Chapter 4

Conditional planning

Now we relax the two assumptions that characterize deterministic planning, the determinism of
the operators and the restriction to one initial state. Instead of an initial state, we will have a
formula describing a set of initial states, and our definition of operators will be extended to cover
nondeterministic actions.

These extensions to the planning problem mean that the notion of plans as sequences of oper-
ators is not sufficient, because the states that will be visited are not uniquely determined by the
actions taken so far: different initial states may require different actions, and nondeterministic
actions lead to several alternative successor states.

Plans will be mappings from the observations made so far to the next actions to be taken. There
are several possibilities in representing such mapping. Our definition of plans has the form of
programs consisting of operators, sequences of operators, and conditional that choose subplans
based on observations.

What observations can be made has a strong effect on how planning can be done. There are
two special cases we will discuss separately from the general conditional planning problem, those
with no observations possible and with everything observable.

When there are no observations, the definition of plans reduces to sequences of actions like in
deterministic planning, but executing the plans does not always generate the same sequence of
states because of nondeterminism and multiple initial states.

For the fully observable case planning algorithms are much simpler than when observability is
only partial. In this case plans can alternatively be defined as mappings from states to actions,
and there is no need for the plans to have memory in the way program-like plans have, a form of
program counter that keeps track which location of the plan is currently executed.

In this chapter we first discuss nondeterministic actions and transition systems, then define
what conditional plans are, and then discuss algorithms for the three types of conditional plan-
ning, starting from the simplest case of planning with full observability, followed by planning
without observability, and finally the general partially observable planning problem. The chapter
is concluded by a discussion of the computational complexity of conditional planning.

4.1 Nondeterministic operators

There is often uncertainty about what the exacts effects of an action are. This is because not all
aspects of the world can be exactly formalized, and part of the things that are not formalized may

65

CHAPTER 4. CONDITIONAL PLANNING 66

affect the outcomes of the actions.

Consider for example a robot that plays basket ball. However well the robot is designed, there
is still always small uncertainty about the exact physical properties of the ball and the hands the
robot uses for throwing the ball. Therefore itis possible to predict the outcome of throwing the ball
only up to a certain precision, and a ball thrown by the robot may still miss the basket. This would
be a typical situation in which we would formalize an action as nondeterministic. It succeeds with
a certain probability, and fails otherwise, and the exact conditions that lead to success or failure
are outside the formalization of the action.

In other cases nondeterminism arises because formalizing all the things affecting the outcomes
of an action does not bring further benefit. Consider a robot that makes and serves coffee for the
members of the research lab. It might be well known that certain lab members never drink coffee,
that certain lab members always drink coffee right after lunch, and so on. But it would often not
be very relevant for the robot to know these things, as its task is simply to make and serve a cup
of coffee whenever somebody requests it to do so. So for the coffee making robot we could just
formalize the event that somebody requests coffee as a nondeterministic event, even though there
are well known deeper regularities that govern these requests.

In this section we extend the definition of operators first given in Section 2.3 to cover nondeter-
minism and discuss two normal forms for nondeterministic operators, We then present a translation
of nondeterministic operators into the propositional logic, and in the next sections we discuss sev-
eral planning algorithms that can be efficiently implemented with binary decision diagrams that
represent transition relations corresponding to nondeterministic actions.

Probabilities can often be associated with the alternative hondeterministic effects an operator
may have, and we include the probabilities in our definition of nondeterministic operators. How-
ever, the algorithms discussed in this chapter ignore these probabilities, and they will be only
needed later for the probabilistic variants of conditional planning in Chapter 5.

Definition 4.1 Let A be a set of state variables.ondeterministic operatds a pair (c, ¢) where
cis a propositional formula oveA describing the precondition, ands a nondeterministic effect.
Effects are recursively defined as follows.

1. a and—q for state variables: € A are effects.

2. e N---Neyisaneffectover if eq, . .., e, are effects over (the special case with = 0
is the empty conjunction.)

3. ¢ > eis an effect oved if cis a formula overd ande is an effect over.

4. pie1|- - |pnen is an effect oved if ey, ..., e, for n > 2 are effects over, p; > 0 for all
ie{l,...,n}and> " p;=1.

The definition extends Definition 2.7 by allowing nondeterministic choice ag - - - |prén.

Next we give a formal semantics for the application of a nhondeterministic operator. The def-
inition of deterministic operator application (Definition 2.8) assigned a state to every state and
operator. The new definition assigns a probability distribution over the set of successor states for
a given state and operator.

Definition 4.2 (Nondeterministic operator application) Let (c, ¢) be an operator oveH. Lets
be a state, that is an assignment of truth valuesitoThe operator is applicable in if s = c.

CHAPTER 4. CONDITIONAL PLANNING 67

Recursively assign each effeca set[e|, of pairs (p, () wherep is a probability0 < p < 1 and!
is a set of literalsz and—a for a € A.

1. [a]s = {(1,{a})} and[—a]s = {(1,{—a})} fora € A.
2. [er A ANenls = {0 ps, Uiy fi)l(p1, f1) € [ea]s, -y (Pns fn) € [en]s)

3. [d>els=[¢]sif s = and[d > €]s = {(1,0)} otherwise.
4. [preal - Ipnenls = {(p1-p, e)[(p,) € [ea]s} U - U{{pn - p, €)[(p, €) € [en]s}

Above in (4) the union of sets is defined so that for exanifde2, {a})} U {(0.2,{a})} =
{(0.4,{a})}, that is, same sets of changes are combined by summing their probabilities.

The successor states otinder the operator are ones that are obtained frefoy making the
literals in f for (p, f) € [e], true and retaining the truth-values of state variables not occurring in
f. The probability of a successor state is the sum of the probabifitfes (p, f) € [¢]; that lead
to it.

Each(p, [) means that with probability the literals that become true are thosé iand hence in-
dicate the probabilities of the possible successor stateskar anyle]s = {(p1,11), ..., (Pn,ln)}
the sum of probabilities i§"" | p; = 1.

In non-probabilistic variants of planning we also use a semantics that ignores the probabilities.
The following definition gives those successor states that have a non-zero probability according to
the preceding definition.

Definition 4.3 (Nondeterministic operator application Il) Let{c, e) be an operator over. Let
s be a state, that is an assignment of truth valuesgltoThe operator is applicable i if s |= c.
Recursively assign each effeca set[e] of literals e and—a for a € A.

1. [a]s = {{a}} and[~a], = {{-a}} fora € A.

2. [ex N--- ANenls = {UiLy filf1 € lea]s, - -+ o fn € [en]s)-
3. [d>els=[]sif s = and[d > €]s = {0} otherwise.
4. [prea| - Ipnenls = lea]s U+ - Ulen]s

The successor states undet e) are obtained froms by assigning the sets of literals [a,
true.

4.1.1 Normal forms for nondeterministic operators

We can generalize the normal form defined in Section 2.3.2 to nondeterministic effects and op-
erators. In the normal formal form the nondeterministic choices together with conjunctions are
outside, and all atomic effects are as consequents of conditionals.

For showing that every nondeterministic effect can be transformed into normal form we have
extended our set of equivalences on effects to cover nondeterministic choice. The whole set of
equivalences is given in Table 4.1.

CHAPTER 4. CONDITIONAL PLANNING 68

c> (et A Nep) = (e>e) A AleD> ey) (4.2)

c>(d>e) = (end)>e (4.2)

ct> (pre1] - [pnen) = pi(e>er)| - [pa(c > en) (4.3)
(c1>e)A(ca>e) = (a1Ver)>e (4.4)

eNlc>e) = e (4.5)

e = Tp>e (4.6)

eN(pier] - |pnen) = pi(eAer)|:--|pnleAen) (4.7)

pi(preyl - phen)lpzea] -~ ppen = (p1p))el] - [(p1p))enlp2ea] -~ pren (4.8)
pr(e A (c>e1))|pzea] - [pnen = (c> (p1(e' Aer)|peea] -+ [pnen)) (4.9)
A(=e > (p1€p2es] - -+ |pnen)) (4.10)

Table 4.1: Equivalences on effects

Definition 4.4 (Normal form for nondeterministic operators) An effect is innormal formif it
can be derived as follows.

A deterministic effect is in normal form if it is a conjunctidndr more conjuncts) of effects
c > pandc > —p, with at most one occurrence pfand —p for any state variable € A.

A nondeterministic effect is in normal form if itgse; | - - - |pne,, for deterministic effects; that
are in normal form, or it is a conjunction of nondeterministic effects in normal form.

A nondeterministic operatafe, e) is in normal form if its effect is in normal form.

Theorem 4.5 For every operator there is an equivalent one in normal form. There is one that has
a size that is polynomial in the size of the former.

Proof: By using equivalences 4.1, 4.2 and 4.3 in Table 4.1 we can transform any effect so that all
atomic effectd occur as consequents of conditioral [. By further using equivalence 4.7 we
can transform the effect to normal form. O

Example 4.6 The effect
a > (0.30]0.7(c A f)) A (0.2(d A €)]0.8(b > €))
in normal form is
(0.3(a > 0)[0.7((a>c) Alar> £))) A0.2((T > d) A (T >e€))]0.8(b > e)).
|

In certain cases, for example for defining regression for nondeterministic operators, it is best
to restrict to operators in a slightly more restrictive normal form, in which nondeterminism may
appear only at the topmost structure in the effect.

Definition 4.7 (Normal form Il for nondeterministic operators) An effect is imormal form ||
if it can be derived as follows.

CHAPTER 4. CONDITIONAL PLANNING 69

A deterministic effect is in normal formal Il if it is a conjunctiolhdr more conjuncts) of effects
c > pandc > —p, with at most one occurrence pfand —p for any state variable € A.

A nondeterministic effect is in normal form Il if it is of forpae, | - - - |pne, Wheree; are deter-
ministic effects in normal form II.

A nondeterministic operata(c, e) is in normal form if its effect is in normal form.

4.1.2 Translation of nondeterministic operators into propositional logic

In Section 3.5.2 we gave a translation of deterministic operators into the propositional logic. In
this section we extend this translation to nondeterministic operators.

For expressing the translation we define for a given effexsetchangese) of state variables
as follows. This is the set of state variables possibly changed by the effect, or in other words, the
set of state variables occurring in the effect not in the antecedsfrd conditionak > e.

) = {a}
changeé—a) {a}
changeéc > e¢) = changese)
)
)

changege; A --- Ae,) = changeée;)U ---Uchangese,)
changeépiei|---|pnen) = changese;)U--- U changese,)

We make the following assumption to slightly simplify the translation.

Assumption 4.8 Leta € A be a state variable. Let; A- - - A e, occur in the effect of an operator.
If e1,...,e, are not all deterministic, then or —a may occur as an atomic effect in at most one
ofer,...,e,.

This assumption rules out effects like.5a|0.5b) A (0.5-a|0.5¢) that may make: simultane-
ously true and false. It also rules out effects IliKe5(d > a)|0.5b) A (0.5(—d > —a)|c) that
are well-defined and could be translated into the propositional logic. However, the additional
complexity to the translation outweights the benefit of allowing them.

We define the translation of effects satisfying Assumption 4.8 into propositional logic recur-
sively. The problem in the translation that does not show up with deterministic operators is that
for nondeterministic choices,e| - - - |pre,, the formula for each alternativg has to express for
exactly the same set of state variables what changes take or do not take place. This becomes a bit
tricky when we have a lot of nesting of nondeterministic choice and conjunctions.

Now we give the translation of an effec{in normal form) restricted to state variablBs This
means that only state variablesihmay occur ine in atomic effects (but do not have to), and
the formula does not say anything about the change of state variablesm@but may of course
refer to them in antecedents of conditionals.)

Plp(e) = NAuep(((aA—EPCq(e)) VEPG(e)) < a')
whene is deterministic
PLg(pie1| - |pnen) = PlLp(e1)V---V PLg(en)
PLp(e1 A---Aen) = Plp\(yu.-.uB,)(e1) APLp,(e2) A+~ APLg,(en)
whereB; = changeée;) foralli € {1,...,n}

The first part of the translation RJ(e) for deterministice is the translation of deterministic effects
we presented in Section 3.5.2, but restricted to state variablés iThe other two cover all

CHAPTER 4. CONDITIONAL PLANNING 70

nondeterministic effects in normal form. The idea of the translation of a conjungtion- - A e,
of nondeterministic effects is that only the translation of the first effedhdicates when state
variables occurring i3 do not change.

Additionally, we require that operators are not applied in states in which some state variable
would be set simultaneously both true and false.

XPLp(e) = Asep ((EPCq(e) NEPGi(e)))
whene is deterministic
XPLp(pie1|---|pnen) = XPLp(er) A---AXPLg(ep)
XPLB(€1 A A €n) = XPLB\(BQU~--UBn)(61) N XPLB2 (62) A+ A XPLB,L(en)
whereB; = changeée;) foralli € {1,...,n}

The translation of an effeetin normal form into the propositional logic is Rlte) A XPL 4(e)
whereA is the set of all state variables.

Example 4.9 We translate the effect
e = (0.5A4|0.5(C > A)) A (0.5B|0.5C)
into a propositional formula. The set of state variabled is {A, B,C, D}.
PL{A7B7C7D}(€) = PL{AyD}(O.5A\O.5(C > A)) A PL{B,C}(O.5B\0.5C)

(PL{A D}(A) V PL{A,D}(C > A))/\

(PL{B cy(B) V PLp 1 (0))
= (AND<D))V((AVE) < A)N (D < D))A
(B"AN(C < C")V (B« B)AC"))

4.1.3 Operations on nondeterministic transitions represented as formulae

In Section 3.7.1 we discussed the image and preimage computations of transition relations ex-
pressed as propositional formulae. In this section we consider also nondeterministic transition
relations and want to compute the set of states from which reaching a state in a given set of states
is certain, not just possible. The (weak) preimage operation in Section 3.7 does not do this. For
example, the weak preimage @fnvith respect to the relatiofb, a), (b, c)} is {b}, although also
cis a possible successor statehof

The strong preimage of a set of states consists of those states from which only states inside the
given set are reached. This is formally defined as follows.

spreimgz(S) = {s|s’ € 9, (s,s') € R,imgg(s) C S}

Lemma 4.10 Images, strong preimages and weak preimages of sets of states are related to each
other as follows.

1. spreimg(S) C wpreimg,(.S)
2. img,(spreimg(S)) C S

3. wpreimg@(.S) = spreimg(.S) wheno is deterministic.

CHAPTER 4. CONDITIONAL PLANNING 71

Proof: O

Strong preimages can be computed by formula manipulation when sets of states and transition
relations are represented as propositional formulae.

(VA .(Ro(A, A)— (¢[a) /a1, ..., al,/an]))) A (BA Re(A, A"))
HereVa.¢ is universal abstractionvhich is defined analogously to existential abstraction as

Ya.p = ¢[T /a] A o[L/al.

4.1.4 Regression for nondeterministic operators

Regression for deterministic operators was given as Definition 3.6. It is straightforward to gener-
alize this definition for nondeterministic operators in the second (more restricted) normal form.

Definition 4.11 (Regression)Let ¢ be a propositional formula describing a set of states. Let
(z,e) be an operator in normal form Il with = pye;|- - - |ppen.

Theregressionf ¢ with respect tw = (2, e) is defined as the formula regip) = regr. .,y (¢)A
- Aregr. ..\ (¢) where regy; ., (¢) refers to regression of deterministic operators as given in
Definition 3.6.

It is presumably possible to define regression for nodeterministic operators in the first normal
with no restriction on nesting of nondeterminism and conjunctions, but the definition is more
complicated, and we do not discuss the topic further here.

Theorem 4.12 Let S’ = {s|s' = ¢}. Then spreimg(S) = {s|s = regr,(¢)}.

Proof: This is because a state ¢nhas to be reached no matter which effects chosen, so we
take the intersection/conjunction of the states obtained by regressiofewith, . . ., (z,e,). O

Example 4.13 Leto = (A, (0.5B]0.5—C)). Then

regr,(B « C) regria,gy(B < C) Aregriy oy (B < C)
(AN(T < C)ANAN(B < 1))
(ANC)AN(AN-B)

ANCAN-B

4.2 Problem definition

We state the conditional planning problem in the general form. Because the number of observa-
tions that are possible has a very strong effect on the type of solution techniques that are applicable,
we will discuss algorithms for three classes of planning problems that are defined in terms of re-
strictions on the seB of observable state variables.

CHAPTER 4. CONDITIONAL PLANNING 72

Definition 4.14 A 5-tuple(A, I, O, G, B) consisting of a setl of state variables, a propositional
formularl over A, a setO of operators overd, a propositional formulaz overA, andasetB C A
of state variables ia problem instance in nhondeterministic planning

The setB did not appear in the definition of deterministic planning. This is the setheérvable
state variablesThe idea is that plans can make decisions about what operations to apply and how
the execution proceeds based on the values of the observable state variables. Restrictions on
observability and sensing emerge because of various restrictions on the sensors human beings and
robots have: typically only a small part of the world can be observed.

The task in nondeterministic planning is the same as in deterministic planning (Section 3.1): to
find a plan that starting from any statefiris guaranteed to reach a statedn

However, because of nhondeterminism and the possibility of more than one initial state, it is in
general not possible to use the same sequence of operators for reaching the goals from all the
initial states, and a more general notion of plans has to be used.

Nondeterministic planning problems under certain restrictions have very different properties
than the problem in its full generality. In Chapter 3 we had the restriction to one initial gtate (
was defined as a valuation) and deterministic operators. We relax these two restrictions in this
chapter, but still consider two special cases obtained by restrictions on tlit dfebbservable
state variables.

1. Full observability.

This is the most direct extension of the deterministic planning problem of the previous
chapter. The difference is that we have to use a more general notion of plans with branches
(and with loops, if there is no upper bound on the number of actions that might be needed
to reach the goals.)

2. No observability.

Planning without observability can be considered more difficult than planning with full ob-
servability, although they are in many respects not directly comparable.

The main difference to deterministic planning as discussed in Chapter 3 and to planning
with full observability is that during plan execution it is not known what the actual current
state is, and there are several possible current states. This complication means that planning
takes place ithe belief spacethe role of individual states in deterministic planning is taken

by sets of states, calldztlief states

Because no observations can be made, branching is not possible, and plans are still just
sequences of actions, just like in deterministic planning with one initial state.

The type of observability we consider in this lecture is very restricted as only values of in-
dividual state variables can be observed (as opposed to arbitrary formulae) and observations are
independent of what operators have been executed before. Hence we cannot for example directly
express special sensing actions. However, extensions to the above definition like sensing actions
can be relatively easily reduced to the basic definition but we will not discuss this topic further.

4.2.1 Conditional plans

Plans are directed graphs with nodes of degree 1 labeled with operators and edges from nodes of
degree> 2 labeled with formulae.

CHAPTER 4. CONDITIONAL PLANNING 73

Definition 4.15 Let (A, I, O, G, B) be a problem instance in nondeterministic planningcoh-
ditional planis a triple (N, b, 1) where

e N is a finite set of nodes,
e b c N is the initial node,

e [: N — (O x N)u2*N is a function that assigns each node an operator and a successor
node(o,n) € O x N or a set of conditions and successor nodesn).

Here ¢ are formulae over3.

Plan execution begins from the initial nobleand the sequence of operators and states generated
when executing a plan is determined as follows.

Letn € N be a node in the plan. Ifn) = (o,n’) thenn is an operator node. l{n) = (
thenn is a terminal node. Otherwiseis a branch node andn) = {(¢1,n1), ..., (¢m,nm)} for
somem.

Execution in an operator node with laljel n) proceeds by applying operatoand making:
the current plan node.

Execution in a branch nodewith labeli(n) = {(¢1,n1), ..., (¢m, nm)} proceeds by evaluat-
ing the formulaep; with respect to the valuationof the observable state variables, ansl f ¢;,
then makingr; the current plan node.

Plan execution ends in a terminal node N, i(n) = 0.

The plans can of course be written in the same form as programs in conventional programming
languages by usingasestatements for branching agdtostatements for jumping to the successor
nodes of a plan node.

Example 4.16 Consider the plafV, b, [) for a problem instance with the operat6rs= {01, 02, 03},

where
N = {1,2,3,4,5}
1

b
(1) = (03,2)
1(2) = {{¢1,1),(d2,3),(¢3,4)}
1(3) = (02,4)
1(4) = {{¢4,1),{(¢5,5)}
I(5) = 0
This could be visualized as the program.
1. o3
2. CASE
¢1: GOTO 1
¢ GOTO 3
¢3: GOTO 4
3. 09
4: CASE
¢4: GOTO 1
5. GOTO 5
5:

The result of plan execution is undefined if there are several formulae true in the.state

CHAPTER 4. CONDITIONAL PLANNING 74

Every plan(N, b, 1) can be written as such a program. Nodesith [(n) = () corresponds to
gotacs to the program’s last label after which nothing follows. |

A plan isacyclicif it is a directed acyclic graph in the usual graph theoretic sense.

4.2.2 Execution graph

We define the satisfaction of plan objectives in terms of the transition system that is obtained when
the original transition system is being controlled by a plan, that is, the plan chooses which of the
transitions possible in a state is taken. For goal reachability, without unbounded looping it would

be required that any maximal path from an initial state has finite length and ends in a goal state.
With unbounded looping it would be required that from any state to which there is a path from an

initial state that does not visit a goal state there is a path of lendito a goal state.

Definition 4.17 (Execution graph of a plan) Let(A, I, O, G, B) be a problem instance and=
(N, b,1) be a plan. Then we defirtke execution grapbf 7 as a pair(M, E) where

1. M = S x N, whereS is the set of Boolean valuations df
2. E C M x M has an edge frons, n) to (s', n') if and only if

(@) n € N is an operator node with(n) = (o, n') ands’ € img,(s), or
(b) n € N is a branch node withi¢, n’) € I(n) ands’ = s ands = ¢.

Definition 4.18 (Reachability goals RG)A planm = (N, b, [) solves a problem instancel, I, O, G, B)
under theReachability RG) criterion if its execution graph fulfills the following.

For all statess such thats |= I, for every(s’, n) to which there is a path frorts, b) that does
not visit ("', n”) for any s" such thats”’ = G and terminal node.” there is also a path from
(s',n) to some(s”, n') such thats” = G andn’ is a terminal node.

This plan objective with unbounded looping can be interpreted probabilistically. For every
nondeterministic choice in an operator we have to assume that each of the alternatives has a non-
zero probability. Then for goal reachability, a plan with unbounded looping is simply a plan that
has no finite upper bound on the length of its executions, but that with probability 1 eventually
reaches a goal state. A non-looping plan also reaches a goal state with probability 1, but there is a
finite upper bound on the execution length.

Definition 4.19 (Maintenance goals MG)A planm = (N, b, [) solves a problem instanceel, I, O, G, B)
under theMaintenanc€MG) criterion if its execution graph fulfills the following.

For all statess and s’ and plan nodes. € N such thats |= I, if there is a path of lengtk 0
from (s, b) to some(s’, n), thens’ = G and(s’, n) has a successor.

We can also define a plan objective that combines the reachability and maintenance criteria:
visit infinitely often one of the goal states. This is a proper generalization of both of the criteria
because we can rather easily reduce both special cases to the general case. Algorithms for the
general case generalize algorithms for both special cases.

CHAPTER 4. CONDITIONAL PLANNING 75

4.3 Planning with full observability

When during plan execution the current state is always exactly known, plans can be found by the
same kind of state space traversal algorithms already used for deterministic planning in Section
3.7.

The differences to algorithms for deterministic planning stem from nondeterminism. The main
difference is that successor states are not uniquely determined by the current state and the action,
and different action may be needed for each successor state. Further, nondeterminism may require
loops. Consider tossing a die until it yields 6. Plan for this task involves tossing the die over
and over, and there is no upper bound on the number of tosses that might be hétatenk we
need plans with loops for representing the sequences of actions of unbounded length required for
solving the problem.

Below in Section 4.3.1 we first discuss the simplest algorithm for planning with nondeterminism
and full observability. The plans this algorithm produces are acyclic, and the algorithm does
not find plans for problem instances that only have plans with loops. Then in Section 4.3.2 we
present an algorithm that also produces plans with loops. The structure of the algorithm is more
complicated. Efficient implementation of these algorithms requires the use of binary decision
diagrams or similar representations of sets and transition relations, as discussed in Section 3.7.
Like in the BDD-based algorithms for deterministic planning, these algorithm assign a distance
to all the states, with a different meaning of distance in different algorithms, and based on the
distances either synthesize a program-like plan, or a plan execution mechanism uses the distances
directly for selecting the operators to execute. The algorithms in this section are best implemented
by representing the formulae as BDDs.

Deterministic planning has both a forward and a backward algorithm that are similar to each
other, as described in Section 3.7. However, for nondeterministic problems forward search does
not seem to be a good way of doing planning. For backward distances, distafratates means
that there is a plan for reaching the goals with at mogperators. But there does not seem to
be a useful interpretation of the distances computed forwards from the initial states as images of
nondeterministic operators. That a goal state or all goal states can be reached by applying some
1 nondeterministic operators does not say anything about the possible plans, because executing
thosei operators might also lead to states that are not goal states and from which goal states could
be much more difficult to reach.

4.3.1 An algorithm for constructing acyclic plans

The algorithm for constructing acyclic plans is an extension of the algorithm for deterministic
planning given in Section 3.7.3. In the first phase the algorithm computes distances of the states. In
the second phase the algorithm constructs a plan based on the distances. The distance computation
is almost identical to the algorithm for deterministic planning. The only difference is the use of
strong preimages instead of the preimagy@he second phase is more complicated, and uses the
distances for constructing a plan according to Definition 4.15.

The algorithm is given in Figure 4.1. We call the distances computed by the algaitbny

2However, for every > 0 there is a finite plan that reaches the goal with probabjlity higher.

3The algorithm for deterministic planning could use the slightly more complicated strong preimage computation
just as well, because strong and weak preimages coincide for deterministic operators. However, this would not have
any advantage for deterministic planning.

CHAPTER 4. CONDITIONAL PLANNING 76

procedure FOplan(l,0,G)

D() = G;

1:=0;

while I € D;and (i =0or D; 1 # D;)do
1 =1+ 1;
D; = Di—1 UU,co spreimg(D;—1);

end

N :=0;

1(4) := 0 for all 5;

cnt:=1;

FOplanconstruct(/);

Figure 4.1: Algorithm for nondeterministic planning with full observability

O=co d=4 d=3 d=2 d=1 d=0

Figure 4.2: Goal distances in a nondeterministic transition system

distancesbecause they are tight upper bounds on the number of operators needed for reaching
the goals: if the distance of a stateijghen no more than operators are needed, but it may be
possible that a goal state is also reached with less tluperators if the relevant operators are
nondeterministic and the right nondeterministic effects take place.

Example 4.20 We illustrate the distance computation by the diagram in Figure 4.2. The set of
states with distance 0 is the set of goal stateStates with distanceare those for which at least

one action always leads to states with distaneé or smaller. In this example the action depicted

by the red arrow has this property for every state. States for which there is no finite upper bound
on the number of actions for reaching a goal state have distance |

Lemma 4.21 Let a states be in D;. Then there is a plan that reaches a goal state froby at
most;j operator applications.

The distances alone could be directly used by a plan execution mechanism. The plan execution
proceeds by observing the current state, looking up its distaseeh thas € D;\D;_1, selecting
an operatop € O so thatimg,({s}) C D;_1, and executing the operator.

Similarly, a mapping from states to operators could be directly constructed. This kind of plan
is calledmemorylesbecause the plan execution mechanism does not have to keep track of plan

CHAPTER 4. CONDITIONAL PLANNING 77

procedure FOplanconstruct(,S)
if S C G thenreturn; (* Goal reached for all states. *)
for eacho € O

S’ := the maximal subset &f such that progress(S’);

if S” £ () then (* Is operatoro useful for some of the states? *)
begin
S = S\5;
cnt:=cni-2;
N = N U {cnt-2cnt-1}; (* Create two new plan nodes. *)
I(n) :=1(n)U{(Scnt=2)}; (* First is reached from node. *)
l(cnt-2) := (o,cnt—1); (* Second is an operator node. *)
FOplanconstruct(crtl,img,(S")); (* Continue from successors 6f. *)
end
end
if S () then (* If something remains ity they must be goal states. *)
begin
cnt:=cnt+-1;
l(n):=1(n)U{(S,cnt-1)}; (* Create a terminal node for them. *)
end

Figure 4.3: Algorithm for extracting an acyclic plan from goal distances

procedure progress{, .S)

for j:=1toido (* Doeso take all states closer to goals? *)
if img,(S N D;) € D;_ then return false;

end

return true;

Figure 4.4: Test whether successor states are closer to the goal states

nodes. It just chooses the next operator on the basis of the current state. This corresponds to a
plan that consists of a loop in which each operator is selected for some subset of possible current
states, a terminal node is selected for the goal states, and then the loop repeats again.

Memoryless plans are sufficienty powerful only for the simplest form of conditional planning
in which the current state can be observed uniquely (full observability). Later we will see that
when there are restrictions on which observations can be made it is necessary to have memory in
the plan.

Figure 4.3 gives an algorithm for generating a plan according to Definition 4.15. The algorithm
works forward starting from the set of initial states. Every operator is tried out, and for an operator
that takes some of the states toward the goals a successor node is created, and the algorithm is
recursively called for the states that are reached by applying the operator.

The functionprogresswhich is give in Figure 4.4 tests for a given operator and s&'s#ftstates
that for every state € S all the successor states are at least one step closer to the goals.

CHAPTER 4. CONDITIONAL PLANNING 78

procedure prune(Q,W,G);
1:=0;
Wy =W,
repeat
=1+ 1
k:=0;
So = G; (* States from whiclty is reachable with O steps. *)
repeat
k:==k+1; (* States from whiclt; is reachable with< & steps. *)
Sk = Sk—1 U U,co(Wpreimg,(Sy,_1) N spreimg (W;_1));
until S, = S._q; (* States that stay withifl/;_; and eventually reacly. *)
Wi =W;_1 N0 Sk,
until W; = W,;_q; (* States inWW; stay withinWW; and eventually reachr. *)
return W;;

Figure 4.5: Algorithm for detecting a loop that eventually makes progress

4.3.2 An algorithm for constructing plans with loops

There are many nondeterministic planning problems that require plans with loops because there is
no finite upper bound on the number of actions that might be needed for reaching the goals. These
plan executions with an unbounded length cannot be handled in acyclic plans of a finite size. For

unbounded execution lengths we have to allow loops (cycles) in the plans.

Example 4.22 |

The problem is those states that do not have a finite strong distance as defined Section 4.3.1.
Reaching the goals from these states is either impossible or there is no finite upper bound on the
number of actions that might be needed. For the former states nothing can be done, but the latter
states can be handled by plans with loops.

We present an algorithm based on a generalized notion of distances that does not require reacha-
bility by a finitely bounded number of actions. The algorithm is based on the procedurethat
identifies a set of states for which reaching a goal state eventually is guaranteed. The procedure
prunegiven in Figure 4.5.

Lemma 4.23 (Procedure prune)Let O be a set of operators and” and G sets of states. Then
W' = prune©,W,G) is a set such thaltl’’ C W and there is functiom : W/ — O such that

1. for everys € W’ there is a sequence®), s1,. .., s, Withn > 0 such thats = sg, s, € G
ands; 1 € img,,)({s:}) foralli € {0,...,n — 1},

2. img,5)({s}) € W' for everys ¢ W'\G, and
3. for nos € W\W’ there is a plan that guarantees reaching a statéin

Proof:

Let Wy be the value ofV when the procedure is called, alid , W5, . . . the values olV at the
end of therepeat-untilloop on each iteration.

Induction hypothesis: Iif > 1 then there is function : W; — O such that

CHAPTER 4. CONDITIONAL PLANNING 79

1. for everys € W, there is a sequenc®, si, ..., s, With n > 0 such thats = sqg, s,, € G
ands;y1 € img,(,,)({s;}) forall j € {0,...,n — 1}, and

2. img,5)({s}) € W;_1 for everys € W;\G.

Base case = 0: Trivial because nothing aboil; is claimed.

Inductive case > 1:

For the innerepeat-untilloop we prove inductively the following. Lefy = G be the value of
S before the loop, andy, S, . . . the values of5 in the end of each iteration.

Induction hypothesis: Iif > 1 then there is function : S — O such that

1. for everys € Sy there is a sequencg, s1, ..., s, With n € {0,...,k} such thats = s,
sn € G ands;i1 € img,(s,y({s;}) forall j € {0,...,n — 1}, and

2. img,(s)({s}) € Wi, for everys € Sp\G.
Base casé = 0:

1. Because&, = G, for everys € Sy there is the sequence of statgs= s such that the initial
state is inSy and the final state is i6v.

2. Becaus&) = G there are no states #y\G.

Inductive casé > 1: Let s be a state irb. If s € S;_; then we obtain the property by the
induction hypothesis.

Otherwises € Si\Sk_1. Therefore by definition afy, s € wpreimg,(Si_1)Nspreimg(W;_1)
for someo € O.

1. Becauses € wpreimg,(S,_1), there is a state’ € Sj_; such thats’ € img,({s}). By
the induction hypothesis there is a sequence of states startingsfrmat ends in a goal
state. For such a sequence is obtained from the sequeneelnf prefixing it withs. The
corresponding operator is assigned toy x.

2. Because € spreimg(W,;_1), by Lemma 4.10mg,({s}) C W,_;.

This completes the inner induction. To establish the induction step of the outer induction con-
sider the following. The inner repeat-until loops ends wlhgnr= Si_;. This means tha$, = S,
for all z > k. Hence the upper bound < k on the length of sequencesg, s1, .. ., s, is infinite.
The outer induction hypothesis is obtained from the inner induction hypothesis by removing the
upper boundh < k and replacingS;, by W;. By definitionW; = W;_1 N S;. What happens
here???

keskenThis finishes the outer induction proof. The claim of the lemma is obtained from the
outer induction hypothesis by noticing that the outer loop exits wiiea= W,;_1 (it will exit after
a finite number of steps because the cardinalityief = 1 is finite and it decreases on every
iteration) and then we can replace bdth andW;_; by W’ to obtain the claim of the lemmal]

Ouir first algorithm, given in Figure 4.6, is directly based on the proceglurgeand identifying
a set of states from which a goal state is reachable by some execution and no execution leads to a
state outside the set.

CHAPTER 4. CONDITIONAL PLANNING 80

procedure FOplanL2(1,0,G)

W() = G;

1:=0;

while I € pruneQ,W;,G) and (: = 0 or W;_1 # W;) do
=1+ 1
Wi = Wit UU,eo Wpreimg (Wi—1);

end

S =G,

1:=0;

D; =G,

L = pruneQ,W;,G);

repeat
S =85,
S =S UU,co(wpreimg,(S) N spreimg (L U S));
=1+ 1
D, =LNS,

until S =95

Figure 4.6: Algorithm for nondeterministic planning with full observability

procedure FOplanMAINTENANCE(,0,G)

1:=0;

Go =G,

repeat
1:=14 1 (* Subset of7;_; from whichG;_; can be always reached. *)
Gi = Upeo (spreimg(Gi—1) N Gi—1);

until G; = G_1;

return G;;

Figure 4.7: Algorithm for nondeterministic planning with full observability and maintenance goals

4.3.3 An algorithm for constructing plans for maintenance goals

There are many important planning problems in which the objective is not to reach a goal state
and then stop execution. When the objective is to keep the state of the system in any of a number
of goal states indefinitely, we talk abamtintenance goals

Plans that satisfy a maintenance goal have only infinite executions.

Figure 4.7 gives an algorithm for finding plans for maintenance goals. The algorithm starts with
the setG of all states that satisfy the property to be maintained. Then iteratively such states are
removed from(for which the satisfaction of the property cannot be guaranteed in the next time
point. More precisely, the sets; for i > 0 consist of all those states in which the goal objective
can be maintained for the nektime points. For someéthe setd>; andG;_ coincide, and then
G; = G;forall j > i. This means that starting from the stateginthe goal objective can be
maintained indefinitely.

Theorem 4.24 Let I be a set of initial stateg) a set of operator and- a set of goal states. Let
G’ be the set returned by the procedure FOplanMAINTENANCE in Figure 4.7.

CHAPTER 4. CONDITIONAL PLANNING 81

PASTURE - PASTURE

DESERT
RIVER
PASTURE PASTURE
DESERT! DESERT
RIVER RIVER

Figure 4.8: Example run of the algorithm for maintenance goals

Then for every state € G’ there is an operatop € O such thatimg({s}) C G". If I C G’
then the corresponding plan satisfies the maintenance criteriofifa@p, GG).

Proof: O

Example 4.25 Consider the problem depicted in Figure 4.8. An animal may drink at a river and
eat at a pasture. To get from the river to the pasture it must go through a desert. Its hunger and
thirst increase after every time period. If either one reaches level 3 the animal dies. The hunger
and thirst levels are indicated by different colors: the upper halves of the rectanges show thirst
level and the lower halves the hunger level, and blue means no hunger or thirst and red means
much hunger or thirst. The upper left diagram shows all the possible actions the animal can take.
The objective of the animal is to stay alive. The three iterations of the algorithm for finding a plan
that satisfies the goal of staying alive are depicted by the remaining three diagrams. The diagram
on upper right depicts all the states that satisfy the goal. The diagram on lower left depicts all the
states that satisfy the goal and after which the satisfaction of the goal can be guaranteed for at least
one time period. The diagram on lower right depicts all the states that satisfy the goal and after
which the satisfaction of the goal can be guaranteed for at least two time periods.

Further iterations of the algorithm do not eliminate further states, and hence the last diagram
depicts all those states for which the satisfaction of the goal can be guaranteed indefinitely.

CHAPTER 4. CONDITIONAL PLANNING 82

i2 02

il ol

i0 o0

Figure 4.9: A sorting network with three inputs

Hence the only plan says that the animal has to go continuously back and forth between the
pasture and the river. The only choice the animal has is in the beginning if in the initial state it is
not at all hungry or thirsty. For instance, if it is in the desert initially, then it may freely choose
whether to first go to the pasture or the river. |

4.4 Planning with partial observability

4.4.1 Planning without observability by heuristic search

Planning under unobservability is similar to deterministic planning in the sense that the problem
is to find a path from the initial state(s) to the goal states. For unobservable planning, however, the
nodes in the graph do not correspond to individual states but to belief states, and the size of the
belief space is exponentially higher than the size of the state space. Algorithms for deterministic
planning have direct counterparts for unobservable planning, which is not the case for conditional
planning with full or partial observability.

Example 4.26 A sorting network[Knuth, 1998, Section 5.3.4 in 2nd editjooonsists of a se-
guence of gates acting on a number of input lines. Each gate combines a comparator and a swap
per: if the first value is greater than the second, then swap them. The goal is to sort any given input
sequence. The sorting network always has to perform the same operations irrespective of the input,
and hence constructing a sorting network corresponds to planning without observability. Figure
4.9 depicts a sorting network with three inputs. An important property of sorting networks is that
any network that sorts any sequence of zeros and ones will also sort any sequence of arbitrary
numbers. Hence it suffices to consider Boolean 0-1 input values only.

Construction of sorting networks is essentially a planning problem without observability, be-
cause there are several initial states and a goal state has to be reached by using the same sequence
of actions irrespective of the initial states.

For the 3-input sorting net the initial states am®, 001,010,011, 100,101,110, 111. and the
goal states ar800,001,011,111 Now we can compute the images and strong preimages of the
three sorting actions, sort12, sort02 and sort01 respectively starting from the initial or the goal
states. These yield the following belief states at different stages of the sorting network.

000,001, 010,011,100, 101,110,111 initially

000,001, 011,100,101, 111 after sort12
000,001,011,101,111 after sort02
000,001,011, 111 after sort01

The most obvious approaches to planning with unobservability is to use regression, strong
preimages or images, and to perform backward or forward search in the belief space. The dif-

CHAPTER 4. CONDITIONAL PLANNING 83

ference to forward search with deterministic operators and one initial state is that belief states are
used instead of states. The difference to backward search for deterministic planning is that re-
gression for nondeterministic operators has to be used and testing whether (a subset of) the initial
belief state has been reached involves the co-NP-hard inclusios tést regr,(¢) for the belief

states. With one initial state this is an easy polynomial timeltéstregr,(¢) of whethemegr,(¢)

is true in the initial state.

Deriving good heuristics for heuristic search in the belief space is more difficult than in de-
terministic planning. The main approaches have been to use distances in the state space as an
estimate for distances in the belief space, and to use the cardinalities of belief spaces as a measure
of progress.

Many problems cannot be solved by blindly taking actions that reduce the cardinality of the
current belief state: the cardinality of the belief state may stay the same or increase during plan
execution, and hence the decrease in cardinality is not characteristic to belief space planning in
general, even though in many problems it is a useful measure of progress.

Similarly, distances in the state space ignore the most distinctive aspect of planning with partial
observability: the same action must be used in two states if the states are not observationally
distinguishable. A given (optimal) plan for an unobservable problem may increase the actual
current state-space distance to the goal states (on a given execution) when the distance in the
belief-space monotonically decreases, and vice versa. Hence, the state space distances may yield
wildly misleading estimates of the distances in the corresponding belief space.

Heuristics based on state-space distances

The most obvious distance heuristics are based on the strong distances in the state space.

Dy = G
Dit1 = DiUU,cospreimg(D;) foralli > 1

A lower bound on plan length for belief stateis j if Z C D; andZ £ D;_;.
Next we derive distance heuristics for the belief space based on state space distances. Strong
distances yield an admissible distance heuristic for belief states.

Definition 4.27 (State space distanceThestate space distanoé a belief staté3 isd > 1 when
BCDgandB € Dy q,anditisO whenB C Dy = G.

Even though computing the exact distances for the operator based representation of state spaces
is PSPACE-hard, the much higher complexity of planning problems with partial observability
still often justifies it: this computation would in many cases be an inexpensive preprocessing
step, preceding the much more expensive solution of the partially observable planning problem.
Otherwise cheaper approximations can be used.

Heuristics based on belief state cardinality

The second heuristic that has been used in algorithms for partial observability is simply based on
the cardinality of the belief states.
In forward search, prefer operators that maximally decrease the cardinality of the belief state.
In backward search, prefer operators that maximally increase the cardinality of the belief state.

CHAPTER 4. CONDITIONAL PLANNING 84

These heuristics are not in general admissible, because there is no direct connection between
the distance to a goal belief state and the cardinalities of the current belief state and a goal belief
state. The belief state cardinality can decrease or increase arbitrarily much by one step.

4.4.2 Planning without observability by evaluation of QBF

In this section we extend the techniques from Section 3.5 to unobservable planning. Because
of nondeterminism and several initial states, one plan may have several different executions. It
turns out that propositional logic is not suitable for representing planning with unobservability,
and the language of quantified Boolean formulae is needed instead. Intuitively, the reason for
this is that we have to quantify over an exponential number of plan executions: we want to say
“there is a plan so that for all executions...”, and expressing this concisely in the propositional
logic does not seem possible. We theoretically justify this in Section 4.5.4 by showing that testing
the existence of plans for problems instances without observability even when restricting to plans
with a polynomial length is complete for the complexity class and not contained in NP as

the corresponding problem for deterministic planning. This strongly suggests, because of widely
accepted complexity theoretic conjectures, that there is no efficient representation of the problem
in the propositional logic.

In Section 4.1.2 we showed how nondeterministic operators can be translated into formulae
in the propositional logic. The purpose of that translation was the use of the formulae in BDD-
based planning algorithms for computing the images and preimages of sets of states. For the QBF
representation of nondeterministic operators we have to have a possibility to universally quantify
over all possible successor states an operator produces, and this cannot be easily expressed with
the formulae derived in Section 4.1.2, so we give a new translation that uses quantified Boolean
formulae (see Section 2.2.1.)

Translation of nondeterministic operators into propositional logic

For handling nondeterminism we need to universally quantify over all the nondeterministic choices,
because for every choice the remaining operators in the plan must lead to a goal state. For an ef-
fect with n nondeterministic alternatives this can be achieved by using [log, n| universally
quantified auxiliary variables. For every valuation of these variables one of the alternative effects
is chosen.

We assign to every atomic effect a formula that is true if and only if that effect takes place.
This is similar to and extends the functioB®G (e) in Definition 3.3. The extension concerns
nondeterminism: for literal to become true, the auxiliary variables for nondeterminism have to
have values corresponding to an effect maKitge.

The condition for atomic effedtto take place when effeetis executed iEPG(e, o,t). The
sequence of integers is for deriving unique names for auxiliary variables®#®G (e, o, ¢), and
t is formula on the auxiliary variables for deciding when to exeeufEhe effect is assumed to be
in normal form |.

nNEPG (e, o,t) = EPG(e) Atif eis deterministic
NEPG(piei|- - |pnen,o,t) = NEPG(e1,0;1,ct (o) At)V---VNEPG(e,,o;n,Cl(0) At)
NEPG(e1 A--- ANep,0,t) = nEPG(e1,0;1,t) V---VNEPG(en,o;n,t)

The functionc (o) constructs a formula for selecting thi effect fromn alternatives. This
formula is usually a conjunction of literals over the auxiliary propositidfis= {as.1,. .., Gom}

CHAPTER 4. CONDITIONAL PLANNING 85

corresponding to one valuation df’*. Herem = [log, n]. Whenn is not a power of 2, the last
effecte,, corresponds to more than one valuatiom4gf. Define

d"(0) = A({aw; € A7|jth bit of i — 1is 1}{a,|as,; € A™, jth bit of i — 1is0}).

Wheni € {1,...,n — 1} (and in the special case= n = 2™), we definec} (o) asd]*(c). When
i = n we definec] (o) as
d)(o) V.- Vdyn(o)

Hence effecte; to e,,_1 correspond to binary encodings of humbeéts n — 2 ande,, covers all
the remaining valuations of7".

The following frame axioms express the conditions under which the state vagiabld may
change from false to true and from true to false. We assume that the operafoss {o, ..., 0, }
have a unique numbering. . ., n.

(ma Aa')— ((o1 ANEPG,(e1,1, T)) V-V (0, ANEPG,(en,n, T)))
(a A =a')— ((o1 ANEPC.4(e1,1, T)) V-V (0, ANEPC.o(en,n, T)))

For every operatas = (z, e) € O we have formulae for describing values of state variables in the
predecessor and in the successor states when the operator is applidd=Uet, . .., ar } be the
state variables. The formulae describing the effects and preconditions of the opgrator are
the following.
(0; ANNEPG,, (€i,i, T)) a}
(0i NNEPC.q, (€4,4, T)) — —a}

!

l

(Oi A nEPQlk (eiv /i7 —I—))
(Oi A nEPQak (eia ia T))
05

/
Qg
—|a,§c
z

1

Example 4.28 Consider the operators = (A, (0.5B|0.5(C > D))) andos = (B, (0.5(D >
B)|0.5C)). The application of these operators is described by the following formula.

example missing [|
Two operators may be applied in parallel only if they do not interfere, so we have
—0; V 70,

for all operatorg andj such that # j and the operators interfere.
The conjunction of all the above formulae is denoted by

R3(A7 A/)

When renaming the propositions for time poénalso the propositions for operators) € O and
the propositions € A must be renamed, and for this we use then notation

RE(AF, AT,

CHAPTER 4. CONDITIONAL PLANNING 86

Finding plans by evaluating QBF

In deterministic planning in propositional logic (Section 3.5) the problem is to find a sequence

of operators so that a goal state is reached when the operators are applied starting in the initial
state. When there is nondeterminism, the problem is to find a segence of operators so that a goal
state is reached for all possible executions of the sequence of operators. The number of executions
of one sequence of operators may be higher than one because there may be several initial states
and because the operators may be deterministic. Expressing the quantification over all possible
executions of a sequence of operators cannot be concisely expressed in the propositional logic,
and this is the reason why quantified Boolean formulae have to be used instead.

Elv;?lan
vVvea:ec
EI‘/rest
°— (RB(AO, A1) VAN RS(A1, AQ) VANCERWAN Rg(An_l, An) VAN Gn)

Here Vozee = Ag U AY U --- U A'~! where A is the set of auxiliary variables occurring in
NEPG (e, ¢, T) for some(c,e) € O andl € {a,—a} for somea € A. The plan is expressed

in terms of the variables’ whereo € O andi € {0,...,¢— 1}. The truth-values of the remaining
variablesV,..: = A1 U--- U A; are determined by the operators and the execution chosen by
propositions iVe,...

There are algorithms for evaluating QBF that extend the Davis-Putnam procedure and that
traversing and-or trees. And-nodes correspond to universally quantified propositions and or-nodes
correspond to existentially quantified propositions. These algorithms return the valuation of the
outermost existential propositions if the QBF has vdfue.

Finding plans for nondeterministic problems without observability may be more efficient than
using standard search algorithms with regression or image/preimage computation with BDDs
when the plans are short and there are many operators that can be applied in parallel. If long
plans are required and there is little parallelism, the algorithms that traverse the belief space ap-
pear to be more efficient.

4.4.3 Algorithms for planning with partial observability

Planning with partial observability is much more complicated than its two special cases with full
and no observability. Like planning without observability, the notion of belief states becomes very
important. Like planning with full observability, formalization of plans as sequences of operators
is insufficient. However, plans also cannot be formalized as mappings from states to operators be-
cause partial observability implies that the current state is not necessarily unambiguously known.
Hence we will need the general definition of plans introduced in Section 4.2.1.

When executing operatorin belief stateB the set of possible successor statésg, (B), and
based on the observation that are made, this set is restricf®’dtamg,(B) N C whereC' is the
equivalence class of observationally indistinguishable states corresponding to the observation.

In planning with unobservability, a backward search algorithm starts from the goal belief state
and uses regression or strong preimages for finding predecessor belief states until a belief state
covering the initial belief state is found.

With partial observability, plans do not just contain operators but may also branch. With branch-
ing the sequence of operators may depend on the observations, and this makes it possible to reach

CHAPTER 4. CONDITIONAL PLANNING 87

goals also when no fixed sequence of operators reaches the goals. Like strong preimages in back-
ward search correspond to images, the question arises what does branching correspond to in back-
ward search?

Assume that we have for belief statBs and Bs respectively the plans, andn, that reach the
goals, and that these belief states are observationally distinguishable, that is, they are included in
different observational classes. Now we can construct a plarhat starts with a branch node
that makes an observation and continues witlor with w5, depending on which observation was
made. If we are initially in any state iR, U Bo, the planr, always takes us to a goal state. We
can continue extending;» with operators. For example, 8 = wpreimg,(B; U Bs), then the
plan that first executes the operatoand then continues with will lead to a goal state starting
from any state inB.

Next we formalize these ideas and derive an algorithm that constructs branching plans in the
backward direction starting from the goal states.

LetIl = (C1,...,C,) be a partition of the state space to observational classes, each consisting
of observationally indistinguishable states.

Sets of belief states generated by traversing the belief space backwards starting from the goal
states contain many regularities induced by observability. For example, if we have plans for reach-
ing the goals from three belief stat&s, B, and Bs, and these have non-empty intersections with
then observational classes, we may constiictifferent branching plans f@™ different sets of
states. Thes&" sets have a concise representation in a factored form, simply as

<{BlﬂCl,Bgﬂcl,B3ﬂcl},{BlﬂCQ,BgﬂCQ,BgﬁCQ}, ceey {BlﬂCn,BgﬂCn,B3ﬂCn}>

from which the sets can be obtained by taking the Cartesian product and then the union of the
components of each of t1¥ tuples. This motivates the following definitions.

Definition 4.29 (Factored belief space)LetII = (C4,...,C,,) be a partition of the set of all
states. Then a factored belief space(ds,...,G,) wheres C s’ for no{s,s’} C G; and
G; C 2% forallic {1,...,n}.

Intuitively, a factored belief space is a set of belief states, partitioned to subsets corresponding
to the observational classes. This is just a technical definition that makes it easier to talk about
the belief states corresponding to the same observational class. Notice the minimality condition:
none of the belief states in a factored belief space may be a subset of another. We want to have
the minimality condition because we use factored belief spaces as representations of those sets of
states for which a plan exists. If a plan exists for some belief dbatdhen the same plan also
works for any belief stat&’ such thatB’ C B.

The factored representation of a one-elemen$sdtstates is simply=(S) = ({C1NS}, ..., {CnN
S}). When it is obvious from the context, we often write simplynstead ofF(.5).

When we have two sets of belief states in the factored form, we may combine them and keep
the result in the factored form.

Definition 4.30 (Combination of factored belief spaces).etG = (Gy,...,Gy)andH = (Hy, ..., H,)
be factored belief spaces. DefiGed H as(G1 U Hy, ...,G, U H,), where the operatioty takes

union of two sets of sets and eliminates sets that are not set-inclusion maximal. It is formally
definedasy UH ={R€ GUH|RC KfornoK € GUH}.

CHAPTER 4. CONDITIONAL PLANNING 88

Important in this combination operation is that the minimality condition is preserved: any belief
state that is a subset of another belief state is eliminated.
The combination operator has the following properties.

Lemma 4.31 (Belief spaces witl are commutative monoids) The operatord is associative,
commutative and its identity element(s. . ., 0).

A factored belief spac& = (G, ..., G),) can be viewed as representing the set of sets of states
flat(G) = {s1U---Usyls; € G; foralli € {1,...,n}}, and its cardinality i$G1 |- |Ga|-. . .- |Gp].
The cardinality may be exponential on the size of the factored representation. Assuming that we
have a plan for all belief states @i, we also have a plan for any sets in fta}. This plan starts by
a branch according to an observatiGrthat is made, and then follows the plan for the respective
belief stateB N C.

Definition 4.32 (Inclusion relation on belief spaces)A factored belief spacé; is included in
factored belief spacé] if for all S € flat(G) there isS” € flat(H) such thatS C S’. We
write thisG C H.

The definitions have the property thitc flat(G) if and only if 7(S) C G.

We discuss the complexity of certain operations on belief spaces. The basic operations needed
in the planning algorithms are testing the membership of a set of states in a factored belief space,
and finding a set of states whose preimage with respect to an operator is not contained in the belief
space. This last operation is needed in the backup steps of our planning algorithm: find a plan that
covers belief states for which we did not have a plan earlier.

Theorem 4.33 TestingG = H for factored belief spaces and H is polynomial time.

Proof: Testing(G1,...,Gy) C (Hy,..., H,) is simply by testing whether for alle {1,...,n}
and alls € G; there ist € H; such thats C ¢. O

Example 4.34 Consider the blocks world with three blocks with the goal state in which all the
blocks are on the table. There are three operators, each of which picks up one block (if there is
nothing on top of it) and places it on the table. We can only observe which blocks are not below
another block. This splits the state space to seven observational classes, corresponding to the
valuations of the state variables clear-A, clear-B and clear-C in which at least one block is clear.

The plan construction steps are given in Figure 4.10. Starting from the top left, the first diagram
depicts the goal belief state. The second diagram depicts the belief states obtained by computing
the strong preimage of the goal belief state with respect to the move-A-onto-table action and
splitting the set of states to belief states corresponding to the observational classes. The next two
diagrams are similarly for strong preimages of move-B-onto-table and move-C-onto-table.

The fifth diagram depicts the computation of the strong preimage from the union of two existing
belief states in which the block A is on the table and C is on B or B is on C. In the resulting belief
state A is the topmost block in a stack containing all three blocks. The next two diagrams similarly
construct belief states in which respectively B and C are the topmost blocks.

The last three diagrams depict the most interesting cases, constructing belief states that subsume
two existing belief states in one observational class. The first diagram depicts the construction of
the belief state consisting of both states in which A and B are clear and C is under either A or B.

CHAPTER 4. CONDITIONAL PLANNING 89

| | | | | | | |
‘ ‘ ‘ VR R [[0 [l] ‘ A
wwwwww e [[elc] o [E R E
(alsfc] | [0 b0 by O B [oy oy BRI ERRE
T T T T T T T T T T
i i i i i i 5 i i

\
[=]

!
‘

|
!

!

!

!

i
[l)
0

,

HNE
L]
EL=e]

LT
CLI]

Figure 4.10: Solution of a simple blocks world problem

This belief state is obtained as the strong preimage of the union of two existing belief states, the
one in which all blocks are on the table and the one in which A is on the table and B is on top of
C. The action that moves A onto the table yields the belief state because if A is on C all blocks
will be on the table and if A is already on the table nothing will happen. Construction of the belief
states in which B and C are clear and A and C are clear is analogous and depicted in the last two
diagrams.

The resulting plan reaches the goal state from any state in the blocks world. The plan in the
program form is given in Figure 4.11 (order of construction is from the end to the beginning.)

|

The algorithm we give for extending factored belief spaces by computing the preimage of a
combination of some of its belief states is based on exhaustive search and runs in worst-case
exponential time. The algorithm is justified by the following theorem that shows that finding new
belief states is NP-hard. The proof is a reduction from SAT: represent each clause as the set of

CHAPTER 4. CONDITIONAL PLANNING

16:
IF clear-A AND clear-B AND clear-C THEN GOTO end
IF clear-A AND clear-C THEN GOTO 15
IF clear-B AND clear-C THEN GOTO 13
IF clear-A AND clear-B THEN GOTO 11
IF clear-A THEN GOTO 5
IF clear-B THEN GOTO 7
IF clear-C THEN GOTO 9
15:
move-C-onto-table
14:
IF clear-A AND clear-B AND clear-C THEN GOTO end
IF clear-A AND clear-C THEN GOTO 1
13:
move-B-onto-table
12:
IF clear-A AND clear-B AND clear-C THEN GOTO end
IF clear-B AND clear-C THEN GOTO 3
11:
move-A-onto-table
10:
IF clear-A AND clear-B AND clear-C THEN GOTO end
IF clear-A AND clear-B THEN GOTO 2

move-C-onto-table

IF clear-A AND clear-C THEN GOTO 1
IF clear-B AND clear-C THEN GOTO 2

move-B-onto-table

IF clear-A AND clear-B THEN GOTO 1
IF clear-B AND clear-C THEN GOTO 3

move-A-onto-table

IF clear-A AND clear-B THEN GOTO 2
IF clear-A AND clear-C THEN GOTO 3

move-C-onto-table
GOTO end

move-B-onto-table
GOTO end
1
move-A-onto-table
end:

Figure 4.11: A plan for a partially observable blocks world problem

CHAPTER 4. CONDITIONAL PLANNING 91

literals that are not in it, and then a satisfying assignment is a set of literals that is not included in
any of the sets.

Theorem 4.35 Testing whethef? = (G, ..., G,,) contains a sef of states such that spreigig)
is not inG is NP-complete. This holds also for deterministic operators

Proof: Membership in NP is trivial: nondeterministically chooses G; forevery: € {1,...,n},
compute the preimageof s; U- - -Us,, in deterministic polynomial time, and verify in polynomial
time that the intersectionn C; of the preimage with one of the observational clagsgis not in
G;.

LetT = {E,..., E,} beasetof clauses over a set of propositional variables{ay, . .., a}.
We construct a factored belief space based on a state space in which the varatil@$or « € A
and all these variables withreplaced by, are the states. The variablésepresent negative lit-
erals. Define

E! = (A\E)U{alac A,—~a ¢ E;}forie{1,...,m}
G = <{Eiv cee ’E;n]U {{Zl}a {21}}7 cees {{Zk}a {Ek}}>

Leto mapa; to z; anda; to z; forall i € {1,..., k}.

We claim thafl" is satisfiable if and only if fldG) contains a belief stat8 such thaspreimg(B)
is notinG.

AssumeT is satisfiable, that is, there /g such that\/ |= T'. DefineM’ = {z;la; € A, M
a;} U{Zila; € A, M [~ a;}. Clearly, M’ is a belief state inG. DefineM” = {a;, € A|M =
a;} U{a;la; € A, M [~ a;}. Clearly,M" is the preimage ol/’ with respect ta.

We show thatV/” is not inG. Take anyi € {1,...,m}. Because\/ |= E;, thereisa; € A
such that; € E; andM = a; (the case-a € E; goes similarly.) Now:; € M”. By definition
nowa; ¢ Ej. As this holds for ali € {1,...,m}, M" is not a subset of anj;, and hence it
does not belong t6:.

Assume there is belief stafe in G such that the preimage @f with respect tw is not inG.
Clearly, B is a subset ol U{a|a € A} with at most one of; ora; for anyi € {1, ..., k}. Define
a propositional modeM such thatM = « if and only if a € B. We show that\/ = T. Take
any clauseb; fromT. As Bis notinG, B ¢ E;. Hence there ig; ora; in B\ E;. Consider the
case witha; (a; goes similarly.) Asi; ¢ E!, a; € E;. By definition of A/, M = a; and hence
M = E;. As this holds for ali € {1,...,m}, M |=T. This completes the proof. O

Example 4.36 The construction in the above proof can be illustrated by the following example.
We use an operator that maps a variabte the variablery. LetT = {AV BV C,-AV B,~C}.
The corresponding factored belief space is

({{A,B,C},{A,B,C,C},{4,A, B, B,C}},
{{Ao}, {Ao}},
{{Bo},{Bo}},
{H{Co},{Co}}).

CHAPTER 4. CONDITIONAL PLANNING 92

procedure findnewp,A,F,H);
if /"= () andspreimg(A) Z SfornosS € flat(H) then return A;
if £/ = () then return 0;
Fis{fi,-.., fm}, Fo,..., Fy) fork > 1;
for i :=1tomdo
S :=findnewp, AU f;,(Fs, ..., Fy),H);
if S # () then return S;
end,
return ()

Figure 4.12: An algorithm for finding new belief states

Next we give an algorithm for constructing conditional plans. The basic step in the algorithm
is finding a belief state for which a plan can be shown to exist, based on a set of belief states with
plans.

The procedure in Figure 4.12 performs this step: it finds e's#ft states that is not contained
in H and that is the strong preimage of a §ébf states inf" with respect to an operator The
procedure runs in exponential time on the sizéofand consumes space linear in the sizé of
By Theorem 4.35 this is the best that can be expected (unless it turns ot tha{ P).

Lemma 4.37 The procedure call findnew(),H, H') returns a sefS’ such thatS’ = spreimg,(.5)
for someS € flat(H) and S’ C S” forno S” € flat(H’), and if no such set exists it returfis

Proof: The procedure goes through the elemésts, S,,) of F1 x --- x F,, and tests whether
spreimg(S1U---US,)isin H. The setsS; U--- U S, are the elements of flgk'). The traversal
throughF; x --- x F,, is by generating a search tree with element$'pés children of the root
node, elements aof; as children of every child of the root node, and testing whether the strong
preimage is in it. O

The implementation of the procedure can be improved in many ways. Thé sets, f,, can
be ordered according to cardinality so that the bigger preimages are tried out first and a new belief
state is found sooner. Also other kinds of heuristics could be applied here, for example ones that
would try to produce belief states closer to the initial state for example according to the heuristics
discussed in Section 4.4.1.

Definealtimg, (.5) asimg, (wpreimg,(S)). This is the set of states that could have been reached
when a state it was reached instead. No# C altimg,(.S), and for deterministic operators
S = altimg, (.9).

Pruning techniques based o strong and weak preimaggsaod the following.

1. Leto be deterministic. lispreimg(f;) C spreimg(f;) andi > j, or spreimg(f;) C
spreimg(f;), then we can ignor;.
If the strong preimage of; is smaller than that of;;, the strong preimage that is found with
fi cannot be bigger than that witf), and hence usingj is unnecessary.

2. Pruning techniques for nondeterministic operators are more complicated.

If wpreimg,(f;) € wpreimg(f;) andaltimg,(f;) N f; C altimg,(f;) andi > j, or
wpreimg,(f;) C wpreimg,(f;) andaltimg,(f;) N f; C altimg,(f;) then f; can be ignored.

CHAPTER 4. CONDITIONAL PLANNING 93

procedure plan(l,0,G);
H =F(G),
progress :=true;
while progress and Z S for all S € flat(H) do
progress = false;
for eacho € O do
S :=findnewp,0,H ,H);
if S # 0 then
begin
H = H & F(spreimg(5));
progress :=true;
end
end;
end,
if I C S for someS € flat(H) then return true
else returnfalse;

Figure 4.13: A backward search algorithm for partially observable planning

kesken

A more advanced version of this technique can be utilized during search. If sets included
in C4,...,Cy have already been chosen and their unioBjsstatess € f; such that
altimg, ({s}) N ((U;1,... k3 Ci)\B) # 0 do not help in finding a new (bigger) belief state.

kesken

Figure 4.13 shows an algorithm for finding plans for partially observable problems. The algo-
rithm uses the subproceduiednewfor extending the belief space (this is the NP-hard subproblem
from Theorem 4.35). The plans the algorithm produces are not guaranteed to be optimal because
it does not produce all possible plans in a breadth-first manner.

We have not here described the book-keeping needed for outputting a plan, and the algorithm
just returndrue or falsedepending on whether a plan exists or not. Extending the algorithm with
the necessary book-keeping is straightforward.

Lemma 4.38 Assumeés € flat(H). Then there isS” € flat(H @ G) so thatS C 5.

Lemma 4.39 Let S, ..., S, be sets of states so that for every {1, ..., n} thereisS; € flat(H)
such thatS; C S/, and there is no observational clagssuch that for soméi, j} C {1,...,n}
both: # jandS;,NC #) andS;NC # 0. Thenthereis’ € flat(H) such thatS; U- - -US,, C S’

Theorem 4.40 Whenever there exists a finite acyclic plan for a problem instance, the algorithm
in Figure 4.13 returngrue

Proof: So assume there is a plan for a problem instafitel, O, G, B). Label all nodes of
the plan as follows. The root nod¥ is labeled withI, that is,/(N) = I. When possible
parent nodes of a node are labeled, we can compute the label forLet (o1,n),..., (0m,n)
be the annotations of all operator nodes. . ., n,,, in the plan withn as the child node, and let
{{(¢1,n),...},.... {(¢x,n), ...} the respective annotations of all branch nodes . ., nj, with n

CHAPTER 4. CONDITIONAL PLANNING 94

as one of the child nodes. Then the labehdt img,, (I(n1)) U --- Uimg,,, (I(nm,)) U (I(nf) N
$1)U--- U (I(n},) N ¢r). This labeling simply says what are the possible current states for every
node of the plan when the plan is executed starting from some initial state.

We show that -assuming that the algorithm does not terminate earlier after producing a su-
perset ofl — the algorithm determines that for all node labels a plan for readHiagists if plans
exist for its child nodes.

Induction hypothesis: For each plan nadsuch that all paths to a terminal node have lerigth
or less, its labeb = [(n) is a subset of som&’ € flat(H), whereH is the value of the program
variable H after thewhile loop exits andd could not be extended further.

Base case = 0: Terminal nodes of the plan are labeled with subset§. 0By Lemma 4.38,
G’ € flat(H) for some setZ’ such thalG C G’ becaus&? was inH initially.

Inductive casé > 1: Letn be a plan node. By the induction hypothesis for all child nades
of n, I(n") C S for someS € flat(H).

If n is a branch node with child nodes, ..., n; and respective conditions, ..., ¢, then
l(n) N1, ..., U(n) N ¢ all occupy disjoint observational classes and supers&tgfn ¢; for
everyi € {1,...,k}isinflat(H). Hence by Lemma 4.38n) C S for someS € flat(H).

If n is an operator node with operatorand child node:’, thenimg,(I(n)) C I(n’), and by
the induction hypothesign’) C S’ for someS’ € flat(H). We have to show thdtn) C S” for
someS” € flat(H). Assume that there is no susti. But now by Lemma 4.37 findnew(), H ,H)
would returnS” such thaspreimg(S”’) C S for no S € flat(H), and thewhile loop could not
have exited withH, contrary to our assumption abatit d

Theorem 4.41Letll = (A,I1,0,G, B) be a problem instance. If procedure pldm®@,G) in
Figure 4.13 returngrue, thenII has a solution plan.

Proof: Let H?, H', ... be the sequence of factored belief spaBeproduced by the algorithm.
We show that for ali > 0, for every set of states ifi? there is a plan that reachés

Induction hypothesisH* contains only such set$ < flat(H*) for which a plan reaching-
exists.

Base caseé = 0: Initially H = F(G) and the only set iif° is G. The empty plan reaches
from G.

Inductive casé > 1: H'™! is obtained agl‘®F (spreimg(S)) whereS =findnewp,),H*,H").
By Lemma 4.37S < flat(H?) andspreimg(S) C S’ forno S’ € flat(H?). Becauses is in H',
there is a planr for reachingG from S. The plan that executesfollowed by 7 reacheg< from
spreimg(S).

Let Z be any member of flat7*+!). We show that forZ there is a plan for reaching. The
plan for Z starts by a bran¢h We show that for every possible observation, corresponding to one
observational class, there is a plan that reachieset C; be thejth observational class. When
observingC;, the current state is itf; = Z N C;. Now for Z; there isZ} € H; ™' with Z; C Z/,
WhereH;ﬁJrl is the jth component of7**!. Now by induction hypothesis there is a plan fZYf
if Z; € Hj,and if Z € H;ﬁ“\H]’ﬁ, then for branch corresponding @; we use the plan for
spreimg(S), asZ; must bespreimg(S) N Cj. O

4Some of the branches might not be needed, and if the intersectiBmath only one observational class is non-
empty the plan could start with an operator node instead of a degenerate branch node.

CHAPTER 4. CONDITIONAL PLANNING 95

4.5 Computational complexity

In this section we analyze the computational complexity of the main decision problems related
to nondeterministic planning. The conditional planning problem is a generalization of the deter-
ministic planning problem from Chapter 3, and therefore the plan existence problem is at least
PSPACE-hard. In this section we discuss the computational complexity of each of the three plan-
ning problems, the fully observable, the unobservable, and the general partially observable plan-
ning problem, showing them respectively complete for the complexity classes EXP, EXPSPACE
and 2-EXP.

4.5.1 Planning with full observability

We first show that the plan existence problem for nondeterministic planning with full observability
is EXP-hard and then that the problem is in EXP.

The EXP-hardness proof in Theorem 4.42 is by simulating polynomial-space alternating Tur-
ing machines by nondeterministic planning problems with full observability and the using the fact
that the complexity classes EXP and APSPACE are the same (see Section 2.4.) The most inter-
esting thing in the proof is the representation of alternation. Theorem 3.42 already showed how
deterministic Turing machines with a polynomial space bound are simulated, and the difference is
that we now have nondeterminism, that is, a configuration of the TM may have several successor
configurations, and that there are bethnd3 states>

TheV states mean that all successor configurations must be accepting (terminal or non-terminal)
configurations. Thel states mean that at least one successor configuration must be an accepting
(terminal or non-terminal) configuration. Both of these requirements can be represented in the
nondeterministic planning problem.

The transitions from a configuration withvastate will correspond to one nondeterministic oper-
ator. That all successor configurations must be accepting (terminal or non-terminal) configurations
corresponds to requirement in planning that from all successor states of a state a goal state must
be reached.

Every transition from a configuration with state will correspond to a deterministic operator,
that is, the transition may be chosen, as only one of the successor configurations needs to be
accepting.

Theorem 4.42 The problem of testing the existence of an acyclic plan for problem instances with
full observability is EXP-hard.

Proof: Let (X, @, 0, qo, g) be any alternating Turing machine with a polynomial space banil
Let o be an input string of length.

We construct a problem instance in nondeterministic planning with full observability for sim-
ulating the Turing machine. The problem instance has a size that is polynomial in the size of the
description of the Turing machine and the input string.

The setA of state variables in the problem instance consists of

1. ¢ € @ for denoting the internal states of the TM,

2. s; for every symbok € ¥ U {|,dJ} and tape cell € {0,...,p(n)}, and

SRestricting the proof of Theorem 4.42 Bstates with nondeterministic transitions would yield a proof of the
NPSPACE-hardness of deterministic planning, but this is not interesting as PSPACE=NPSPACE.

CHAPTER 4. CONDITIONAL PLANNING 96

3. h; for the positions of the R/W headc {0, ...,p(n) + 1}.

The unique initial state of the problem instance represents the initial configuration of the TM.
The corresponding formula is the conjunction of the following literals.

1. q

2. ~qforallqg € Q\{qo}-

3. s;forall s € ¥ andi € {1,...,n} such thatth input symbol iss.

4. —s; forall s € ¥ andi € {1,...,n} such thatth input symbol is nos.
5. —s;forallse Y andi € {0,n+1,n+2,...,p(n)}.

6. O0;forallie {n+1,...,p(n)}.

7. -0, foralli € {0,...,n}.

8. Io

9. —f;foralln e {1,...,p(n)}
10. Ay

11. —h; foralli € {0,2,3,4,...,p(n) + 1}

The goal is the following formula.

G = \/{q € Qlg(q) = accep}

Next we define the operators. All the transitions may be nondeterministic, and the important
thing is whether the transition is forvastate or arfl state For a given input symbol andwastate,
the transition corresponds to one nondeterministic operator, whereas for a given input symbol and
and state the transitions corresponds to a set of deterministic operators.

To define the operators, we first define effects corresponding to all possible transitions.

Forall(s,q) € (XU{|,0})xQ,i € {0,...,p(n)}and(s’,¢',m) € (SU{|}) xQx{L, N, R}
define the effect; , ;(s', ¢, m) asa A k A 6 where the effects, x andd are defined as follows.

The effecta describes what happens to the tape symbol under the R/W head= I’ then
a = T as nothing on the tape changes. Otherwise; —s; A s to denote that the new symbol in
theith tape cell iss’ and nots.

The effectx describes the change to the internal state of the TM. Again, either the state changes
or does not, s& = —¢ A ¢ if ¢ # ¢’ and T otherwise. We define = —~¢ when: = p(n) and
m = R so that when the space bound gets violated, no accepting state can be reached.

The effectd describes the movement of the R/W head. Either there is movement to the left, no
movement, or movement to the right. Hence

—-h; ANhj—1 ifm=0L
0 = T ifm=N
—h; Nhiy1 ifm=R

5No operators are needed for accepting or rejecting states.

CHAPTER 4. CONDITIONAL PLANNING 97

By definition of TMs, movement at the left end of the tape is always to the right. Similarly, we
have state variable for R/W head positigim) + 1 and moving to that position is possible, but no
transitions from that position are possible, as the space bound has been violated.

Now, these effects that represent possible transitions are used in the operators that simulate the
ATM. Operators for existential statesg(q) = 3 and for universal stateg g(q) = V differ. Let
(s,q) € (XU{[,O0}) xQ,i€{0,...,p(n)} andd(s,q) = {(s1,q1,m1), .-, (Sk, @k, Mp) }-

If g(q) = 3, then defing: deterministic operators

0s,g,i1 = (hi AN $i N, Ts g,i(51,q1,m1))
0s,q,i,2 = (hi N si N @, Ts g6 (52, g2, m2))

Os,q,ik = (i A\ Si N5 Ts q,i(Sks Gy k)

That is, the plan determines which transition is chosen.
If g(q) =V, then define one nondeterministic operator

0s,q,i = <h7, N si N\ q, (Ts,q,i(sh q1, ml)‘
Ts,q,i(827 q2,m2)|

Ts,q,i(3k7 4k, mk)))

That is, the transition is chosen nondeterministically.

We claim that the problem instance has a plan if and only if the Turing machine accepts without
violating the space bound.

If the Turing machine violates the space bound, the state varigple, ; becomes true and an
accepting state cannot be reached because no operator will be applicable.

Otherwise, we show inductively that from a computation tree of an accepting ATM we can
extract a conditional plan that always reaches a goal state, and vice versa. For obtaining an cor-
respondence between conditional plans and computation trees it is essential that the plans are
acyclic.

kesken

So, because all alternating Turing machines with a polynomial space bound can be in polyno-
mial time translated to a nondeterministic planning problem, all decision problems in APSPACE
are polynomial time many-one reducible to nondeterministic planning, and the plan existence
problem is APSPACE-hard and consequently EXP-hard. d

We can extend Theorem 4.42 to general plans with loops. The problem looping plans cause in
the proofs of this theorem is that a Turing machine computation of infinite length is not accepting
but the corresponding infinite length zero-probability plan execution is allowed to be a part of plan
and would incorrectly count as an accepting Turing machine computation.

To eliminate infinite plan executions we have to modify the Turing machine simulation. This
is by counting the length of the plan executions and failing when at least one state or belief state
must have been visited more than once. This modification makes infinite loops ineffective, and
any plan containing a loop can be translated to a finite non-looping plan by unfolding the loop. In
the absence of loops the simulation of alternating Turing machines is faithful.

CHAPTER 4. CONDITIONAL PLANNING 98

Theorem 4.43 The plan existence problem for problem instances with full observability is EXP-
hard.

Proof: This is an easy extension of the proof of Theorem 4.42. If there,atate variables, an
acyclic plan exists if and only if a plan with execution length at m3s#xists, because visiting any
state more than once is unnecessary. Plans that rely on loops can be invalidated by counting the
number of actions taken and failing when this exce&dsThis counting can be done by having
n + 1 auxiliary state variables, ..., ¢, that are initialized to false. Every operat@f, e) is
extended tdp, e A t) wheret is an effect that increments the binary number encodedg by . , ¢,
by one until the most significant hif, becomes one. The go@lis replaced by A —¢,.

Then a plan exists if and only if an acyclic plan exists if and only if the alternating Turing
machine accepts. 0

Theorem 4.44 The problem of testing the existence of a plan for problem instances with full ob-
servability is in EXP.

Proof: The algorithm in Section 4.3.2 runs in exponential time in the size of the problem in-
stance. O

4.5.2 Planning without observability

The plan existence problem of conditional planning with unobservability is more complex than
that of conditional planning with full observability.

To show the unobservable problem EXPSPACE-hard by a direct simulation of exponential space
Turing machines, the first problem is how to encode the tape of the TM. With polynomial space, as
in the PSPACE-hardness and APSPACE-hardness proofs of deterministic planning and conditional
planning with full observability, it was possible to represent all the tape cells as the state variables
of the planning problem. With an exponential space bound this is not possible any more, as we
would need an exponential number of state variables, and the planning problem could not be
constructed in polynomial time.

Hence we have to find a more clever way of encoding the working tape. It turns out that we
can use the uncertainty about the initial state for this purpose. When an execution of the plan
that simulates the Turing machine is started, we randomly choose one of the tape cells to be the
watchedtape cell. This is the only cell of the tape for which the current symbol is represented in
the state variables. On all transitions the plan makes, if the watched tape cell changes, the change
is reflected in the state variables.

That the plan corresponds to a simulation of the Turing machine it is tested whether the transi-
tion the plan makes when the current tape cell is the watched tape cell is the one that assumes the
current symbol to be the one that is stored in the state variables. If it is not, the plan is not a valid
plan. Because the watched tape cell could be any of the exponential number of tape cells, all the
transitions the plan makes are guaranteed to correspond to the contents of the current tape cell of
the Turing machine, so if the plan does not simulate the Turing machine, the plan is not guaranteed
to reach the goal states.

The proof requires both several initial states and unobservability. Several initial states are
needed for selecting the watched tape cell, and unobservability is needed so that the plan can-

CHAPTER 4. CONDITIONAL PLANNING 99

not cheat: if the plan can determine what the current tape cell is, it could choose transitions that do
not correspond to the Turing machine on all but the watched tape cell. Because of unobservability
all the transitions have to correspond to the Turing machine.

Theorem 4.45 The problem of testing the existence of a plan for problem instances with unob-
servability is EXPSPACE-hard.

Proof: Proof is a special case of the proof of Theorem 4.48. We do notWatates and restrict

to deterministic Turing machines. Nondeterministic Turing machines could be simulated for a
NEXPSPACE-hardness proof, but it is already known that EXPSPACE = NEXPSPACE, so this
additional generality would not bring anything.

Let (X, @, d, qo, g) be any deterministic Turing machine with an exponential space befund
Let o be an input string of length. We denote théth symbol ofo by o;.

The Turing machine may use spage), and for encoding numbers frotnto e(n) + 1 corre-
sponding to the tape cells we need= [log,(e(n) + 2)| Boolean state variables.

We construct a problem instance in nondeterministic planning without observability for simu-
lating the Turing machine. The problem instance has a size that is polynomial in the size of the
description of the Turing machine and the input string.

We cannot have a state variable for every tape cell because the reduction from Turing machines
to planning would not be polynomial time. It turns out that it is not necessary to encode the whole
contents of the tape in the transition system of the planning problem, and that it suffices to keep
track of only one tape cell (which we will call thgatched tape céllthat is randomly chosen in
the beginning of every execution of the plan.

The setA of state variables in the problem instance consists of

1. ¢ € Q for denoting the internal states of the TM,

2. w; fori € {0,...,m — 1} for the watched tape celle {0,...,e(n)},

3. sfor every symbok € ¥ U {|, O} for the contents of the watched tape cell,

4. h;fori € {0,...,m — 1} for the position of the R/W heade {0,...,e(n) + 1}.

The uncertainty in the initial state is about which tape cell is the watched one. Otherwise the
formula encodes the initial configuration of the TM, and it is the conjunction of the following
formulae.

1. q
2. ~qforallq € Q\{qo}-

3. Formulae for having the contents of the watched tape cell in state varkahl€s, (}.

| < (w=0)
[« (fw > n)
s < Vieqt, npoms(w=1)forals e ¥

4. h = 1 for the initial position of the R/W head.

CHAPTER 4. CONDITIONAL PLANNING 100

So the initial state formula allows any values for state variableand the values of the state
variabless € ¥ are determined on the basis of the valueswaf The expressions = i, w > i
denote the obvious formulae for testing integer equality and inequality of the numbers encoded by
wop, wy, Later we will also use effects := h + 1 andh := h — 1 that represent incrementing
and decrementing the number encodedipyhy,

The goal is the following formula.

G =\/{q € Qlg(q) = accep}

To define the operators, we first define effects corresponding to all possible transitions.

Forall(s,q) € (XU{],0}) x Q and(s’,¢',m) € (XU{|}) x @ x {L, N, R} define the effect
Ts.4(8',¢',m) asa A k A 6 where the effects, x andd are defined as follows.

The effecta describes what happens to the tape symbol under the R/W head= I’ then
a = T as nothing on the tape changes. Otherwise; ((h = w) > (—s A s’)) to denote that the
new symbol in the watched tape cellsissand nots.

The effectx describes the change to the internal state of the TM. Again, either the state changes
or does not, s& = —q A ¢ if ¢ # ¢’ andT otherwise. If R/W head movement is to the right we
definex = =g A ((h < e(n)) > ¢') if ¢ # ¢ and(h = e(n)) > —q otherwise. This prevents
reaching an accepting state if the space bound is violated: no further operator applications are
possible.

The effectd describes the movement of the R/W head. Either there is movement to the left, no
movement, or movement to the right. Hence

hi=h—-1 ifm=1L
0 = T ifm=N
=h+1 fm=R

By definition of TMs, movement at the left end of the tape is always to the right.

Now, these effects; ,(s, ¢’, m) which represent possible transitions are used in the operators
that simulate the DTM. Lets, ¢) € (X U {],0}) x Q andd(s,q) = {(s',¢',m)}.

If g(¢) = 3, then define the operator

0s,g = (((h # w) V $) N, Tsq(s",¢',m))

It is easy to verify that the planning problem simulates the DTM assuming that when operator
0s,4 IS executed the current tape symbol is indee8o assume that somg,, is the first operator
that misrepresents the tape contents and/thatc for some tape cell locatiom Now there is an
execution of the plan so that = c. On this execution the preconditien , is not satisfied, and
the plan is not executable. Hence a valid plan cannot contain operators that misrepresent the tape
contents. g

Theorem 4.46 The problem of testing the existence of a plan for problem instances with unob-
servability is in EXPSPACE.

Proof: Proof is similar to the proof Theorem 3.43 but works at the level of belief states. [

The two theorems together yield the EXPSPACE-completeness of the plan existence problem
for conditional planning without observability.

CHAPTER 4. CONDITIONAL PLANNING 101

4.5.3 Planning with partial observability

We show that the plan existence problem of the general conditional planning problem with partial
observability is 2-EXP-complete. The hardness proof is by a simulation of AEXPSPACE=2-EXP
Turing machines. Membership in 2-EXP is obtained directly from the decision procedure dis-
cussed earlier: the procedure runs in polynomial time in the size of the enumerated belief space of
doubly exponential size.

Showing that the plan existence problem for planning with partial observability is in 2-EXP is
straightforward. The easiest way to see this is to view the partially observable planning problem
as a nondeterministic fully observable planning problem with belief states viewed as states. An
operator maps a belief state to another belief state nondeterministically: compute the image of a
belief state with respect to an operator, and choose the subset of its states that correspond to one
of the possible observations. Like pointed out in the proof of Theorem 4.44, the algorithms for
fully observable planning run in polynomial time in the size of the state space. The state space
with the belief states as the states has a doubly exponential size in the size of the problem instance,
and hence the algorithm runs in doubly exponential time in the size of the problem instance. This
gives us the membership in 2-EXP.

Theorem 4.47 The plan existence problem for problem instances with partial observability is in
2-EXP.

The hardness proof is an extension of both the EXP-hardness proof of Theorem 4.42 and of
the EXPSPACE-hardness proof of Theorem 4.45. From the first proof we have the simulation of
alternating Turing machines, and from the second proof the simulation of Turing machines with
an exponentially long tape.

Theorem 4.48 The problem of testing the existence of an acyclic plan for problem instances with
partial observability is 2-EXP-hard.

Proof: Let (¥, Q, 9, g0, g) be any alternating Turing machine with an exponential space bound
e(z). Leto be an input string of length. We denote théth symbol ofo by o;.

The Turing machine may use spade), and for encoding numbers frofnto e(n) + 1 corre-
sponding to the tape cells we need= [log,(e(n) + 2)| Boolean state variables.

We construct a problem instance in nondeterministic planning with full observability for sim-
ulating the Turing machine. The problem instance has a size that is polynomial in the size of the
description of the Turing machine and the input string.

We cannot have a state variable for every tape cell because the reduction from Turing machines
to planning would not be polynomial time. It turns out that it is not necessary to encode the whole
contents of the tape in the transition system of the planning problem, and that it suffices to keep
track of only one tape cell (which we will call th@atched tape céllthat is randomly chosen in
the beginning of every execution of the plan.

The setA of state variables in the problem instance consists of

1. ¢ € @ for denoting the internal states of the TM,
2. w; fori € {0,...,m — 1} for the watched tape celle {0,...,e(n)},

3. s for every symbok € ¥ U {|, 0} for the contents of the watched tape cell,

CHAPTER 4. CONDITIONAL PLANNING 102

4. s* for everys € ¥ U {|} for the symbol last written (important for nondeterministic transi-
tions),

5. L, R andN for the last movement of the R/W head (important for nondeterministic transi-
tions), and

6. h; fori € {0,...,m — 1} for the position of the R/W heaide {0,...,e(n) + 1}.

The observable state variables @re/V andR, g € O, ands* for s € X. These are needed by
the plan to decide how to proceed execution after a nondeterministic transition Witate.

The uncertainty in the initial state is about which tape cell is the watched one. Otherwise the
formula encodes the initial configuration of the TM, and it is the conjunction of the following
formulae.

1. qo0

2. g forallg € Q\{qo}-
3. —s*forall s € XU {|}.

4. Formulae for having the contents of the watched tape cell in state varkahlgs, (1}.

| < (w=0)
O < (w>n)
s < Vieqt, npoms(w=1)forals e ¥

5. h = 1 for the initial position of the R/W head.

So the initial state formula allows any values for state variableand the values of the state
variabless € ¥ are determined on the basis of the valueswof The expressions = i, w > i
denote the obvious formulae for testing integer equality and inequality of the numbers encoded by
wg, Wy, Later we will also use effects := h + 1 andh := h — 1 that represent incrementing
and decrementing the number encodedipyh,

The goal is the following formula.

G = \/{q € Qlg(q) = accep}

Next we define the operators. All the transitions may be nondeterministic, and the important
thing is whether the transition is forvastate or ard state. For a given input symbol and state,
the transition corresponds to one nondeterministic operator, whereas for a given input symbol and
an 3 state the transitions corresponds to a set of deterministic operators.
To define the operators, we first define effects corresponding to all possible transitions.
Forall(s,q) € (XU{|,0}) x Qand(s’,¢',m) € (XU{|}) x Q@ x {L, N, R} define the effect
Ts,q(8',¢',m) asa A k A 6 where the effects, x andd are defined as follows.
The effecta describes what happens to the tape symbol under the R/W head= I’ then
a = T as nothing on the tape changes. Otherwises ((h = w) > (s A s')) A s A —=s* to
denote that the new symbol in the watched tape cell@d nots, and to make it possible for the
plan to detect which symbol was written to the tape by the possibly nondeterministic transition.
The effectx describes the change to the internal state of the TM. Again, either the state changes
or does not, s& = —q A ¢ if ¢ # ¢’ and T otherwise. If R/W head movement is to the right we

CHAPTER 4. CONDITIONAL PLANNING 103

definex = =g A ((h < e(n)) > ¢') if ¢ # ¢ and(h = e(n)) > —q otherwise. This prevents
reaching an accepting state if the space bound is violated: no further operator applications are
possible.

The effectd describes the movement of the R/W head. Either there is movement to the left, no
movement, or movement to the right. Hence

(h:=h—1)ANLAN-NA-R ifm=1L
6 = NA=-LA-R ifm=N
(h:=h+1)ARA-LA-N ifm=R

By definition of TMs, movement at the left end of the tape is always to the right.

Now, these effects; ,(s’,¢’, m) which represent possible transitions are used in the opera-
tors that simulate the ATM. Operators for existential stategq) = 3 and for universal states
q,9(q) = ¥ differ. Let (s, q) € (XU {|,0}) x @ andd(s,q) = {(s1,q1,m1), ..., {Sk, gk, mx) }.

If g(q) = 3, then define: deterministic operators

05,91 = (((h # w) V 8) A q,Ts 4(51,q1,Mm1))
05,42 = (((h # w) V 8) A q,Ts 4(52, g2, m2))

Osgi = (1 #) V 8) A, Tasg (55, g1y 1))

That is, the plan determines which transition is chosen.
If g(q) =V, then define one nondeterministic operator

0sq = (((h#w)Vs)ANq, (Tsq(51,q1,m1)]
Ts,q(527QZ>m2)|

Ts,q(skv gk, mk‘)))

That is, the transition is chosen nondeterministically.

We claim that the problem instance has a plan if and only if the Turing machine accepts without
violating the space bound. If the Turing machine violates the space bound; ther{n) and an
accepting state cannot be reached because no further operator will be applicable.

From an accepting computation tree of an ATM we can construct a plan, and vice versa. Ac-
cepting final configurations are mapped to terminal nodes of plnenfigurations are mapped
to operator nodes in which an operator corresponding to the transition to an accepting successor
configuration is applied, and-configurations are mapped to operator nodes corresponding to the
matching nondeterministic operators followed by a branch node that selects the plan nodes corre-
sponding to the successors of theonfiguration. The successorswhlndd configurations are
recursively mapped to plans.

Construction of computation trees from plans is similar, but involves small technicalities. A plan
with DAG form can be turned into a tree by having several copies of the shared subplans. Branches
not directly following the nondeterministic operator causing the uncertainty can be moved earlier
so that every nondeterministic operator is directly followed by a branch that chooses a successor
node for every possible new state, written symbol and last tape movement. With these transforma-
tions there is an exact match between plans and computation trees of the ATM, and mapping from
plans to ATMs is straightforward like in the opposite direction.

CHAPTER 4. CONDITIONAL PLANNING 104

Because alternating Turing machines with an exponential space bound are polynomial time
reducible to the nondeterministic planning problem with partial observability, the plan existence
problem is AEXPSPACE=2-EXP-hard. O

What remains to be done is the extension of the above theorem to the case with arbitrary (pos-
sibly cyclic) plans. For the fully observable case counting the execution length does not pose a
problem because we only have to count an exponential number of execution steps, which can be
represented by a polynomial number of state variables, but in the partially observable case we
need to count a doubly exponential number of execution steps, as the number of belief states to be
visited may be doubly exponential. A binary representation of these numbers requires an exponen-
tial number of bits, and we cannot use an exponential number of state variables for the purpose,
because the reduction to planning would not be polynomial time. However, partial observability
together with only a polynomial number of auxiliary state variables can be used to force the plans
to count doubly exponentially far.

Theorem 4.49 The plan existence problem for problem instances with partial observability is 2-
EXP-hard.

Proof: We extend the proof of Theorem 4.48 by a counting scheme that makes cyclic plans inef-
fective. We show how counting the execution length can be achieved within a problem instance
obtained from the alternating Turing machine and the input string in polynomial time.

Instead of representing the exponential number of bits explicitly as state variables, we use a
randomizing technique for forcing the plans to count the number of Turing machine transitions.
The technique has resemblance to the idea in simulating exponentially long tapes in the proofs of
Theorems 4.45 and 4.42.

For a problem instance with state variables (representing the Turing machine configurations)
executions that visit each belief state at most once may have le@AgtrRepresenting numbers
from 0t022" — 1 require2™ binary digits. We introduce + 1 new unobservable state variables
do, - .., dy for representing the index of one of the digits andfor the value of that digit, and
new state variables, . . ., ¢, through which the plan indicates changes in the counter of Turing
machine transitions. There is a set of operators by means of which the plan sets the values of these
variables before every transition of the Turing machine is made.

The idea of the construction is the following. Whenever the counter of TM transitions is incre-
mented, one of thg" digits in the counter changes from 0 to 1 and all of the less significant digits
change from 1 to 0. The plan is forced to communicate the index of the digit that changes from
0 to 1 by the state variables, ..., c¢,. The unobservable state variablgs. . ., d,, vq store the
index and value of one of the digits (chosen randomly in the beginning of the plan execution), that
we callthe watched digjtand they are used for checking that the reportinggof. ., ¢, by the
plan is truthful. The test for truthful reporting is randomized, but this suffices to invalidate plans
that incorrectly report the increments, as a valid plan has to reach the goals on every possible exe-
cution. The plan is invalid if reporting is false or when the count can ex2éedFor this reason
a plan for the problem instance exists if and only if an acyclic plan exists if and only if the Turing
machine accepts the input string.

Next we exactly define how the problem instances defined in the proof of Theorem 4.48 are
extended with a counter to prevent unbounded looping.

The initial state description is extended with the conjundf to signify that the watched digit

CHAPTER 4. CONDITIONAL PLANNING 105

is initially O (all the digits in the counter implicitly represented in the belief state are 0.) The state
variablesdy, . . . , d,, may have any values which means that the watched digit is chosen randomly.
The state variables,, dy, . . ., d,, are all unobservable so that the plan does not know the watched
digit (may not depend on it).

There is also a failure flag that is initially set to false by having f in the initial states formula.

The goal is extended byf A ((do A - - - A d,,) — —d,,) to prevent executions that lead to setting
f true or that have Iengm?”“‘1 or more. The conjundidyg A - - - Ad,,) — —d, is false if the index
of the watched digit i€"*! — 1 and the digit is true, indicating an execution of lengtt22" ™" 1.

Then we extend the operators simulating the Turing machine transitions, as well as introduce
new operators for indicating which digit changes from 0 to 1.

The operators for indicating the changing digit are

(T,e;) forallie{0,...,n}
(T,=¢;) forallie{0,...,n}

The operators for Turing machine transitions are extended with the randomized test that the digit
the plan claims to change from 0 to 1 is indeed the one: every opégatgrdefined in the proof
of Theorem 4.48 is replaced Wy, e At) where the testis the conjunction of the following effects.

((c=d)Ndy) > f

(c=d) > dy

((c>d)A=dy) > f
(c>d) > —d,

Herec = d denoteqcy < dp) A --- A (¢, < dy,) andc > d encodes the greater-than test for the
binary numbers encoded by, . . ., ¢, anddy, . .., d,.
The above effects do the following.

1. When the plan claims that the watched digit changes from 0 to 1 and the valyésof,
fail.

2. When the plan claims that the watched digit changes from 0 to 1, cligrigel.

3. When the plan claims that a more significant digit changes from 0 to 1 and the valye of
is 0, fail.

4. When the plan claims that a more significant digit changes from 0 to 1, set the valye of
to 0.

That these effects guarantee the invalidity of a plan that relies on unbounded looping is because
the failure flagf will be set if the plan lies about the count, or the most significant bit with index
2n+1 _ 1 will be set if the count reache?™' ~1. Attempts of unfair counting are recognized and
consequently is set to true because of the following.

Assume that the binary digit at indéxchanges from 0 to 1 (and therefore all less significant
digits change from 1 to 0) and the plan incorrectly claims that it is the digiat changes, and
this is the first time on that execution that the plan lies (hence the valdgisfthe true value of
the watched digit.)

If j > 4, theni could be the watched digit (and hence> d), and forj to change from O
to 1 the less significant bit should be 1, but we would know that it is not becadgds false.
Consequently on this plan execution the failure ffagould be set.

CHAPTER 4. CONDITIONAL PLANNING 106

If j < ¢, thenj could be the watched digit (and hence- d), and the value of,, would indicate
that the current value of digjtis 1, not 0. Consequently on this plan execution the failure flag
would be set.

So, if the plan does not correctly report the digit that changes from 0 to 1, then the plan is not
valid. Hence any valid plan correctly counts the execution length which cannot exceed!. O

4.5.4 Polynomial size plans

We showed in Section 3.8 that the plan existence problem of deterministic planning is only NP-
complete, in contrast to PSPACE-complete, when a restriction to plans of polynomial length is
made. Here we investigate the same question for conditional plans.

Theorem 4.50 The plan existence problem for conditional planning without observability re-
stricted to polynomial length plans is ¥¥.

Proof: Let p(n) be any polynomial. We give an NP algorithm (Turing machine) that solves the
problem. Let the problem instan¢d, 7, O, G, () have sizen.

First guess a sequence of operators: og, 01, ..., 0 for k < p(n). This is nondeterministic
polynomial time computation.

Then use an NP-oracle for testing thés a solution. The oracle is a nondeterministic polynomial-
time Turing machine that accepts if a plan execution does not lead to a goal state or if the plan
is not executable (operator precondition not satisfied). The oracle guesses an initial state and for
each nondeterministic operator for each step which nondeterministic choices are made, and then
in polynomial time tests whether the execution of the operator sequence leads to a goal state.

1. Guess valuatio’ that satisfied.

2. Guess the results of the nondeterministic choices for every operator in the plan: replace
everypiei| - - - |pnen by @ nondeterministically selecteg

Computes; = app,, (app,;_; (- - - apm, (app, (I')))) forj = 0,5 =1,j =2,...,5 = k.
If s; = ¢; for o; = (c;,¢€;), accept.

If s, ¥~ G, accept.

o o &> W

Otherwise reject.

Theorem 4.51 The plan existence problem for conditional planning without observability re-
stricted to polynomial length plans ¥5-hard.

Proof: Truth of QBF of the forntdz; - - - 2, V1 - - - ym ¢ is Lh-complete. We reduce this problem
to the plan existence problem of unobservable planning with polynomial length plans.

L4 A: {xla"'7x7l7y17"'7ymvsag}

CHAPTER 4. CONDITIONAL PLANNING 107

deterministic deterministic non-deterministic
context-independent context-dependent context-dependent
full observability PSPACE PSPACE EXPTIME
no observability PSPACE EXPSPACE EXPSPACE
partial observabilityy PSPACE EXPSPACE 2-EXPTIME

Table 4.2: Computational complexity of plan existence problems

deterministic deterministic non-deterministic
context-independent context-dependent context-dependent
full observability PSPACE PSPACE EXPTIME
no observability PSPACE PSPACE EXPSPACE
partial observabilityy PSPACE PSPACE 2-EXPTIME

Table 4.3: Computational complexity of plan existence problems with one initial state

o [=—x1 A AT, NDgAS

o O=1{(s,21),(s,22),...,(s,20),(s,7s AN (6> g))}
e G=y

Out claim is that there is a plan if and onlydk; - - - 2, Vy; - - - ym ¢ iS true.

Assume the QBF is true, that is, there is a valuatidior x4, . .., z,, so thatx,y = ¢ for any
valuationy of y1,...,ym. Let X = {(s,x;)|i € {1,...,n},z(x;) = 1}. Now the operators{
in any order followed by(s,—s A (¢ > g)) is a plan: whatever values, . .., y,, have,¢ is true
after executing the operatoi§, and hence the last operator makes- g true.

Assume there is a plan. The plan has one occurrence, 6fs A (¢ > g)) and it must be the

last operator. Define the valuationof z1, ..., z, as follows. Letz(z;) = 1iff (s, ;) is one of
the operators in the plan, for d@llke {1,...,n}. Becauseg is reachedz, y = ¢ for any valuation
y of y1,...,ym, and the QBF is therefore true. O

455 Summary of the results

The complexities of the plan existence problem under different restrictions on operators and ob-
servability are summarized in Tables 4.2 (with an arbitrary number of initial states) and 4.3 (with
one initial state). The different columns list the complexities with different restrictions on the
operators. In the previous sections we have considered the general problems with arbitrary opera-
tors containing conditional effects and nondeterministic choice. These results are summarized in
the third column. The second column lists the complexities in the case without nondeterminism
(choicel), and the first column without nondeterminism (chdicand without conditional effects

(). These results are not given in this lecture.

4.6 Literature

There is a difficult trade-off between the two extreme approaches, producing a conditional plan
covering all situations that might be encountered, and planning only one action ahead. Schoppers

CHAPTER 4. CONDITIONAL PLANNING 108

[1987 proposediniversal plansis a solution to the high complexity of planning. Ginstdd:/289

attacked Schopper’s idea. Schopper’s proposal was to have memoryless plans that map any given
observations to an action. He argued that plans have to be memoryless in order to be able to react
to all the unforeseeable situations that might be encountered during plan execution. Ginsberg
argued that plans that are able to react to all possible situations are necessarily much too big to
be practical. It seems to us that Schopper’s insistence on using plans without a memory is not
realistic nor necessary, and that most of Ginsberg argumentation on impracticality of universal
plans relies on the lack of any memory in the plan execution mechanism. Of course, we agree that
a conditional plan that can be executed efficiently can be much bigger than a plan or a planner that
has no restrictions on the amount of time consumed in deciding about the action to be taken. Plans
without such restrictions could have as high expressivity as Turing machines, for example, and
then a conditional plan does not have to be less succinct than the description of a general purpose
planning algorithm.

There is some early work on conditional planning that mostly restricts to the fully observable
case and is based on partial-order planiiEgioniet al, 1992; Peot and Smith, 1992; Pryor and
Collins, 1996. We have not discussed these algorithms because they have only been shown to
solve very small problem instances.

A variants of the algorithm for constructing plans for nondeterministic planning with full ob-
servability in Section 4.3.1 was first presented by Cimatti €26103. The algorithms by Cimatti
et al. construct mappings of states to actions whereas our presentation in Section 4.3 focuses on
the computation of distances of states, and plans are synthesized afterwards on the basis of the
distances. We believe that our algorithms are conceptually simpler. Cimatti et al. also presented
an algorithm for findingveak planghat may reach the goals but are not guaranteed to. However,
finding weak plans is polynomially equivalent to the deterministic planning problem of Chap-
ter 3 by an easy reduction that replaces each nondeterministic operator by a set of deterministic
operators.

The nondeterministic planning problem with unobservability is not very interesting because
all robots and intelligent beings can sense their environment in at least some extent. However,
there are problems (outside Al) that are equivalent to the unobservable planning problem. Finding
homing/reset/synchronization sequences of circuits/automata is an example of such a problem
[Pixley et al, 1994. There are extensions of the distance and cardinality based heuristics for
planning without observability not discussed in this lecfiRatanen, 2004

Bertoli et al. have presented a forward search algorithm for finding conditional plans in the
general partially observable cadertoli et al.,, 2001].

The computational complexity of conditional planning was first investigated by Litfd@i]
and Haslum and Jonss@200d. They presented proofs for the EXPTIME-completeness of plan-
ning with full observability and the EXPSPACE-completeness of planning without observability.
The hardness parts of the proofs were reductions respectively from the existence problem of win-
ning strategies for the gantg, [Stockmeyer and Chandra, 197%hd from the universality prob-
lem of regular expressions with exponentiat[étopcroft and Uliman, 1979 In this chapter we
gave more direct hardness proofs by direct simulation of alternating polynomial space (exponential
time) and exponential space Turing machines.

