , p(n)}

10. h1

11. ¬hi for all i ∈ {0, 2, 3, 4, . . . , p(n) + 1}

The goal is the following formula.

G =
∨
{q ∈ Q|g(q) = accept}

Next we define the operators. All the transitions may be nondeterministic, and the important
thing is whether the transition is for a∀ state or an∃ state.6 For a given input symbol and a∀ state,
the transition corresponds to one nondeterministic operator, whereas for a given input symbol and
an∃ state the transitions corresponds to a set of deterministic operators.

To define the operators, we first define effects corresponding to all possible transitions.
For all〈s, q〉 ∈ (Σ∪{|,�})×Q, i ∈ {0, . . . , p(n)} and〈s′, q′,m〉 ∈ (Σ∪{|})×Q×{L,N,R}

define the effectτs,q,i(s′, q′,m) asα ∧ κ ∧ θ where the effectsα, κ andθ are defined as follows.
The effectα describes what happens to the tape symbol under the R/W head. Ifs = s′ then

α = > as nothing on the tape changes. Otherwise,α = ¬si ∧ s′i to denote that the new symbol in
theith tape cell iss′ and nots.

The effectκ describes the change to the internal state of the TM. Again, either the state changes
or does not, soκ = ¬q ∧ q′ if q 6= q′ and> otherwise. We defineκ = ¬q wheni = p(n) and
m = R so that when the space bound gets violated, no accepting state can be reached.

The effectθ describes the movement of the R/W head. Either there is movement to the left, no
movement, or movement to the right. Hence

θ =

¬hi ∧ hi−1 if m = L

> if m = N
¬hi ∧ hi+1 if m = R

6No operators are needed for accepting or rejecting states.

CHAPTER 4. CONDITIONAL PLANNING 97

By definition of TMs, movement at the left end of the tape is always to the right. Similarly, we
have state variable for R/W head positionp(n) + 1 and moving to that position is possible, but no
transitions from that position are possible, as the space bound has been violated.

Now, these effects that represent possible transitions are used in the operators that simulate the
ATM. Operators for existential statesq, g(q) = ∃ and for universal statesq, g(q) = ∀ differ. Let
〈s, q〉 ∈ (Σ ∪ {|,�})×Q, i ∈ {0, . . . , p(n)} andδ(s, q) = {〈s1, q1,m1〉, . . . , 〈sk, qk,mk〉}.

If g(q) = ∃, then definek deterministic operators

os,q,i,1 = 〈hi ∧ si ∧ q, τs,q,i(s1, q1,m1)〉
os,q,i,2 = 〈hi ∧ si ∧ q, τs,q,i(s2, q2,m2)〉
...
os,q,i,k = 〈hi ∧ si ∧ q, τs,q,i(sk, qk,mk)〉

That is, the plan determines which transition is chosen.
If g(q) = ∀, then define one nondeterministic operator

os,q,i = 〈hi ∧ si ∧ q, (τs,q,i(s1, q1,m1)|
τs,q,i(s2, q2,m2)|
...
τs,q,i(sk, qk,mk))〉.

That is, the transition is chosen nondeterministically.
We claim that the problem instance has a plan if and only if the Turing machine accepts without

violating the space bound.
If the Turing machine violates the space bound, the state variablehp(n)+1 becomes true and an

accepting state cannot be reached because no operator will be applicable.
Otherwise, we show inductively that from a computation tree of an accepting ATM we can

extract a conditional plan that always reaches a goal state, and vice versa. For obtaining an cor-
respondence between conditional plans and computation trees it is essential that the plans are
acyclic.

kesken
So, because all alternating Turing machines with a polynomial space bound can be in polyno-

mial time translated to a nondeterministic planning problem, all decision problems in APSPACE
are polynomial time many-one reducible to nondeterministic planning, and the plan existence
problem is APSPACE-hard and consequently EXP-hard. �

We can extend Theorem 4.42 to general plans with loops. The problem looping plans cause in
the proofs of this theorem is that a Turing machine computation of infinite length is not accepting
but the corresponding infinite length zero-probability plan execution is allowed to be a part of plan
and would incorrectly count as an accepting Turing machine computation.

To eliminate infinite plan executions we have to modify the Turing machine simulation. This
is by counting the length of the plan executions and failing when at least one state or belief state
must have been visited more than once. This modification makes infinite loops ineffective, and
any plan containing a loop can be translated to a finite non-looping plan by unfolding the loop. In
the absence of loops the simulation of alternating Turing machines is faithful.

CHAPTER 4. CONDITIONAL PLANNING 98

Theorem 4.43 The plan existence problem for problem instances with full observability is EXP-
hard.

Proof: This is an easy extension of the proof of Theorem 4.42. If there aren state variables, an
acyclic plan exists if and only if a plan with execution length at most2n exists, because visiting any
state more than once is unnecessary. Plans that rely on loops can be invalidated by counting the
number of actions taken and failing when this exceeds2n. This counting can be done by having
n + 1 auxiliary state variablesc0, . . . , cn that are initialized to false. Every operator〈p, e〉 is
extended to〈p, e∧ t〉 wheret is an effect that increments the binary number encoded byc0, . . . , cn

by one until the most significant bitcn becomes one. The goalG is replaced byG ∧ ¬cn.
Then a plan exists if and only if an acyclic plan exists if and only if the alternating Turing

machine accepts. �

Theorem 4.44 The problem of testing the existence of a plan for problem instances with full ob-
servability is in EXP.

Proof: The algorithm in Section 4.3.2 runs in exponential time in the size of the problem in-
stance. �

4.5.2 Planning without observability

The plan existence problem of conditional planning with unobservability is more complex than
that of conditional planning with full observability.

To show the unobservable problem EXPSPACE-hard by a direct simulation of exponential space
Turing machines, the first problem is how to encode the tape of the TM. With polynomial space, as
in the PSPACE-hardness and APSPACE-hardness proofs of deterministic planning and conditional
planning with full observability, it was possible to represent all the tape cells as the state variables
of the planning problem. With an exponential space bound this is not possible any more, as we
would need an exponential number of state variables, and the planning problem could not be
constructed in polynomial time.

Hence we have to find a more clever way of encoding the working tape. It turns out that we
can use the uncertainty about the initial state for this purpose. When an execution of the plan
that simulates the Turing machine is started, we randomly choose one of the tape cells to be the
watchedtape cell. This is the only cell of the tape for which the current symbol is represented in
the state variables. On all transitions the plan makes, if the watched tape cell changes, the change
is reflected in the state variables.

That the plan corresponds to a simulation of the Turing machine it is tested whether the transi-
tion the plan makes when the current tape cell is the watched tape cell is the one that assumes the
current symbol to be the one that is stored in the state variables. If it is not, the plan is not a valid
plan. Because the watched tape cell could be any of the exponential number of tape cells, all the
transitions the plan makes are guaranteed to correspond to the contents of the current tape cell of
the Turing machine, so if the plan does not simulate the Turing machine, the plan is not guaranteed
to reach the goal states.

The proof requires both several initial states and unobservability. Several initial states are
needed for selecting the watched tape cell, and unobservability is needed so that the plan can-

CHAPTER 4. CONDITIONAL PLANNING 99

not cheat: if the plan can determine what the current tape cell is, it could choose transitions that do
not correspond to the Turing machine on all but the watched tape cell. Because of unobservability
all the transitions have to correspond to the Turing machine.

Theorem 4.45 The problem of testing the existence of a plan for problem instances with unob-
servability is EXPSPACE-hard.

Proof: Proof is a special case of the proof of Theorem 4.48. We do not have∀ states and restrict
to deterministic Turing machines. Nondeterministic Turing machines could be simulated for a
NEXPSPACE-hardness proof, but it is already known that EXPSPACE = NEXPSPACE, so this
additional generality would not bring anything.

Let 〈Σ, Q, δ, q0, g〉 be any deterministic Turing machine with an exponential space bounde(x).
Let σ be an input string of lengthn. We denote theith symbol ofσ by σi.

The Turing machine may use spacee(n), and for encoding numbers from0 to e(n) + 1 corre-
sponding to the tape cells we needm = dlog2(e(n) + 2)e Boolean state variables.

We construct a problem instance in nondeterministic planning without observability for simu-
lating the Turing machine. The problem instance has a size that is polynomial in the size of the
description of the Turing machine and the input string.

We cannot have a state variable for every tape cell because the reduction from Turing machines
to planning would not be polynomial time. It turns out that it is not necessary to encode the whole
contents of the tape in the transition system of the planning problem, and that it suffices to keep
track of only one tape cell (which we will call thewatched tape cell) that is randomly chosen in
the beginning of every execution of the plan.

The setA of state variables in the problem instance consists of

1. q ∈ Q for denoting the internal states of the TM,

2. wi for i ∈ {0, . . . ,m− 1} for the watched tape celli ∈ {0, . . . , e(n)},

3. s for every symbols ∈ Σ ∪ {|,�} for the contents of the watched tape cell,

4. hi for i ∈ {0, . . . ,m− 1} for the position of the R/W headi ∈ {0, . . . , e(n) + 1}.

The uncertainty in the initial state is about which tape cell is the watched one. Otherwise the
formula encodes the initial configuration of the TM, and it is the conjunction of the following
formulae.

1. q0

2. ¬q for all q ∈ Q\{q0}.

3. Formulae for having the contents of the watched tape cell in state variablesΣ ∪ {|,�}.

| ↔ (w = 0)
� ↔ (w > n)
s ↔

∨
i∈{1,...,n},σi=s(w = i) for all s ∈ Σ

4. h = 1 for the initial position of the R/W head.

CHAPTER 4. CONDITIONAL PLANNING 100

So the initial state formula allows any values for state variableswi and the values of the state
variabless ∈ Σ are determined on the basis of the values ofwi. The expressionsw = i, w > i
denote the obvious formulae for testing integer equality and inequality of the numbers encoded by
w0, w1, Later we will also use effectsh := h + 1 andh := h− 1 that represent incrementing
and decrementing the number encoded byh0, h1,

The goal is the following formula.

G =
∨
{q ∈ Q|g(q) = accept}

To define the operators, we first define effects corresponding to all possible transitions.
For all 〈s, q〉 ∈ (Σ∪{|,�})×Q and〈s′, q′,m〉 ∈ (Σ∪{|})×Q×{L,N,R} define the effect

τs,q(s′, q′,m) asα ∧ κ ∧ θ where the effectsα, κ andθ are defined as follows.
The effectα describes what happens to the tape symbol under the R/W head. Ifs = s′ then

α = > as nothing on the tape changes. Otherwise,α = ((h = w) B (¬s ∧ s′)) to denote that the
new symbol in the watched tape cell iss′ and nots.

The effectκ describes the change to the internal state of the TM. Again, either the state changes
or does not, soκ = ¬q ∧ q′ if q 6= q′ and> otherwise. If R/W head movement is to the right we
defineκ = ¬q ∧ ((h < e(n)) B q′) if q 6= q′ and(h = e(n)) B ¬q otherwise. This prevents
reaching an accepting state if the space bound is violated: no further operator applications are
possible.

The effectθ describes the movement of the R/W head. Either there is movement to the left, no
movement, or movement to the right. Hence

θ =

h := h− 1 if m = L

> if m = N
h := h + 1 if m = R

By definition of TMs, movement at the left end of the tape is always to the right.
Now, these effectsτs,q(s′, q′,m) which represent possible transitions are used in the operators

that simulate the DTM. Let〈s, q〉 ∈ (Σ ∪ {|,�})×Q andδ(s, q) = {〈s′, q′,m〉}.
If g(q) = ∃, then define the operator

os,q = 〈((h 6= w) ∨ s) ∧ q, τs,q(s′, q′,m)〉

It is easy to verify that the planning problem simulates the DTM assuming that when operator
os,q is executed the current tape symbol is indeeds. So assume that someos,q is the first operator
that misrepresents the tape contents and thath = c for some tape cell locationc. Now there is an
execution of the plan so thatw = c. On this execution the preconditionos,q is not satisfied, and
the plan is not executable. Hence a valid plan cannot contain operators that misrepresent the tape
contents. �

Theorem 4.46 The problem of testing the existence of a plan for problem instances with unob-
servability is in EXPSPACE.

Proof: Proof is similar to the proof Theorem 3.43 but works at the level of belief states. �

The two theorems together yield the EXPSPACE-completeness of the plan existence problem
for conditional planning without observability.

CHAPTER 4. CONDITIONAL PLANNING 101

4.5.3 Planning with partial observability

We show that the plan existence problem of the general conditional planning problem with partial
observability is 2-EXP-complete. The hardness proof is by a simulation of AEXPSPACE=2-EXP
Turing machines. Membership in 2-EXP is obtained directly from the decision procedure dis-
cussed earlier: the procedure runs in polynomial time in the size of the enumerated belief space of
doubly exponential size.

Showing that the plan existence problem for planning with partial observability is in 2-EXP is
straightforward. The easiest way to see this is to view the partially observable planning problem
as a nondeterministic fully observable planning problem with belief states viewed as states. An
operator maps a belief state to another belief state nondeterministically: compute the image of a
belief state with respect to an operator, and choose the subset of its states that correspond to one
of the possible observations. Like pointed out in the proof of Theorem 4.44, the algorithms for
fully observable planning run in polynomial time in the size of the state space. The state space
with the belief states as the states has a doubly exponential size in the size of the problem instance,
and hence the algorithm runs in doubly exponential time in the size of the problem instance. This
gives us the membership in 2-EXP.

Theorem 4.47 The plan existence problem for problem instances with partial observability is in
2-EXP.

The hardness proof is an extension of both the EXP-hardness proof of Theorem 4.42 and of
the EXPSPACE-hardness proof of Theorem 4.45. From the first proof we have the simulation of
alternating Turing machines, and from the second proof the simulation of Turing machines with
an exponentially long tape.

Theorem 4.48 The problem of testing the existence of an acyclic plan for problem instances with
partial observability is 2-EXP-hard.

Proof: Let 〈Σ, Q, δ, q0, g〉 be any alternating Turing machine with an exponential space bound
e(x). Let σ be an input string of lengthn. We denote theith symbol ofσ by σi.

The Turing machine may use spacee(n), and for encoding numbers from0 to e(n) + 1 corre-
sponding to the tape cells we needm = dlog2(e(n) + 2)e Boolean state variables.

We construct a problem instance in nondeterministic planning with full observability for sim-
ulating the Turing machine. The problem instance has a size that is polynomial in the size of the
description of the Turing machine and the input string.

We cannot have a state variable for every tape cell because the reduction from Turing machines
to planning would not be polynomial time. It turns out that it is not necessary to encode the whole
contents of the tape in the transition system of the planning problem, and that it suffices to keep
track of only one tape cell (which we will call thewatched tape cell) that is randomly chosen in
the beginning of every execution of the plan.

The setA of state variables in the problem instance consists of

1. q ∈ Q for denoting the internal states of the TM,

2. wi for i ∈ {0, . . . ,m− 1} for the watched tape celli ∈ {0, . . . , e(n)},

3. s for every symbols ∈ Σ ∪ {|,�} for the contents of the watched tape cell,

CHAPTER 4. CONDITIONAL PLANNING 102

4. s∗ for everys ∈ Σ ∪ {|} for the symbol last written (important for nondeterministic transi-
tions),

5. L, R andN for the last movement of the R/W head (important for nondeterministic transi-
tions), and

6. hi for i ∈ {0, . . . ,m− 1} for the position of the R/W headi ∈ {0, . . . , e(n) + 1}.

The observable state variables areL, N andR, q ∈ Q, ands∗ for s ∈ Σ. These are needed by
the plan to decide how to proceed execution after a nondeterministic transition with a∀ state.

The uncertainty in the initial state is about which tape cell is the watched one. Otherwise the
formula encodes the initial configuration of the TM, and it is the conjunction of the following
formulae.

1. q0

2. ¬q for all q ∈ Q\{q0}.

3. ¬s∗ for all s ∈ Σ ∪ {|}.

4. Formulae for having the contents of the watched tape cell in state variablesΣ ∪ {|,�}.

| ↔ (w = 0)
� ↔ (w > n)
s ↔

∨
i∈{1,...,n},σi=s(w = i) for all s ∈ Σ

5. h = 1 for the initial position of the R/W head.

So the initial state formula allows any values for state variableswi and the values of the state
variabless ∈ Σ are determined on the basis of the values ofwi. The expressionsw = i, w > i
denote the obvious formulae for testing integer equality and inequality of the numbers encoded by
w0, w1, Later we will also use effectsh := h + 1 andh := h− 1 that represent incrementing
and decrementing the number encoded byh0, h1,

The goal is the following formula.

G =
∨
{q ∈ Q|g(q) = accept}

Next we define the operators. All the transitions may be nondeterministic, and the important
thing is whether the transition is for a∀ state or an∃ state. For a given input symbol and a∀ state,
the transition corresponds to one nondeterministic operator, whereas for a given input symbol and
an∃ state the transitions corresponds to a set of deterministic operators.

To define the operators, we first define effects corresponding to all possible transitions.
For all 〈s, q〉 ∈ (Σ∪{|,�})×Q and〈s′, q′,m〉 ∈ (Σ∪{|})×Q×{L,N,R} define the effect

τs,q(s′, q′,m) asα ∧ κ ∧ θ where the effectsα, κ andθ are defined as follows.
The effectα describes what happens to the tape symbol under the R/W head. Ifs = s′ then

α = > as nothing on the tape changes. Otherwise,α = ((h = w) B (¬s ∧ s′)) ∧ s′∗ ∧ ¬s∗ to
denote that the new symbol in the watched tape cell iss′ and nots, and to make it possible for the
plan to detect which symbol was written to the tape by the possibly nondeterministic transition.

The effectκ describes the change to the internal state of the TM. Again, either the state changes
or does not, soκ = ¬q ∧ q′ if q 6= q′ and> otherwise. If R/W head movement is to the right we

CHAPTER 4. CONDITIONAL PLANNING 103

defineκ = ¬q ∧ ((h < e(n)) B q′) if q 6= q′ and(h = e(n)) B ¬q otherwise. This prevents
reaching an accepting state if the space bound is violated: no further operator applications are
possible.

The effectθ describes the movement of the R/W head. Either there is movement to the left, no
movement, or movement to the right. Hence

θ =

(h := h− 1) ∧ L ∧ ¬N ∧ ¬R if m = L

N ∧ ¬L ∧ ¬R if m = N
(h := h + 1) ∧R ∧ ¬L ∧ ¬N if m = R

By definition of TMs, movement at the left end of the tape is always to the right.
Now, these effectsτs,q(s′, q′,m) which represent possible transitions are used in the opera-

tors that simulate the ATM. Operators for existential statesq, g(q) = ∃ and for universal states
q, g(q) = ∀ differ. Let 〈s, q〉 ∈ (Σ ∪ {|,�})×Q andδ(s, q) = {〈s1, q1,m1〉, . . . , 〈sk, qk,mk〉}.

If g(q) = ∃, then definek deterministic operators

os,q,1 = 〈((h 6= w) ∨ s) ∧ q, τs,q(s1, q1,m1)〉
os,q,2 = 〈((h 6= w) ∨ s) ∧ q, τs,q(s2, q2,m2)〉
...
os,q,k = 〈((h 6= w) ∨ s) ∧ q, τs,q(sk, qk,mk)〉

That is, the plan determines which transition is chosen.
If g(q) = ∀, then define one nondeterministic operator

os,q = 〈((h 6= w) ∨ s) ∧ q, (τs,q(s1, q1,m1)|
τs,q(s2, q2,m2)|
...
τs,q(sk, qk,mk)〉).

That is, the transition is chosen nondeterministically.
We claim that the problem instance has a plan if and only if the Turing machine accepts without

violating the space bound. If the Turing machine violates the space bound, thenh > e(n) and an
accepting state cannot be reached because no further operator will be applicable.

From an accepting computation tree of an ATM we can construct a plan, and vice versa. Ac-
cepting final configurations are mapped to terminal nodes of plans,∃-configurations are mapped
to operator nodes in which an operator corresponding to the transition to an accepting successor
configuration is applied, and∀-configurations are mapped to operator nodes corresponding to the
matching nondeterministic operators followed by a branch node that selects the plan nodes corre-
sponding to the successors of the∀ configuration. The successors of∀ and∃ configurations are
recursively mapped to plans.

Construction of computation trees from plans is similar, but involves small technicalities. A plan
with DAG form can be turned into a tree by having several copies of the shared subplans. Branches
not directly following the nondeterministic operator causing the uncertainty can be moved earlier
so that every nondeterministic operator is directly followed by a branch that chooses a successor
node for every possible new state, written symbol and last tape movement. With these transforma-
tions there is an exact match between plans and computation trees of the ATM, and mapping from
plans to ATMs is straightforward like in the opposite direction.

CHAPTER 4. CONDITIONAL PLANNING 104

Because alternating Turing machines with an exponential space bound are polynomial time
reducible to the nondeterministic planning problem with partial observability, the plan existence
problem is AEXPSPACE=2-EXP-hard. �

What remains to be done is the extension of the above theorem to the case with arbitrary (pos-
sibly cyclic) plans. For the fully observable case counting the execution length does not pose a
problem because we only have to count an exponential number of execution steps, which can be
represented by a polynomial number of state variables, but in the partially observable case we
need to count a doubly exponential number of execution steps, as the number of belief states to be
visited may be doubly exponential. A binary representation of these numbers requires an exponen-
tial number of bits, and we cannot use an exponential number of state variables for the purpose,
because the reduction to planning would not be polynomial time. However, partial observability
together with only a polynomial number of auxiliary state variables can be used to force the plans
to count doubly exponentially far.

Theorem 4.49 The plan existence problem for problem instances with partial observability is 2-
EXP-hard.

Proof: We extend the proof of Theorem 4.48 by a counting scheme that makes cyclic plans inef-
fective. We show how counting the execution length can be achieved within a problem instance
obtained from the alternating Turing machine and the input string in polynomial time.

Instead of representing the exponential number of bits explicitly as state variables, we use a
randomizing technique for forcing the plans to count the number of Turing machine transitions.
The technique has resemblance to the idea in simulating exponentially long tapes in the proofs of
Theorems 4.45 and 4.42.

For a problem instance withn state variables (representing the Turing machine configurations)
executions that visit each belief state at most once may have length22n

. Representing numbers
from 0 to22n − 1 requires2n binary digits. We introducen + 1 new unobservable state variables
d0, . . . , dn for representing the index of one of the digits andvd for the value of that digit, and
new state variablesc0, . . . , cn through which the plan indicates changes in the counter of Turing
machine transitions. There is a set of operators by means of which the plan sets the values of these
variables before every transition of the Turing machine is made.

The idea of the construction is the following. Whenever the counter of TM transitions is incre-
mented, one of the2n digits in the counter changes from 0 to 1 and all of the less significant digits
change from 1 to 0. The plan is forced to communicate the index of the digit that changes from
0 to 1 by the state variablesc0, . . . , cn. The unobservable state variablesd0, . . . , dn, vd store the
index and value of one of the digits (chosen randomly in the beginning of the plan execution), that
we call the watched digit, and they are used for checking that the reporting ofc0, . . . , cn by the
plan is truthful. The test for truthful reporting is randomized, but this suffices to invalidate plans
that incorrectly report the increments, as a valid plan has to reach the goals on every possible exe-
cution. The plan is invalid if reporting is false or when the count can exceed22n

. For this reason
a plan for the problem instance exists if and only if an acyclic plan exists if and only if the Turing
machine accepts the input string.

Next we exactly define how the problem instances defined in the proof of Theorem 4.48 are
extended with a counter to prevent unbounded looping.

The initial state description is extended with the conjunct¬dv to signify that the watched digit

CHAPTER 4. CONDITIONAL PLANNING 105

is initially 0 (all the digits in the counter implicitly represented in the belief state are 0.) The state
variablesd0, . . . , dn may have any values which means that the watched digit is chosen randomly.
The state variablesdv, d0, . . . , dn are all unobservable so that the plan does not know the watched
digit (may not depend on it).

There is also a failure flagf that is initially set to false by having¬f in the initial states formula.
The goal is extended by¬f ∧ ((d0 ∧ · · · ∧ dn)→¬dv) to prevent executions that lead to setting

f true or that have length22n+1−1 or more. The conjunct(d0∧· · ·∧dn)→¬dv is false if the index
of the watched digit is2n+1− 1 and the digit is true, indicating an execution of length≥ 22n+1−1.

Then we extend the operators simulating the Turing machine transitions, as well as introduce
new operators for indicating which digit changes from 0 to 1.

The operators for indicating the changing digit are

〈>, ci〉 for all i ∈ {0, . . . , n}
〈>,¬ci〉 for all i ∈ {0, . . . , n}

The operators for Turing machine transitions are extended with the randomized test that the digit
the plan claims to change from 0 to 1 is indeed the one: every operator〈p, e〉 defined in the proof
of Theorem 4.48 is replaced by〈p, e∧t〉where the testt is the conjunction of the following effects.

((c = d) ∧ dv) B f
(c = d) B dv

((c > d) ∧ ¬dv) B f
(c > d) B ¬dv

Herec = d denotes(c0 ↔ d0) ∧ · · · ∧ (cn ↔ dn) andc > d encodes the greater-than test for the
binary numbers encoded byc0, . . . , cn andd0, . . . , dn.

The above effects do the following.

1. When the plan claims that the watched digit changes from 0 to 1 and the value ofdv is 1,
fail.

2. When the plan claims that the watched digit changes from 0 to 1, changedv to 1.

3. When the plan claims that a more significant digit changes from 0 to 1 and the value ofdv

is 0, fail.

4. When the plan claims that a more significant digit changes from 0 to 1, set the value ofdv

to 0.

That these effects guarantee the invalidity of a plan that relies on unbounded looping is because
the failure flagf will be set if the plan lies about the count, or the most significant bit with index
2n+1 − 1 will be set if the count reaches22n+1−1. Attempts of unfair counting are recognized and
consequentlyf is set to true because of the following.

Assume that the binary digit at indexi changes from 0 to 1 (and therefore all less significant
digits change from 1 to 0) and the plan incorrectly claims that it is the digitj that changes, and
this is the first time on that execution that the plan lies (hence the value ofdv is the true value of
the watched digit.)

If j > i, theni could be the watched digit (and hencec > d), and forj to change from 0
to 1 the less significant biti should be 1, but we would know that it is not becausedv is false.
Consequently on this plan execution the failure flagf would be set.

CHAPTER 4. CONDITIONAL PLANNING 106

If j < i, thenj could be the watched digit (and hencec = d), and the value ofdv would indicate
that the current value of digitj is 1, not 0. Consequently on this plan execution the failure flagf
would be set.

So, if the plan does not correctly report the digit that changes from 0 to 1, then the plan is not
valid. Hence any valid plan correctly counts the execution length which cannot exceed22n+1−1. �

4.5.4 Polynomial size plans

We showed in Section 3.8 that the plan existence problem of deterministic planning is only NP-
complete, in contrast to PSPACE-complete, when a restriction to plans of polynomial length is
made. Here we investigate the same question for conditional plans.

Theorem 4.50 The plan existence problem for conditional planning without observability re-
stricted to polynomial length plans is inΣp

2.

Proof: Let p(n) be any polynomial. We give an NPNP algorithm (Turing machine) that solves the
problem. Let the problem instance〈A, I, O,G, ∅〉 have sizen.

First guess a sequence of operatorsσ = o0, o1, . . . , ok for k < p(n). This is nondeterministic
polynomial time computation.

Then use an NP-oracle for testing thatσ is a solution. The oracle is a nondeterministic polynomial-
time Turing machine that accepts if a plan execution does not lead to a goal state or if the plan
is not executable (operator precondition not satisfied). The oracle guesses an initial state and for
each nondeterministic operator for each step which nondeterministic choices are made, and then
in polynomial time tests whether the execution of the operator sequence leads to a goal state.

1. Guess valuationI ′ that satisfiesI.

2. Guess the results of the nondeterministic choices for every operator in the plan: replace
everyp1e1| · · · |pnen by a nondeterministically selectedei.

3. Computesj = appoj (appoj−1(· · ·appo2(appo1(I
′)))) for j = 0, j = 1, j = 2, . . . , j = k.

4. If sj 6|= cj for oj = 〈cj , ej〉, accept.

5. If sk 6|= G, accept.

6. Otherwise reject.

�

Theorem 4.51 The plan existence problem for conditional planning without observability re-
stricted to polynomial length plans isΣp

2-hard.

Proof: Truth of QBF of the form∃x1 · · ·xn∀y1 · · · ymφ is Σp
2-complete. We reduce this problem

to the plan existence problem of unobservable planning with polynomial length plans.

• A = {x1, . . . , xn, y1, . . . , ym, s, g}

CHAPTER 4. CONDITIONAL PLANNING 107

deterministic deterministic non-deterministic
context-independent context-dependent context-dependent

full observability PSPACE PSPACE EXPTIME
no observability PSPACE EXPSPACE EXPSPACE
partial observability PSPACE EXPSPACE 2-EXPTIME

Table 4.2: Computational complexity of plan existence problems

deterministic deterministic non-deterministic
context-independent context-dependent context-dependent

full observability PSPACE PSPACE EXPTIME
no observability PSPACE PSPACE EXPSPACE
partial observability PSPACE PSPACE 2-EXPTIME

Table 4.3: Computational complexity of plan existence problems with one initial state

• I = ¬x1 ∧ · · · ∧ ¬xn ∧ ¬g ∧ s

• O = {〈s, x1〉, 〈s, x2〉, . . . , 〈s, xn〉, 〈s,¬s ∧ (φ B g)〉}

• G = g

Out claim is that there is a plan if and only if∃x1 · · ·xn∀y1 · · · ymφ is true.
Assume the QBF is true, that is, there is a valuationx for x1, . . . , xn so thatx, y |= φ for any

valuationy of y1, . . . , ym. Let X = {〈s, xi〉|i ∈ {1, . . . , n}, x(xi) = 1}. Now the operatorsX
in any order followed by〈s,¬s ∧ (φ B g)〉 is a plan: whatever valuesy1, . . . , ym have,φ is true
after executing the operatorsX, and hence the last operator makesG = g true.

Assume there is a plan. The plan has one occurrence of〈s,¬s ∧ (φ B g)〉 and it must be the
last operator. Define the valuationx of x1, . . . , xn as follows. Letx(xi) = 1 iff 〈s, xi〉 is one of
the operators in the plan, for alli ∈ {1, . . . , n}. Becauseg is reached,x, y |= φ for any valuation
y of y1, . . . , ym, and the QBF is therefore true. �

4.5.5 Summary of the results

The complexities of the plan existence problem under different restrictions on operators and ob-
servability are summarized in Tables 4.2 (with an arbitrary number of initial states) and 4.3 (with
one initial state). The different columns list the complexities with different restrictions on the
operators. In the previous sections we have considered the general problems with arbitrary opera-
tors containing conditional effects and nondeterministic choice. These results are summarized in
the third column. The second column lists the complexities in the case without nondeterminism
(choice|), and the first column without nondeterminism (choice|) and without conditional effects
(B). These results are not given in this lecture.

4.6 Literature

There is a difficult trade-off between the two extreme approaches, producing a conditional plan
covering all situations that might be encountered, and planning only one action ahead. Schoppers

CHAPTER 4. CONDITIONAL PLANNING 108

[1987] proposeduniversal plansas a solution to the high complexity of planning. Ginsberg[1989]
attacked Schopper’s idea. Schopper’s proposal was to have memoryless plans that map any given
observations to an action. He argued that plans have to be memoryless in order to be able to react
to all the unforeseeable situations that might be encountered during plan execution. Ginsberg
argued that plans that are able to react to all possible situations are necessarily much too big to
be practical. It seems to us that Schopper’s insistence on using plans without a memory is not
realistic nor necessary, and that most of Ginsberg argumentation on impracticality of universal
plans relies on the lack of any memory in the plan execution mechanism. Of course, we agree that
a conditional plan that can be executed efficiently can be much bigger than a plan or a planner that
has no restrictions on the amount of time consumed in deciding about the action to be taken. Plans
without such restrictions could have as high expressivity as Turing machines, for example, and
then a conditional plan does not have to be less succinct than the description of a general purpose
planning algorithm.

There is some early work on conditional planning that mostly restricts to the fully observable
case and is based on partial-order planning[Etzioni et al., 1992; Peot and Smith, 1992; Pryor and
Collins, 1996]. We have not discussed these algorithms because they have only been shown to
solve very small problem instances.

A variants of the algorithm for constructing plans for nondeterministic planning with full ob-
servability in Section 4.3.1 was first presented by Cimatti et al.[2003]. The algorithms by Cimatti
et al. construct mappings of states to actions whereas our presentation in Section 4.3 focuses on
the computation of distances of states, and plans are synthesized afterwards on the basis of the
distances. We believe that our algorithms are conceptually simpler. Cimatti et al. also presented
an algorithm for findingweak plansthat may reach the goals but are not guaranteed to. However,
finding weak plans is polynomially equivalent to the deterministic planning problem of Chap-
ter 3 by an easy reduction that replaces each nondeterministic operator by a set of deterministic
operators.

The nondeterministic planning problem with unobservability is not very interesting because
all robots and intelligent beings can sense their environment in at least some extent. However,
there are problems (outside AI) that are equivalent to the unobservable planning problem. Finding
homing/reset/synchronization sequences of circuits/automata is an example of such a problem
[Pixley et al., 1992]. There are extensions of the distance and cardinality based heuristics for
planning without observability not discussed in this lecture[Rintanen, 2004].

Bertoli et al. have presented a forward search algorithm for finding conditional plans in the
general partially observable case[Bertoli et al., 2001].

The computational complexity of conditional planning was first investigated by Littman[1997]
and Haslum and Jonsson[2000]. They presented proofs for the EXPTIME-completeness of plan-
ning with full observability and the EXPSPACE-completeness of planning without observability.
The hardness parts of the proofs were reductions respectively from the existence problem of win-
ning strategies for the gameG4 [Stockmeyer and Chandra, 1979] and from the universality prob-
lem of regular expressions with exponentiation[Hopcroft and Ullman, 1979]. In this chapter we
gave more direct hardness proofs by direct simulation of alternating polynomial space (exponential
time) and exponential space Turing machines.

