
Chapter 3

Deterministic planning

In this chapter we describe a number of algorithms for solving the historically most important and
most basic type of planning problem. Two rather strong simplifying assumptions are made. First,
all actions are deterministic, that is, under every action every state has at most one successor state.
Second, there is only one initial state.

Under these restrictions, whenever a goal state can be reached, it can be reached by a fixed
sequence of actions. With more than one initial state it would be necessary to use a different se-
quence of actions for every initial state, and with nondeterministic actions the sequence of actions
to be taken is not simply a function of the initial state, and for producing appropriate sequences
of actions a more general notion of plans with branches/conditionals becomes necessary. This is
because after executing an action, even when the starting state was known, the state that is reached
cannot be predicted, and the way plan execution continues depends on the new state. In Chapter 4
we relax both of these restrictions, and consider planning with more than one initial state and with
nondeterministic actions.

The structure of this chapter is as follows. First we discuss the two ways of traversing the tran-
sition graphs without producing the graphs explicitly. In forward traversal we repeatedly compute
the successor states of our current state, starting from the initial state. In backward traversal we
must use sets of states, represented as formulae, because we must start from the set of goal states,
and further, under a given action a state may have several predecessor states.

Then we discuss the use of heuristic search algorithms for performing the search in the tran-
sition graphs and the computation of distance heuristics to be used in estimating the value of the
current states or sets of states. Further improvements to plan search are obtained by recognizing
symmetries in the transition graphs, and for backward search, restricting the search by invariants
that are formulae describing which states are reachable from the initial state.

A complementary approach to planning is obtained by translating the planning problem to the
classical propositional logic and then finding plans by algorithms that test the satisfiability of for-
mulae in the propositional logic. This is called satisfiability planning. We discuss two translations
of deterministic planning to the propositional logic. The second translation is more complicated
but also more efficient as it avoids considering all interleavings of a set of mutually independent
operators.

We conclude the chapter by presenting the main results on the computational complexity of
deterministic planning.

26
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3.1 Problem definition

We formally define the deterministic planning problem.

Definition 3.1 A 4-tuple〈A, I,O,G〉 consisting of a setA of state variables, a stateI (a valuation
ofA), a setO of operators overA, and a propositional formulaG overA, is a problem instance
in deterministic planning.

The stateI is theinitial stateand the formulaG describes the set ofgoal states.

Definition 3.2 LetΠ = 〈A, I,O,G〉 be a problem instance in deterministic planning. A sequence
o1, . . . , on of operators is aplan for Π if and only if appon(appon−1(· · ·appo1(I) · · ·)) |= G, that
is, when applying the operatorso1, . . . , on in this order starting in the initial state, one of the goal
states is reached.

3.2 State-space search

The simplest planning algorithm just generates all states (valuations ofA), constructs the transition
graph, and then finds a path from the initial stateI to a goal stateg ∈ G for example by a shortest-
path algorithm. The plan is then simply the sequence of actions corresponding to the edges on the
shortest path from the initial state to a goal state.

However, this algorithm is in general not feasible when the number of state variables is higher
than 20 or 30, as the number of valuations is very high:220 = 1048576 ∼ 106 for 20 Boolean
state variables, and230 = 1073741824 ∼ 109 for 30.

Instead, it will often be much more efficient to avoid generating most of the state space explic-
itly, and just to produce the successor or predecessor states of the states currently under consider-
ation. This is how many of the modern planning algorithms work.

There are two main possibilities in finding a path from the initial state to a goal state: traverse
the transition graph forward starting from the initial state, or traverse it backwards starting from
the goal states.

The main difference between these is caused by the fact that there may be several goal states
(and even one goal state may have several possible predecessor states with respect to one operator)
but only one initial state: in forward traversal we repeatedly compute the unique successor state of
the current state, whereas with backward traversal we are forced to keep track of a possibly very
high number of possible predecessor states of the goal states.

Again, it is difficult to say which one is in general better. Backward search is slightly more
complicated to implement, but when the number of goal states is high, it allows to simultaneously
consider a high number of potential suffixes of a plan, each leading to one of the goal states.

3.2.1 Progression and forward search

We already defined progression for single statess asappo(s), and the definition of the determinis-
tic planning problem in Section 3.1 suggests a simple algorithm that does not require the explicit
representation of the transition graph: generate a search tree starting from the initial state as the
root node, and generate the children nodes by computing successor states by progression. Any
node corresponding to a states such thats |= G corresponds to a plan: the plan is simply the
sequence of operators from the root node to the node.
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Later in this chapter we discuss more sophisticated ways of doing plan search with progression,
as well as computation of distance estimates for guiding heuristic search algorithms.

3.2.2 Regression and backward search

With backward search the starting point is a propositional formulaG that describes the set of goal
states. An operator is selected, and the set of possible predecessor states is computed, and this set
again is described by a propositional formula. One step in this computation, calledregression, is
more complicated than computing unique successor states of deterministic operators by progres-
sion. Reasons for this are that a state and an operator do not in general determine the predecessor
state uniquely (one state may have several predecessors), and that we have to handle arbitrary
propositional formulae instead of single states.

Definition 3.3 We define the condition EPCl(o) of literal l becoming true when the operator〈c, e〉
is applied as EPCl(e) defined recursively as follows.

EPCl(>) = ⊥
EPCl(l) = >
EPCl(l′) = ⊥ whenl 6= l′ (for literals l′)

EPCl(e1 ∧ · · · ∧ en) = EPCl(e1) ∨ · · · ∨ EPCl(en)
EPCl(c B e) = EPCl(e) ∧ c

For effectse, the truth-value of the formulaEPCl(e) indicates whetherl is one of the literals
that the effecte assigns the value true. The connection to the earlier definition of[e]s is explained
by the following lemma.

Lemma 3.4 LetA be the set of state variables,s be a state onA, l a literal onA, ande an effect
onA. Thenl ∈ [e]s if and only ifs |= EPCl(e).

Proof: Proof is by induction on the structure of the effecte.
Base case 1,e = >: By definition of[>]s we havel 6∈ [>]s = ∅, and by definition ofEPCl(>)

we haves 6|= EPCl(>) = ⊥, so the equivalence holds.
Base case 2,e = l: l ∈ [l]s = {l} by definition, ands |= EPCl(l) = > by definition.
Base case 3,e = l′ for some literall′ 6= l: l 6∈ [l′]s = {′l} by definition, ands 6|= EPCl(l′) = ⊥

by definition.
Inductive case 1,e = e1 ∧ · · · ∧ en:
l ∈ [e]s if and only if l ∈ [e′]s for somee′ ∈ {e1, . . . , en}

if and only if s |= EPCl(e′) for somee′ ∈ {e1, . . . , en}
if and only if s |= EPCl(e1) ∨ · · · ∨ EPCl(en)
if and only if s |= EPCl(e1 ∧ · · · ∧ en).

The second equivalence is by the induction hypothesis, the other equivalences are by the defi-
nitions ofEPCl(e) and[e]s as well as elementary facts about propositional formulae.

Inductive case 2,e = c B e′:
l ∈ [c B e′]s if and only if l ∈ [e′]s ands |= c

if and only if s |= EPCl(e′) ands |= c
if and only if s |= EPCl(c B e′).

The second equivalence is by the induction hypothesis.
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This completes the proof. �

Notice that any operator〈c, e〉 can be expressed in normal form in terms ofEPCa(e) as〈
c,

∧
a∈A

(EPCa(e) B a) ∧ (EPC¬a(e) B ¬a)

〉
.

The formula(a∧¬EPC¬a(e))∨EPCa(e) expresses the truth-value ofa ∈ A after applyingo in
terms of truth-values of formulae before applyingo: eithera was true before and did not become
false, ora became true.

Lemma 3.5 Let a ∈ A be a state variable ando = 〈c, e〉 ∈ O an operator. Lets be a state and
s′ = appo(s). Thens |= (a ∧ ¬EPC¬a(e)) ∨ EPCa(e) if and only ifs′ |= a.

Proof: Assume thats |= (a∧¬EPC¬a(e))∨EPCa(e). We perform a case analysis and show that
s′ |= a holds in both cases.

Case 1: Assume thats |= a ∧ ¬EPC¬a(e). By Lemma 3.4¬a 6∈ [e]s. Hencea remains true in
s′.

Case 2: Assume thats |= EPCa(e). By Lemma 3.4a ∈ [e]s, and hences′ |= a.
For the other half of the equivalence, assume thats 6|= (a ∧ ¬EPC¬a(e)) ∨ EPCa(e). Hence

s |= (¬a ∨ EPC¬a(e)) ∧ ¬EPCa(e).
Assume thats |= a. Now s |= EPC¬a(e) becauses |= ¬a ∨ EPC¬a(e), and hence by Lemma

3.4¬a ∈ [e]s and hences′ 6|= a.
Assume thats 6|= a. Becauses |= ¬EPCa(e), by Lemma 3.4a 6∈ [e]s and hences′ 6|= a.
Therefores′ 6|= a in all cases. �

The formulaeEPCl(o) can now be used in defining regression for operatorso.

Definition 3.6 (Regression)Let φ be a propositional formula. Let〈p, e〉 be an operator. The
regressionof φ with respect too = 〈p, e〉 is regro(φ) = φr ∧ p∧ f whereφr is obtained fromφ by
replacing every propositiona ∈ A by (a∧¬EPC¬a(e))∨EPCa(e), andf =

∧
a∈A ¬(EPCa(e)∧

EPC¬a(e)). We also define regre(φ) = φr ∧ f .

The conjuncts off say that none of the state variables may simultaneously become true and
false.

Becauseregre(φ) often contains many occurrences of⊥ and>, it is useful to simplify it by
applying equivalences like> ∧ φ ≡ φ, ⊥ ∧ φ ≡ ⊥, > ∨ φ ≡ >, ⊥ ∨ φ ≡ φ, ¬⊥ ≡ >, and
¬> ≡ ⊥.

Regression can equivalently be defined in terms of the conditions the state variables stay or
become false, that is, we could use the formula(¬a ∧ ¬EPCa(e)) ∨ EPC¬a(e) which tells when
a is false. The negation of this formula, which can be written as(a ∧ ¬EPC¬a(e)) ∨ (EPCa(e) ∧
¬EPC¬a(e)), is not equivalent to(a∧¬EPC¬a(e))∨EPCa(e). However, ifEPCa(e) andEPC¬a(e)
are never simultaneously true, we do get equivalence, that is,

¬(EPCa(e) ∧ EPC¬a(e)) |= ((a ∧ ¬EPC¬a(e)) ∨ (EPCa(e) ∧ ¬EPC¬a(e)))
↔ ((a ∧ ¬EPC¬a(e)) ∨ EPCa(e))

because¬(EPCa(e) ∧ EPC¬a(e)) |= (EPCa(e) ∧ ¬EPC¬a(e)) ↔ EPCa(e).
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Concerning the worst-case size of the formula obtained by regression with operatorso1, . . . , on

starting fromφ, the obvious upper bound on its size is the product of the sizes ofφ, o1, . . . , on,
which is exponential inn. However, because of the many possibilities of simplifying the formulae
and the typically simple structure of the operators, the formulae can often be simplified a lot. For
unconditional operatorso1, . . . , on (with no occurrences ofB), an upper bound on the size of the
formula (after the obvious simplifications that eliminate occurrences of> and⊥) is the sum of the
sizes ofo1, . . . , on andφ.

The reason why regression is useful for planning is that it allows to compute the predecessor
states by simple formula manipulation. The same is not possible for progression, that is, there
does not seem to be a simple definition of successor states of asetof states expressed in terms of
a formula: simple syntactic progression is restricted to individual states only.

The important property of regression is formalized in the following lemma.

Lemma 3.7 Letφ be a formula overA. Leto be an operator with effecte. Lets be any state and
s′ = appo(s). Thens |= regre(φ) if and only ifs′ |= φ.

Proof: The proof is by structural induction over subformulaeφ′ of φ. We show that the formula
φr obtained fromφ by replacing propositionsa ∈ A by (a∧¬EPC¬a(e))∨EPCa(e) has the same
truth-value ins asφ has ins′.

Induction hypothesis:s |= φ′r if and only if s′ |= φ′.
Base case 1,φ′ = >: Now φ′r = > and both are true in the respective states.
Base case 2,φ′ = ⊥: Now φ′r = ⊥ and both are false in the respective states.
Base case 3,φ′ = a for somea ∈ A: Now φ′r = (a ∧ ¬EPC¬a(e)) ∨ EPCa(e). By Lemma 3.5

s |= φ′r if and only if s′ |= φ′.
Inductive case 1,φ′ = ¬ψ: By the induction hypothesiss |= ψr iff s′ |= ψ. Hences |= φ′r iff

s′ |= φ′ by the truth-definition of¬.
Inductive case 2,φ′ = ψ ∨ ψ′: By the induction hypothesiss |= ψr iff s′ |= ψ, ands |= ψ′r iff

s′ |= ψ′. Hences |= φ′r iff s′ |= φ′ by the truth-definition of∨.
Inductive case 3,φ′ = ψ ∧ ψ′: By the induction hypothesiss |= ψr iff s′ |= ψ, ands |= ψ′r iff

s′ |= ψ′. Hences |= φ′r iff s′ |= φ′ by the truth-definition of∧. �

Operators for regression can be selected arbitrarily, but there is a simple property all useful
regression steps satisfy. For example, regressinga with the effect¬a is not useful, because the
new formula⊥ describes the empty set of states, and therefore the operators leading to it from
the goal formula are not the suffix of any plan. Another example is regressinga with the operator
〈b, c〉, yieldingregr〈b,c〉(a) = a∧ b, which means that the set of states becomes smaller. This does
not rule out finding a plan, but finding a plan is more difficult than it was before the regression
step, because the set of possible prefixes of a plan leading to the current set of states is smaller
than it was before. Hence it would be better not to take this regression step.

Lemma 3.8 Let there be a plano1, . . . , on for 〈A, I,O,G〉. If regrok
(regrok+1

(· · · regron(G) · · ·)) |=
regrok+1

(· · · regron(G) · · ·) for somek ∈ {1, . . . , n − 1}, then alsoo1, . . . , ok−1, ok+1, · · · , on is
a plan for〈A, I,O,G〉.

Proof: �
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Hence any regression step that makes the set of states smaller in the set-inclusion sense is
unnecessary. However, testing whether this is the case may be computationally expensive.

Lemma 3.9 The problem of testing that regro(φ) 6|= φ is NP-hard.

Proof: We give a reduction from the NP-complete satisfiability problem of the propositional logic.
Letφ be any formula. Leta be a propositional variable not occurring inφ. Now regr〈¬φ→a,a〉(a) 6|=

a if and only if (¬φ→ a) 6|= a, becauseregr〈¬φ→a,a〉(a) = ¬φ→ a. (¬φ→ a) 6|= a is equiv-
alent to 6|= (¬φ→ a) → a that is equivalent to the satisfiability of¬((¬φ→ a) → a). Further,
¬((¬φ→a)→a) is logically equivalent to¬(¬(φ∨ a)∨ a) and further to¬(¬φ∨ a) andφ∧¬a.

Satisfiability ofφ ∧ ¬a is equivalent to the satisfiability ofφ asa does not occur inφ: if φ is
satisfiable, there is a valuationv such thatv |= φ, we can seta false inv to obtainv′, and asa
does not occur inφ, we still havev′ |= φ, and furtherv′ |= φ ∧ ¬a. Clearly, ifφ is unsatisfiable
alsoφ ∧ ¬a is.

Henceregr〈¬φ→a,a〉(a) 6|= a if and only if φ is satisfiable. �

The problem is also in NP, but we do not show it here. Also the following problem is in NP, but
we just show the NP-hardness. The question is whether an empty set of states is produced by a
regression step, that is, whether the resulting formula is unsatisfiable.

Lemma 3.10 The problem of testing that regro(φ) is satisfiable is NP-hard.

Proof: By a reduction from satisfiability in the propositional logic. Letφ be a formula.regr〈φ,a〉(a)
is satisfiable if and only ifφ is satisfiable becauseregr〈φ,a〉(a) ≡ φ.

The problem is NP-hard even if we restrict to operators that have a satisfiable precondition:φ
is satisfiable if and only if(φ∨¬a)∧a is satisfiable if and only ifregr〈φ∨¬a,b〉(a∧ b) is satisfiable.
Herea is a proposition not occurring inφ. Clearly,φ∨¬a is true whena is false, and henceφ∨¬a
is satisfiable. �

Of course, testing thatregro(φ) 6|= φ or that regro(φ) is satisfiable is not necessary for the
correctness of backward search, but avoiding useless steps improves its efficiency.

Early work on planning restricted to goals and operator preconditions that are conjunctions of
state variables, and to unconditional operator effects (STRIPS operators.) In this special case both
goalsG and operator effectse can be viewed as sets of literals, and the definition of regression is
particularly simple: regressingG with respect to〈c, e〉 is (G\e) ∪ c. If there isa ∈ A such that
a ∈ G and¬a ∈ e, then the result of regression is⊥, that is, the empty set of states. We do not
use this restricted type of regression in this lecture.

Some planners that use backward search and have operators with disjunctive preconditions and
conditional effects eliminate all disjunctivity by branching: for example, the backward step fromg
with operator〈a∨ b, g〉, producinga∨ b, is handled by producing two branches in the search tree,
one fora and another forb. Disjunctivity caused by conditional effects can similarly be handled
by branching. However, this branching leads to a very high branching factor for the search tree
and thus to poor performance.

In addition to being the basis of backward search, regression has many other useful applications
in reasoning about actions and formal manipulation of operators.
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Definition 3.11 (Composition of operators)Let o1 = 〈p1, e1〉 ando2 = 〈p2, e2〉 be two opera-
tors onA. Then theircompositiono1 ◦ o2 is defined as〈

p,
∧
a∈A

(
((regre1(EPCa(e2)) ∨ (EPCa(e1) ∧ ¬regre1(EPC¬a(e2)))) B a)∧
((regre1(EPC¬a(e2)) ∨ (EPC¬a(e1) ∧ ¬regre1(EPCa(e2)))) B ¬a)

)〉

wherep = p1 ∧ regre1(p2) ∧
∧

a∈A ¬ (EPCa(e1) ∧ EPC¬a(e1)).

Notice that ino1 ◦ o2 first is o1 is applied and theno2, so the ordering is opposite to the usual
notation for the composition of functions.

Theorem 3.12 Let o1 ando2 be operators ands a state. Then appo1◦o2(s) is defined if and only
if appo1;o2(s) is defined, and appo1◦o2(s) = appo1;o2(s).

Proof: �

The above construction can be used in eliminatingsequantial compositionfrom operator effects
(Section 2.3.1).

3.3 Planning by heuristic search algorithms

Plan search can be performed in the forward or in the backward direction respectively with pro-
gression or regression, as described in Sections 3.2.1 and 3.2.2. There are several obvious algo-
rithms that could be used for the purpose, including depth-first search, breadth-first search and
iterative deepening, but without informed selection of branches of search trees these algorithms
perform poorly.

The use of additional information for guiding search is essential for achieving efficient planning
with general-purpose search algorithms. Algorithms that use heuristic estimates on the values of
the nodes in the search space for guiding the search have been applied to planning very success-
fully. Some of the more sophisticated search algorithms that can be used are A∗ [Hartet al., 1968],
WA∗ [Pearl, 1984], IDA∗ [Korf, 1985], simulated annealing[Kirkpatrick et al., 1983].

The effectiveness of these algorithms is dependent on good heuristics for guiding the search.
For planning with progression and regression the main heuristic information is in the form of
estimates on the distance between states. The distance is the minimum number of operators needed
for reaching a state from another state. In Section 3.4 we present techniques for estimating the
distances between states and sets of sets. In this section we discuss how heuristic search algorithms
are applied in planning assuming that we have a useful heuristics for guiding these algorithms

When plan search proceeds by progression in forward direction starting from the initial state,
we estimate the distance between the current state and the set of goal states. When plan search
proceeds by regression in backward direction starting from the goal states, we estimate the distance
between the initial state and the current set of goal states as computed by regression.

For progression, the search tree nodes are sequences of operators (prefixes of plans.)

o1, o2, . . . , on

The initial node for search is the empty sequence. The children nodes are obtained by progression
with respect to an operator or by dropping out some of the last operators.
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Definition 3.13 (Children for progression) Let〈A, I,O,G〉 be a problem instance. For progres-
sion, the children of a search tree nodeo1, o2, . . . , on are the following.

1. o1, o2, . . . , on, o for anyo ∈ O such that appo1;...;on;o(I) is defined
2. o1, o2, . . . , oi for anyi < n

Whenappo1;o2...,on(I) |= G theno1, . . . , on is a plan.
For regression, the nodes of the search tree are also sequences of operators (suffixes of plans.)

on, . . . , o1

The initial node for search is the empty sequence. The children of a node are those obtained by
prefixing the current sequence with an operator or by dropping out some of the first actions and
associated formulae.

Definition 3.14 (Children for regression) Let 〈A, I,O,G〉 be a problem instance. For regres-
sion, the children of nodeφn, . . . , o1 are the following.

1. o, on, . . . , o1 for anyo ∈ O
2. oi, . . . , o1 for anyi < n

WhenI |= regron;...;o1(G) the sequenceon, . . . , o1 is a plan.
For both progression and regression the neighbors that are obtained by removing some operators

from the incomplete plans are needed with local search algorithms only. The systematic search
algorithms can be implemented to keep track of the alternative extensions of an incomplete plan,
and therefore the backup steps are not needed. Further, for these algorithms it suffices to keep
track of the results of the state obtained by progression or the formula obtained by regression.

The states generated by progression from the initial state, and the formulae generated by regres-
sion are not the only possibilities for defining the search space for a search algorithm. In partial-
order planning[McAllester and Rosenblitt, 1991], the search space consists of incomplete plans
that are partially ordered multisets of operators. The neighbors of an incomplete plan are those
obtained by adding or removing an operator, or by adding or removing an ordering constraint.
Another form of incomplete plans is fixed length sequences of operators, with zero or more of
the operators missing. This has been formalized as planning with propositional satisfiability as
discussed in Section 3.5.

3.4 Distance estimation

Using progression and regression with just any search algorithm does not yield efficient planning.
Critical for the usefulness of the algorithms is the selection of operators for the progression and
regression steps. If the operators are selected randomly it is unlikely that search in possibly huge
transition graphs is going to end quickly.

Operator selection can be substantially improved by using estimates on the distance between the
initial state and the current goal states, for backward search, or the distance between the current
state and the set of goal states, for forward search. Computing exact distances is computationally
just as difficult as solving the planning problem itself. Therefore in order to speed up planning by
distance information, its computation should be inexpensive, and this means that only inaccurate
estimates of the distances can be used.

We present a method for distance estimation that generalizes the work of Bonet and Geffner
[2001] to operators with conditional effects and arbitrary propositional formulae as preconditions.
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The set makestrue(l, O), consisting of formulaeφ such that ifφ is true then applying an operator
o ∈ O can make the literall true, is defined on the basis ofEPCl(o) from Definition 3.3.

makestrue(l, O) = {EPCl(o)|o ∈ O}

Example 3.15 Let 〈A∧B,R∧(Q B P )∧(R B P )〉 be an operator inO. ThenA∧B∧(Q∨R) ∈
makestrue(P,O) because forP to become true it suffices that the preconditionA ∧ B of the
operator and one of the antecedentsQ orR of a conditional effect is true. �

The idea of the method for estimating distances of goal states is based on the estimation of dis-
tances of states in which given state variables have given values. The estimates are not accurate for
two reasons. First, and more importantly, distance estimation is done one state variable at a time
and dependencies between values of different state variables are ignored. Second, tests whether
a formula is true in a set of states described by a set of literals is performed by an algorithm that
approximates NP-hard satisfiability testing. Of course, because we are interested in computing
distance estimates efficiently, that is in polynomial time, the inaccuracy is an acceptable compro-
mise.

We give a recursive procedure that computes a lower bound on the number of operator applica-
tions that are needed for reaching from a states a state in which given state variablesa ∈ A have
a certain value. This is by computing a sequence of setsDi of literals. The setDi is a set of such
literals that must be true in any state that has a distance≤ i from the states. If a literal l is inD0,
thenl is true ins. If l ∈ Di\Di+1, thenl is true in all states with distance≤ i andl may be false
in some states having distance> i.

Definition 3.16 LetL = A ∪ {¬a|a ∈ A} be the set of literals onA. Define the setsDi for i ≥ 0
as follows.

D0 = {l ∈ L|s |= l}
Di = Di−1\{l ∈ L|o ∈ O, canbetruein(EPCl(o), Di−1)}

Because we consider only finite setsA of state variables and|D0| = |A| andDi+1 ⊆ Di for all
i ≥ 0, necessarilyDi = Di+1 for somei ≤ |A|.

Above canbetruein(φ,D) is a function that tests whether there is a state in whichφ and the
literals D are true, that is, whether{φ} ∪ D is satisfiable. This algorithm does not accurately
test satisfiability, and may claim tht{φ} ∪ D is satisfiable even when it is not. Hence it only
approximates the NP-complete satisfiability problem. The algorithm runs in polynomial time and
is defined as follows.

canbetruein(⊥, D) = false
canbetruein(>, D) = true
canbetruein(a,D) = true iff¬a 6∈ D (for state variablesa ∈ A)

canbetruein(¬a,D) = true iff a 6∈ D (for state variablesa ∈ A)
canbetruein(¬¬φ,D) = canbetruein(φ,D)

canbetruein(φ ∨ ψ,D) = canbetruein(φ,D) or canbetruein(ψ,D)
canbetruein(φ ∧ ψ,D) = canbetruein(φ,D) and canbetruein(ψ,D)

canbetruein(¬(φ ∨ ψ), D) = canbetruein(¬φ,D) and canbetruein(¬ψ,D)
canbetruein(¬(φ ∧ ψ), D) = canbetruein(¬φ,D) or canbetruein(¬ψ,D)
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The reason why the satisfiability test is not accurate is that for formulaeφ ∧ ψ (respectively
¬(φ ∨ ψ)) we make recursively two satisfiability tests that do not assume that the component
formulaeφ andψ (respectively¬φ and¬ψ) aresimultaneouslysatisfiable.

We give a lemma that states the connection between canbetruein(φ,D) and the satisfiabilty of
{φ} ∪D.

Lemma 3.17 Let φ be a formula andD a consistent set of literals (it contains at most one ofa
and¬a for everya ∈ A.) If D ∪ {φ} is satisfiable, then canbetruein(φ,D) returns true.

Proof: The proof is by induction on the structure ofφ.
Base case 1,φ = ⊥: The setD ∪ {⊥} is not satisfiable, and hence the implication trivially

holds.
Base case 2,φ = >: canbetruein(>, D) always returns true, and hence the implication trivially

holds.
Base case 3,φ = a for somea ∈ A: If D ∪ {a} is satisfiable, then¬a 6∈ D, and hence

canbetruein(a,D) returns true.
Base case 4,φ = ¬a for somea ∈ A: If D ∪ {¬a} is satisfiable, thena 6∈ D, and hence

canbetruein(¬a,D) returns true.
Inductive case 1,φ = ¬¬φ′ for someφ′: The formulae are logically equivalent, and by the

induction hypothesis we directly establish the claim.
Inductive case 2,φ = φ′ ∨ ψ′: If D ∪ {φ′ ∨ ψ′} is satisfiable, then eitherD ∪ {φ′} or

D ∪ {ψ′} is satisfiable and by the induction hypothesis at least one of canbetruein(φ′, D) and
canbetruein(ψ′, D) returns true. Hence canbetruein(φ′ ∨ ψ′, D) returns true.

Inductive case 3,φ = φ′∧ψ′: If D∪{φ′∧ψ′} is satisfiable, then bothD∪{φ′} andD∪{ψ′} are
satisfiable and by the induction hypothesis both canbetruein(φ′, D) and canbetruein(ψ′, D) return
true. Hence canbetruein(φ′ ∧ ψ′, D) returns true.

Inductive cases 4 and 5,φ = ¬(φ′ ∨ ψ′) andφ = ¬(φ′ ∧ ψ′): Like cases 2 and 3 by logical
equivalence. �

The other direction of the implication does not hold because for example canbetruein(A ∧
¬A,D) returns true even though the formula is not satisfiable. The procedure is a polynomial-
time approximation of the logical consequence test from a set of literals: canbetruein(φ,D) always
returns true ifD ∪ {φ} is satisfiable, but it may return true also when the set is not satisfiable.

Now we define the distances of states in which a literall is true byδs(l) = 0 if and only if
l ∈ D0, and ford ≥ 1, δs(l) = d if and only if l ∈ Dd−1\Dd. For formulaeφ we similarly
defineδs(φ) = 0 if canbetruein(φ,D0), and ford ≥ 1, δs(φ) = d if canbetruein(φ,Dd) and not
canbetruein(φ,Dd−1).

Lemma 3.18 Let s be a state andD0, D1, . . . the sets given in Definition 3.16 fors. If s′ is the
state reached froms by applying the operator sequenceo1, . . . , on, thens′ |= Dn.

Proof: By induction onn.
Base casen = 0: The length of the operator sequence is zero, and hences′ = s. The setD0

consists exactly of those literals that are true ins, and hences′ |= D0.
Inductive casen ≥ 1: Let s′′ be the state reached froms by applyingo1, . . . , on−1. Now

s′ = appon(s′′). By the induction hypothesiss′′ |= Dn−1.
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Let l be any literal inDn. We show it is true ins′. Becausel ∈ Dn andDn ⊆ Dn−1, also
l ∈ Dn−1, and hence by the induction hypothesiss′′ |= l.

Letφ be any member of makestrue(l, {on}). Becausel ∈ Dn it must be that canbetruein(φ,Dn−1)
returns false (Definition ofDn). HenceDn−1∪{φ} is by Lemma 3.17 not satisfiable, ands′′ 6|= φ.
Hence applyingon in s′′ does not makel false, and consequentlys′ |= l.

�

Theorem 3.19 Let s be a state,φ a formula, andD0, D1, . . . the sets given in Definition 3.16 for
s. If s′ is the state reached froms by applying the operatorso1, . . . , on ands′ |= φ for any formula
φ, then canbetruein(φ,Dn) returns true.

Proof: By Lemma 3.18s′ |= Dn. By assumptions′ |= φ. HenceDn ∪ {φ} is satisfiable. By
Lemma 3.17 canbetruein(φ,Dn) returns true. �

Corollary 3.20 Let s be a state andφ a formula. Then for any sequenceo1, . . . , on of operators
such that executing them ins results in states′ such thats′ |= φ, n ≥ δs(φ).

Example 3.21 Consider the blocks world with three blocks and the initial state in which A is on
B and B is on C.

D0 = {A-CLEAR,A-ON-B,B-ON-C,C-ON-TABLE,¬A-ON-C,¬B-ON-A,¬C-ON-A,
¬C-ON-B,¬A-ON-TABLE,¬B-ON-TABLE,¬B-CLEAR,¬C-CLEAR}

There is only one operator applicable, that moves A onto the table. Applying this operator makes
the literals B-CLEAR and A-ON-TABLE and¬A-ON-B true, and consequently their complemen-
tary literals do not occur inD1, because it is possible after at most 1 operator application that these
complementary literals are false.

D1 = {A-CLEAR,B-ON-C,C-ON-TABLE,¬A-ON-C,¬B-ON-A,¬C-ON-A,
¬C-ON-B,¬B-ON-TABLE,¬C-CLEAR}

In addition the operator applicable in the initial states, now there are three more operators applica-
ble (their precondition does not contradictD1), one moving A from the table on top of B (returning
to the initial state), one moving B from the top of C onto A, and one moving B from the top of C
onto the table. HenceD2 is as follows.

D2 = {C-ON-TABLE,¬A-ON-C,¬C-ON-A,¬C-ON-B}

Now there are three further operators applicable, those moving C from the table onto A and onto
B, and the operator moving A onto C. Consequently,

D3 = ∅

�

The next two examples demonstrate the best-case and worst-case scenarios for distance estima-
tion.
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Figure 3.1: A transition system on which distance estimates are very accurate
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Figure 3.2: A transition system for which distance estimates are very inaccurate

Example 3.22 Figure 3.1 shows a transition system on which the distance estimates from state
1 are very accurate. The accuracy of the estimates is caused by the fact that for each state one
can determine the distance accurately just on the basis of one of the state variables. Let the state
variables be A, B, C, D, E, F, G.

D0 = {A,¬B,¬C,¬D,¬E,¬F,¬G}
D1 = {¬C,¬D,¬E,¬G}
D2 = {¬C,¬G}
D3 = ∅
D4 = ∅

�

Example 3.23 Figure 3.2 shows a transition system on which the distance estimates from state 1
are very poor. The inaccuracy is caused by the fact that all possible values of state variables are
possible after taking just one action, and this immediately gives distance estimate 1 for all states
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and sets of states.
D0 = {¬A,¬B,C}
D1 = ∅
D2 = ∅

�

The way Bonet and Geffner[2001] express the method differs from our presentation. Their
definition is based on two mutually recursive equations that cannot be directly understood as ex-
ecutable procedures. The basic equation for distance computation for literals (negated and un-
negated) state variablesl (l = a or l = ¬a for somea ∈ A) is as follows (the generalization of
this and the following definitions to arbitrary preconditions and conditional effects are due to us.)

δs(l) =
{

0 if s |= l
minφ∈makestrue(l,O) (1 + δs(φ)) otherwise

The equation gives a cost/distance estimate of making a propositiona ∈ A true starting from state
s, in terms ofs and costδs(φ) of reaching a state that satisfiesφ. This costδs(φ) is defined as
follows in terms of the costsδs(a).

δs(⊥) = ∞
δs(>) = 0
δs(a) = δs(a) for state variablesa ∈ A

δs(¬a) = δs(¬a) for state variablesa ∈ A
δs(¬¬φ) = δs(φ)
δs(φ ∨ ψ) = min(δs(φ), δs(ψ))
δs(φ ∧ ψ) = max(δs(φ), δs(ψ))

δs(¬(φ ∨ ψ)) = δs(¬φ ∧ ¬ψ)
δs(¬(φ ∧ ψ)) = δs(¬φ ∨ ¬ψ)

This representation of the estimation method is useful because Bonet and Geffner[2001] have
also considered another way of defining the cost of achieving a conjunctionφ∧ψ. Instead of taking
the maximum of the costs ofφ andψ, Bonet and Geffner suggest taking the sum of the costs, which
is simply obtained by replacingmax(δs(φ), δs(ψ)) in the above equations byδs(φ)+δs(ψ). They
call this theadditive heuristic, in contrast to the definition given above for themax heuristic.
The justification for this is that the max heuristic assumes that it is the cost of the more difficult
conjunct that alone determines the difficulty of reaching the conjunction and the cost of the less
difficult conjuncts are ignored completely. The experiments Bonet and Geffner conducted showed
that the additive heuristic may lead to much more efficient planning. However, one should notice
that the additive heuristic is not admissible, and indeed, Bonet and Geffner have used the max
heuristic and the additive heuristic in connection with the non-optimal best-first search algorithm.

3.5 Planning as satisfiability in the propositional logic

A very powerful approach to deterministic planning emerged starting in 1992 from the work by
Kautz and Selman[1992; 1996]: translate problem instances to propositional formulaeφ0, φ1, φ2, . . .
so that every valuation that satisfies formulaφi corresponds to a plan of lengthi. Now an algo-
rithm for testing the satisfiability of propositional formulae can be used for finding a plan: test the
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satisfiability ofφ0, if it is unsatisfiable, continue withφ1, φ2, and so on, until a satisfiable formula
φn is found. From the valuation the satisfiability algorithm returns we can now construct a plan of
lengthn.

3.5.1 Actions as propositional formulae

First we need to represent all our actions in the propositional logic. We can view arbitrary propo-
sitional formulae as actions, or we can translate operators into formulae in the propositional logic.
We discuss both of these possibilities.

Given a set of state variablesA = {a1, . . . , an}, one could describe an action directly as a
propositional formulaφ over propositionsA∪A′ whereA′ = {a′1, . . . , a′n}. Here the propositions
A represent the values of state variables in the states in which an action is taken, and propositions
A′ the values of state variables in a successor states′.

A pair of valuationss ands′ can be understood as a valuation ofA ∪ A′ (the states assigns a
value to propositionsA ands′ to propositionsA′), and a transition froms to s′ is possible if and
only if s, s′ |= φ.

Example 3.24 Let there be state variablesa1 anda2. The action that reverses the values of both
state variables is described by(a1 ↔ ¬a′1) ∧ (a2 ↔ ¬a′2).

This action is represented by the following matrix.

a′1a
′
2 a′1a

′
2 a′1a

′
2 a′1a

′
2

= = = =
0 0 0 1 1 0 1 1

a1a2 = 00 0 0 0 1
a1a2 = 01 0 0 1 0
a1a2 = 10 0 1 0 0
a1a2 = 11 1 0 0 0

The matrix can be equivalently represented as the following truth-table.

a1a2a
′
1a

′
2

0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 0
1 0 0 0 0
1 0 0 1 1
1 0 1 0 0
1 0 1 1 0
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0
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Of course, this is the truth-table of(a1 ↔ ¬a′1) ∧ (a2 ↔ ¬a′2). �

Example 3.25 Let the set of state variables beA = {a1, a2, a3}. The formula(a1 ↔ a′2)∧(a2 ↔
a′3) ∧ (a3 ↔ a′1) represents the action that rotates the values of the state variablesa1, a2 anda3

one position right. The formula can be represented as the following adjacency matrix. The rows
correspond to valuations ofA and the columns to valuations ofA′ = {a′1, a′2, a′3}.

000 001 010 011 100 101 110 111
000 1 0 0 0 0 0 0 0
001 0 0 0 0 1 0 0 0
010 0 1 0 0 0 0 0 0
011 0 0 0 0 0 1 0 0
100 0 0 1 0 0 0 0 0
101 0 0 0 0 0 0 1 0
110 0 0 0 1 0 0 0 0
111 0 0 0 0 0 0 0 1

A more conventional way of depicting the valuations of this formula would be as a truth-table with
one row for every valuation ofA ∪A′, a total of 64 rows. �

This kind of propositional formulae are the basis of a number of planning algorithms that are
based on reasoning in propositional logics. These formulae could be input to a planning algorithm,
but describing actions in that way is usually more tricky than as operators, and these formulae are
usually just automatically derived from operators.

The action in Example 3.25 is deterministic. Not all actions represented by propositional for-
mulae are deterministic. A sufficient (but not necessary) condition for the determinism is that the
formula is of the form(φ1 ↔ a′1) ∧ · · · ∧ (φn ↔ a′n) with exactly one equivalence for every
a′ ∈ A′ and formulaeφi not having occurrences of propositions inA′. This way the truth-value of
every state variable in the successor state is unambiguously defined in terms of the truth-values of
the state variables in the predecessor state, and hence the operator is deterministic.

3.5.2 Translation of operators into propositional logic

We first give the simplest possible translation of deterministic planning into the propositional logic.
In this translation every operator is separately translated into a formula, and the choice between
the operators can be represented by the disjunction connective of the propositional logic.

The formulaτo that represents operatoro = 〈z, e〉 is the conjunction of the preconditionz and
the formulae

((EPCa(e) ∨ (a ∧ ¬EPC¬a(e))) ↔ a′) ∧ ¬(EPCa(e) ∧ EPC¬a(e))

for everya ∈ A. Above the first conjunct expresses the value ofa in the successor state in terms of
the values of the state variables in the predecessor state. This is like in the definition of regression
in Section 3.2.2. The second conjunct says that applying the operator is not possible if it assigns
both the value 1 and 0 toa.

Example 3.26 Consider operator〈A ∨B, ((B ∨ C) B A) ∧ (¬C B ¬A) ∧ (A B B)〉.
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The corresponding propositional formula is

(A ∨B) ∧(((B ∨ C) ∨ (A ∧ ¬¬C)) ↔ A′) ∧ ¬((B ∨ C) ∧ ¬C)
∧((A ∨ (B ∧ ¬⊥)) ↔ B′) ∧ ¬(A ∧ ⊥)
∧((⊥ ∨ (C ∧ ¬⊥)) ↔ C ′) ∧ ¬(⊥ ∧⊥)

≡
(A ∨B) ∧(((B ∨ C) ∨ (A ∧ C)) ↔ A′) ∧ ¬((B ∨ C) ∧ ¬C)

∧((A ∨B) ↔ B′)
∧(C ↔ C ′)

�

Applying any of the operatorso1, . . . , on or none of the operators is now represented as the
formula

R1(A,A′) = τo1 ∨ · · · ∨ τon ∨ ((a1 ↔ a′1) ∧ · · · ∧ (ak ↔ a′k))

whereA = {a1, . . . , ak} is the set of all state variables. The last disjunct is for the case that no
operator is applied.

The valuations that satisfy this formula do not uniquely determine which operator was applied,
because for a given state two operators may produce the same successor state. However, in such
cases it usually does not matter which operator is applied and one of them can be chosen arbitrarily.

3.5.3 Finding plans by satisfiability algorithms

We show how plans can be found by first translating problem instances〈A, I,O,G〉 into proposi-
tional formulae, and then finding satisfying valuations by a satisfiability algorithm.

In Section 3.5.1 we showed how operators can be described by propositional formulae over sets
A andA′ of propositions, the setA describing the values of the state variables in the state in which
the operator is applied, and the setA′ describing the values of the state variables in the successor
state of that state.

Now, for a fixed plan lengthn, we define sets of propositionsA0, . . . , An with propositions in
Ai describing the values of the state variables at time pointi, that is, wheni operators (or sets of
operators, if we have parallelism) have been applied.

Let 〈A, I,O,G〉 be a problem instance in deterministic planning.
The state at the first time point0 is determined byI, and at the last time pointn a goal state

must have been reached. Therefore we includeι with time-labeling0 andG with time-labelingn
in the encoding.

ι0 ∧R1(A0, A1) ∧R1(A1, A2) ∧ · · · ∧ R1(An−1, An) ∧Gn

Hereι0 =
∧
{a0|a ∈ A, I(a) = 1} ∪ {¬a0|a ∈ A, I(a) = 0} andGn isG with propositionsa

replaced byan.
Plans are found incrementally by increasing the plan length and testing the satisfiability of the

corresponding formulae: first try to find plans of length 0, then of length 1, 2, 3, and so on, until a
plan is found. If there are no plans, it has to be somehow decided when to stop increasing the plan
length that is tried. An upper bound on plan length is2|A|− 1 whereA is the set of state variables,
but this upper bound does not provide a practical termination condition for this procedure.

The size of the encoding is linear in the plan length, and because the plan length may be ex-
ponential, the encoding might not be practical for very long plans, as runtimes of satisfiability
algorithms in general grow exponentially in the length of the formulae.
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Example 3.27 Consider an initial state that satisfiesI |= A∧B, the goalG = (A∧¬B)∨ (¬A∧
B), and the operatorso1 = 〈>, (A B ¬A)∧ (¬A B A)〉 ando2 = 〈>, (B B ¬B)∧ (¬B B B)〉.

The following formula is satisfiable if and only if〈A, I, {o1, o2}, G〉 has a plan of length 3 or
less.

(A0 ∧B0)
∧(((A0 ↔ A1) ∧ (B0 ↔ ¬B1)) ∨ ((A0 ↔ ¬A1) ∧ (B0 ↔ B1)) ∨ ((A0 ↔ A1) ∧ (B0 ↔ B1)))
∧(((A1 ↔ A2) ∧ (B1 ↔ ¬B2)) ∨ ((A1 ↔ ¬A2) ∧ (B1 ↔ B2)) ∨ ((A1 ↔ A2) ∧ (B1 ↔ B2)))
∧(((A2 ↔ A3) ∧ (B2 ↔ ¬B3)) ∨ ((A2 ↔ ¬A3) ∧ (B2 ↔ B3)) ∨ ((A2 ↔ A3) ∧ (B2 ↔ B3)))
∧((A3 ∧ ¬B3) ∨ (¬A3 ∧B3))

One of the valuations that satisfy the formula is the following.

time i
0 1 2 3

Ai 1 0 0 0
Bi 1 1 0 1

This valuation corresponds to the plan that applies operatoro1 at time point 0,o2 at time point
1, ando2 at time point 2. There are also other satisfying valuations. The shortest plans for this
problem instance areo1 ando2, each consisting of one operator only. �

Example 3.28 Consider the following problem. There are two operators, one for rotating the
values of bits ABC one step right, and the other for inverting the values of all the bits. Consider
reaching from the initial state 100 the goal state 001 with two actions. This is represented as the
following formula.

(A0 ∧ ¬B0 ∧ ¬C0)
∧(((A0 ↔ B1) ∧ (B0 ↔ C1) ∧ (C0 ↔ A1)) ∨ ((¬A0 ↔ A1) ∧ (¬B0 ↔ B1) ∧ (¬C0 ↔ C1)))
∧(((A1 ↔ B2) ∧ (B1 ↔ C2) ∧ (C1 ↔ A2)) ∨ ((¬A1 ↔ A2) ∧ (¬B1 ↔ B2) ∧ (¬C1 ↔ C2)))
∧(¬A2 ∧ ¬B2 ∧ C2)

Because the literals describing the initial and the goal state must be true, we can replace other
occurrences of these state variables by> and⊥.

(A0 ∧ ¬B0 ∧ ¬C0)
∧(((> ↔ B1) ∧ (⊥ ↔ C1) ∧ (⊥ ↔ A1)) ∨ ((¬> ↔ A1) ∧ (¬⊥ ↔ B1) ∧ (¬⊥ ↔ C1)))
∧(((A1 ↔ ⊥) ∧ (B1 ↔ >) ∧ (C1 ↔ ⊥)) ∨ ((¬A1 ↔ ⊥) ∧ (¬B1 ↔ ⊥) ∧ (¬C1 ↔ >)))
∧(¬A2 ∧ ¬B2 ∧ C2)

After simplifying we have the following.

(A0 ∧ ¬B0 ∧ ¬C0)
∧((B1 ∧ ¬C1 ∧ ¬A1) ∨ (¬A1 ∧B1 ∧ C1)
∧((¬A1 ∧B1 ∧ ¬C1) ∨ (A1 ∧B1 ∧ ¬C1))
∧(¬A2 ∧ ¬B2 ∧ C2)

Clearly, the only way of satisfying this formula is to make the first disjuncts of both disjunctions
true, that is,B1 must be true andA1 andC1 must be false.
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The resulting valuation corresponds to taking the rotation action twice.
Consider the same problem but now with the goal state 101.

(A0 ∧ ¬B0 ∧ ¬C0)
∧(((A0 ↔ B1) ∧ (B0 ↔ C1) ∧ (C0 ↔ A1)) ∨ ((¬A0 ↔ A1) ∧ (¬B0 ↔ B1) ∧ (¬C0 ↔ C1)))
∧(((A1 ↔ B2) ∧ (B1 ↔ C2) ∧ (C1 ↔ A2)) ∨ ((¬A1 ↔ A2) ∧ (¬B1 ↔ B2) ∧ (¬C1 ↔ C2)))
∧(A2 ∧ ¬B2 ∧ C2)

We simplify again and get the following formula.

(A0 ∧ ¬B0 ∧ ¬C0)
∧((B1 ∧ ¬C1 ∧ ¬A1) ∨ (¬A1 ∧B1 ∧ C1))
∧((¬A1 ∧B1 ∧ C1) ∨ (¬A1 ∧B1 ∧ ¬C1))
∧(A2 ∧ ¬B2 ∧ C2)

Now there are two possible plans, to rotate first and then invert the values, or first invert and then
rotate. These respectively correspond to making the first disjunct of the first disjunction and the
second disjunct of the second disjunction true, or the second and the first disjunct. �

3.5.4 Parallel plans

Plans so far always have had one operator at a time point. It turns out that it is often useful to allow
several operators in parallel. This is beneficial for two main reasons.

First, consider a number of operators that affect and depend on disjoint state variables so that
they can be applied in any order. If there aren such operators, there aren! plans that are equivalent
in the sense that each leads to the same state. When a satisfiability algorithm is used in showing
that there is no plan of lengthn consisting of these operators, it has to show that none of then!
plans reaches the goals. This may be combinatorially very difficult ifn is high.

Second, when several operators can be applied simultaneously, it is not necessary to represent
all intermediate states of the corresponding sequential plans: parallel plans require less time points
than the corresponding sequential plans.

For sequenceso1; o2; . . . ; on of operators we defineappo1;o2;...;on(s) asappon(· · ·appo2(appo1(s)) · · ·).
For setsS of operators and statess we defineappS(s) as the result of simultaneously applying all
operatorso ∈ S: the preconditions of all operators inS must be true ins and the stateappS(s) is
obtained froms by making the literals in

⋃
〈p,e〉∈S ([e]s) true. Analogously to sequential plans we

can defineappS1;S2;...;Sn(s) asappSn(· · ·appS2(appS1(s)) · · ·).

Definition 3.29 (Step plans)For a set of operatorsO and an initial stateI, a planis a sequence
T = S1, . . . , Sl of sets of operators such that there is a sequence of statess0, . . . , sl (the execution
of T ) such that

1. s0 = I,

2.
⋃
〈p,e〉∈Si

(
[e]si−1

)
is consistent for everyi ∈ {1, . . . , l},

3. si = appSi(si−1) for i ∈ {1, . . . , l},

4. for all i ∈ {1, . . . , l} and〈p, e〉 = o ∈ Si andS ⊆ Si\{o}, appS(si−1) |= p, and

5. for all i ∈ {1, . . . , l} and〈p, e〉 = o ∈ Si andS ⊆ Si\{o}, [e]si−1 = [e]appS(si−1).
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The last condition says that the changes an operator makes would be the same also if some of the
operators parallel to it would have been applied before it. This means that the parallel application
can be understood as applying the operators in any order, with the requirement that the state that
is reached is the same in every case.

Indeed, we can show that a parallel plan can be linearized in an arbitrary way, without affecting
which state it reaches.

Lemma 3.30 LetT = S1, . . . , Sk, . . . , Sl be a step plan. LetT ′ = S1, . . . , S
0
k , S

1
k , . . . , Sl be the

step plan obtained fromT by splitting the stepSk into two stepsS0
k andS1

k such thatSk = S0
k∪S1

k

andS0
k ∩ S1

k = ∅.
If s0, . . . , sk, . . . , sl is the execution ofT thens0, . . . , s′k, sk, . . . , sl for somes′k is the execution

of T ′.

Proof: Sos′k = appS0
k
(sk−1) andsk = appSk

(sk−1) and we have to prove thatappS1
k
(s′k) = sk.

We will show that the active effects of every operatoro ∈ S1
k are the same insk−1 and ins′k, and

hence the changes fromsk−1 to sk are the same in both plans. Leto1, . . . , oz be the operators in
S0

k , and letTi = {o1, . . . , oi} for everyi ∈ {0, . . . , z}. We show by induction that changes caused
by every operatoro ∈ S1

k are the same when executed insk−1 and inappTi(sk−1), from which the
claim follows becauses′k = appTz(sk−1).

Base casei = 0: Immediate becauseT0 = ∅.
Inductive casei ≥ 1: By the induction hypothesis the changes caused by everyo ∈ S1

k are the
same when executed insk−1 and inappTi−1(sk−1). In appTi(sk−1) additionally the operatoroi

has been applied. We have to show that this operator application does affect the set of active effects
of o. By the definition of step plans,[e]appTi−1

(sk−1) = [e]appTi−1∪{oi}(sk−1). This establishes the

induction hypothesis and completes the proof. �

Theorem 3.31 Let T = S1, . . . , Sk, . . . , Sl be a step plan. Then anyσ = o11; . . . ; o
1
n1

; o22;
. . . ; o2n2

; . . . ; ol
1; . . . ; o

l
nl

such that for everyi ∈ {1, . . . , l} the sequenceoi
1; . . . ; o

i
ni

is a total
ordering ofSi, is a plan, and its execution leads to the same terminal state as that ofT .

Proof: First, all empty steps can be removed from the step plan. By Lemma 3.30 non-singleton
steps can be split repeatedly to two smaller non-empty steps until every step is singleton and the
singleton steps are in the desired order. The resulting plan is a sequential plan. �

Lemma 3.32 Testing whether a sequence of sets of operators is a parallel plan is co-NP-hard.

Proof: We can reduce the NP-complete satisfiability problem of the propositional logic to it. Letφ
be a propositional formula in which the propositional variablesA = {a1, . . . , an} occur. LetI be
an initial state in which all state variables are false. Nowφ is valid if and only ifS1 = {〈>, φ B
A〉, 〈>, a1〉, 〈>, a2〉, . . . , 〈>, an〉} is a parallel plan that reaches the goalA. �

However, there are simple sufficient conditions that guarantee that a sequence of sets of oper-
ators satisfies the definition of parallel plans. A commonly used condition is that a state variable
affected by any of the operators at one step of a plan does not occur in the precondition or in the
antecedent of a conditional of any other operator in that step.
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3.5.5 Translation of parallel planning into propositional logic

The second translation we give allows applying several operators is parallel. The translation differs
from the one in Section 3.5.2 in that the translation is not obtained simply by combining the
translations of individual operators, and that we use propositions for explicitly representing which
operators are applied.

Let o1, . . . , om be the operators, ande1, . . . , em their respective effects. Leta ∈ A be one of
the state variables. Then we have the following formulae expressing the conditions under which
the state variablep may change from false to true and from true to false.

(¬a ∧ a′)→((o1 ∧ EPCa(e1)) ∨ · · · ∨ (om ∧ EPCa(em)))
(a ∧ ¬a′)→((o1 ∧ EPC¬a(e1)) ∨ · · · ∨ (om ∧ EPC¬a(em)))

Further, for every operator〈z, e〉 ∈ O we have formulae that describe what values the state
variables have in the predecessor and in the successor states if the operator is applied. Then the
state variablesa1, . . . , an may be affected as follows, and the preconditionz of the operator must
be true in the predecessor state.

(o ∧ EPCa1(e)) → a′1
(o ∧ EPC¬a1(e)) → ¬a′1

...
(o ∧ EPCan(e)) → a′n

(o ∧ EPC¬an(e)) → ¬a′n
o → z

Example 3.33 Consider the operatorso1 = 〈¬LAMP1, LAMP1〉 ando2 = 〈¬LAMP2, LAMP2〉.
The application of none, one or both of these operators is described by the following formula.

(¬LAMP1 ∧ LAMP1′)→((o1 ∧ >) ∨ (o2 ∧ ⊥)
(LAMP1 ∧ ¬LAMP1′)→((o1 ∧ ⊥) ∨ (o2 ∧ ⊥)
(¬LAMP2 ∧ LAMP2′)→((o1 ∧ ⊥) ∨ (o2 ∧ >)
(LAMP2 ∧ ¬LAMP2′)→((o1 ∧ ⊥) ∨ (o2 ∧ ⊥)
o1→LAMP1′

o1→¬LAMP1
o2→LAMP2′

o2→¬LAMP2

�

Finally, we have to guarantee that the last two conditions of parallel plans, that the simultaneous
execution leads to the same result as executing them in any order, are satisfied. Encoding the
conditions exactly is difficult, but we can use a simple encoding that provides a sufficient condition
that the conditions are satisfied. We just have

¬oi ∨ ¬oj

whenever there is a state variablep occurring as an effect inoi and in the precondition or the
antecedent of a conditional effect ofoj .
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We use
R2(A,A

′)

to denote the conjunction of all the above formulae.
LikeR1(A,A′), later we use alsoR2(A,A

′) with propositions labeled for different time points,
and then we also have to label the propositionso for operators so that operator applications at
different time points correspond to different propositions, for exampleo0, o1 and so on. For the
labels for other propositions we use the superscriptt in Rt

2(A,A
′).

3.5.6 Plan existence as evaluation of quantified Boolean formulae

For a more concise representation of the deterministic planning problem we need a slightly more
expressive language than the propositional logic. Quantified Boolean formulae are exactly right
for this purpose.

Consider the following QBF that represents the existence of transition sequences of length2n

between two states.
∃A∃A′(reachn(A,A′) ∧ I ∧G) (3.1)

Here I andG are the formulae describing the initial and goal states respectively expressed in
terms of variables from setsA andA′. Here reachi(A,A′) means that a state represented in terms
of variables fromA′ can be reached with≤ 2i steps from a state represented in terms of variables
fromA. It is recursively defined as follows.

reach0(A,A′)
def≡ R1(A,A′)

reachi+1(A,A′)
def≡ ∃T∀c∃T1∃T2(reachi(T1, T2)

∧(c→(T1 = A ∧ T2 = T ))
∧(¬c→(T1 = T ∧ T2 = A′)))

The setsT andA consist of propositional variables, andA = T for A = {a1, . . . , an} and
T = {t1, . . . , tn}means(a1 ↔ t1)∧· · ·∧(an ↔ tn). The idea of the definition of reachi+1(A,A′)
is that the variablesT describe a state halfway betweenA andA′, and the two values for the
variablec correspond to two reachability tests, one betweenA andT , and the other betweenT
andA′.

This is how the PSPACE-hardness of evaluation of QBF can be proved, withR1(A,A′) rep-
resenting the transitions of a deterministic polynomial-space Turing machine, see for example
[Balcázaret al., 1988].

If we eliminate all universal variables from Formula 3.1, we see that it is essentially a concise
O(log t) space (t = 2n) representation of

I0 ∧R1(A0, A1) ∧R1(A1, A2) ∧ · · · ∧ R1(At−1, At) ∧Gt (3.2)

with only one occurrence of the transition relation.
The representation of deterministic planning as quantified Boolean formulae is more concise

that the representation in the propositional logic, but it currently seems that the algorithms for
testing the satisfiability solve the planning problem much more efficiently than algorithms for
evaluating the values of QBF.
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3.6 Invariants

Planning with both regression and propositional satisfiability suffer from the problem of states
(valuations of state variables) that are not reachable from the initial state. Even when the number
of state variables is high, the number of possible states of the world might be rather small, because
not all valuations correspond to a possible world state. Hence for example regression may produce
formulae that represent states that are not reachable from the initial state, and due to this backward
search may spend a lot of time doing unfruitful work1. Clearly, search would be more efficient
if backward search could be restricted to state that are indeed reachable from the initial state.
Planning as propositional satisfiability suffers from the same problem.

It would be useful to eliminate those states from consideration that do not represent possible
world states. However, determining whether a given state is reachable from the initial state is
PSPACE-complete and equivalent to the plan existence problem of deterministic planning, and
consequently computing exact information on the reachability of states could not be used for
speeding up the basic forward and backward search algorithms: solving the subproblem would be
just as complex as solving the problem itself, and would just lead to slow planning.

However, there is the possibility of using inexact, less expensive information about the reach-
ability of states. In this section we present a polynomial time algorithm for computing inexact
information about the reachability of states that has turned out very useful in speeding up planning
algorithms based on backward search as well as other algorithms that use incomplete descriptions
of sets of states, like plan search by using propositional logic in Section 3.5.

An invariant is a formula that holds in the initial state of a planning problem and that holds in
every state that is reached by an action from a state in which it holds. A formulaφ is the strongest
invariant if for any invariantψ, φ |= ψ. The strongest invariant exactly characterizes the set of all
states that are reachable from the initial state: For all statess, s |= φ if and only if s is reachable
from the initial state. The strongest invariant is unique up to a logical equivalence.

Example 3.34 Consider a set of blocks that are on the table, and that can be stacked on top of
each other so that every block can be on at most one block and on every block there can be at most
one block.

We can formalize the actions that are possible in this setting as the following schematic opera-
tors.

〈ontable(x) ∧ clear(x) ∧ clear(y),on(x, y) ∧ ¬clear(y) ∧ ¬ontable(x)〉
〈clear(x) ∧ on(x, y),ontable(x) ∧ clear(y) ∧ ¬on(x, y)〉
〈clear(x) ∧ on(x, y) ∧ clear(z),on(x, z) ∧ clear(y) ∧ ¬clear(z) ∧ ¬on(x, y)〉

When instantiated with three objectsX = {A,B,C} we get the following operators.

1A similar problem arises with forward search, because with progression one may reach states from which the goals
cannot be reached.
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〈ontable(A) ∧ clear(A) ∧ clear(B),on(A,B) ∧ ¬clear(B) ∧ ¬ontable(A)〉
〈ontable(A) ∧ clear(A) ∧ clear(C),on(A,C) ∧ ¬clear(C) ∧ ¬ontable(A)〉
〈ontable(B) ∧ clear(B) ∧ clear(A),on(B,A) ∧ ¬clear(A) ∧ ¬ontable(B)〉
〈ontable(B) ∧ clear(B) ∧ clear(C),on(B,C) ∧ ¬clear(C) ∧ ¬ontable(B)〉
〈ontable(C) ∧ clear(C) ∧ clear(A),on(C,A) ∧ ¬clear(A) ∧ ¬ontable(C)〉
〈ontable(C) ∧ clear(C) ∧ clear(B),on(C,B) ∧ ¬clear(B) ∧ ¬ontable(C)〉

〈clear(A) ∧ on(A,B),ontable(A) ∧ clear(B) ∧ ¬on(A,B)〉
〈clear(A) ∧ on(A,C),ontable(A) ∧ clear(C) ∧ ¬on(A,C)〉
〈clear(B) ∧ on(B,A),ontable(B) ∧ clear(A) ∧ ¬on(B,A)〉
〈clear(B) ∧ on(B,C),ontable(B) ∧ clear(C) ∧ ¬on(B,C)〉
〈clear(C) ∧ on(C,A),ontable(C) ∧ clear(A) ∧ ¬on(C,A)〉
〈clear(C) ∧ on(C,B),ontable(C) ∧ clear(B) ∧ ¬on(C,B)〉

〈clear(A) ∧ on(A,B) ∧ clear(C),on(A,C) ∧ clear(B) ∧ ¬clear(C) ∧ ¬on(A,B)〉
〈clear(A) ∧ on(A,C) ∧ clear(B),on(A,B) ∧ clear(C) ∧ ¬clear(B) ∧ ¬on(A,C)〉
〈clear(B) ∧ on(B,A) ∧ clear(C),on(B,C) ∧ clear(A) ∧ ¬clear(C) ∧ ¬on(B,A)〉
〈clear(B) ∧ on(B,C) ∧ clear(A),on(B,A) ∧ clear(C) ∧ ¬clear(A) ∧ ¬on(B,C)〉
〈clear(C) ∧ on(C,A) ∧ clear(B),on(C,B) ∧ clear(A) ∧ ¬clear(B) ∧ ¬on(C,A)〉
〈clear(C) ∧ on(C,B) ∧ clear(A),on(C,A) ∧ clear(B) ∧ ¬clear(A) ∧ ¬on(C,B)〉

Here a block being clear means that no block is on top of it.
Let all the blocks be initially on the table. Hence the initial state satisfies the formula

clear(A) ∧ clear(B) ∧ clear(C) ∧ ontable(A) ∧ ontable(B) ∧ ontable(C)∧
¬on(A,B) ∧ ¬on(A,C) ∧ ¬on(B,A) ∧ ¬on(B,C) ∧ ¬on(C,A) ∧ ¬on(C,B)

that determines the truth-values of all state variables uniquely.
All the invariants in this problem instance are the following.

clear(A) ↔ (¬on(B,A) ∧ ¬on(C,A))
clear(B) ↔ (¬on(A,B) ∧ ¬on(C,B))
clear(C) ↔ (¬on(A,C) ∧ ¬on(B,C))
ontable(A) ↔ (¬on(A,B) ∧ ¬on(A,C))
ontable(B) ↔ (¬on(B,A) ∧ ¬on(B,C))
ontable(C) ↔ (¬on(C,A) ∧ ¬on(C,B))
¬on(A,B) ∨ ¬on(A,C)
¬on(B,A) ∨ ¬on(B,C)
¬on(C,A) ∨ ¬on(C,B)
¬on(B,A) ∨ ¬on(C,A)
¬on(A,B) ∨ ¬on(C,B)
¬on(A,C) ∨ ¬on(B,C)
¬(on(A,B) ∧ on(B,C) ∧ on(C,A))
¬(on(A,C) ∧ on(C,B) ∧ on(B,A))

The conjunction of these formulae describes exactly the set of states that are reachable from the
initial state by the operators, and intuitively describes all the possible configurations the three
blocks can be in.
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We can schematically give the invariants for any setX of blocks as follows.

clear(x) ↔ ∀y ∈ X\{x}.¬on(y, x)
ontable(x) ↔ ∀y ∈ X\{x}.¬on(x, y)
¬on(x, y) ∨ ¬on(x, z) wheny 6= z
¬on(y, x) ∨ ¬on(z, x) wheny 6= z
¬(on(x1, x2) ∧ on(x2, x3) ∧ · · · ∧ on(xn−1, x) ∧ on(xn, x1)) for all n ≥ 1 and{x1, . . . , xn} ⊆ X

The last schematic formula says that theon relation is acyclic. �

Because testing whether a state satisfies all invariants, that is whether it is reachable from the
initial state, is PSPACE-hard, the requirement that invariant computation is polynomial time leads
to computing only invariants that are weaker than the strongest invariant. This kind of set of
invariants only gives an upper bound (with respect to set-inclusion) on the set of reachable states.

The algorithm we present computes invariants that are disjunctions of at mostn literals, for a
fixedn. For representing all invariants, no finite upper bound onn may be imposed, but then also
invariant computation could not be performed in polynomial time. Although the computation is
polynomial time for any fixedn, the runtimes grow quickly asn is increased, and it is most useful
for n = 2, that is, for invariants that are disjunctions of two literals.

The algorithm proceeds by first computing alln-literal clauses that are true in the initial state.
Then, the algorithm removes all clauses that are not true after 1 operator application, after 2
operator applications, and so on, until the set of clauses does not change. At this point all the
clauses are invariants and hold in all states that are reachable from the initial state.

3.6.1 Algorithms for computing invariants

Our algorithm for computing invariants has a similar flavor to distance estimation in Section 3.4:
starting from a description of what is possible in the initial state, we inductively determine what
is possible afteri operator applications. In contrast to the distance estimation method, the states
that are reachable afteri operator applications are not characterized by sets of literals but by sets
of clauses. This complicates the computation somewhat.

LetCi be a set of clauses characterizing those states that are reachable byi operator applications.
Similarly to distance computation, we consider for each operator and for each clause inCi whether
applying the operator may make the clause false. If it can, the clause could be false afteri operator
applications and therefore will not be in the clause setCi+1.

For this basic step of invariant computation, whether an operator application may falsify a
clause, we present two algorithms, first a simple one for a restricted class of operators, and then a
more general for arbitrary operators.

Figure 3.3 gives an algorithm that tests whether applying an operatoro ∈ O in some states
may make a formulal1 ∨ · · · ∨ ln false assuming thats |= ∆ ∪ {l1 ∨ · · · ∨ ln}.

The algorithm performs a case analysis for every literal in the clause, testing in each case that
the clause remains true: if a literal becomes false, either some other literal in the clause becomes
true simultaneously or some other literal in the clause was true already and does not become false.

The algorithm is defined only for operators that have a precondition that is a conjunction of liter-
als and an effect that is a conjunction of atomic effects (known as STRIPS operators for historical
reasons). We give a similar algorithm for arbitrary operators later in Figure 3.4.
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proceduresimplepreserved(φ,∆,o);
Now φ = l1 ∨ · · · ∨ ln ando = 〈l′1 ∧ · · · ∧ l′n′ , l′′1 ∧ · · · ∧ l′′n′′〉 for someli, l′j andl′′k;

if {l′′′1 , · · · , l′′′m} ⊆ {l′1, . . . , l′n′} for somel′′′1 ∨ · · · ∨ l′′′m ∈ ∆ then return true;
(* Operator is not applicable. *)

for each l ∈ {l1, . . . , ln} do
if l 6∈ {l′′1 , . . . , l′′n′′} then gotoOK; (* Literal l cannot become false. *)
for each l′ ∈ {l1, . . . , ln}\{l} do

if l′ ∈ {l′′1 , . . . , l′′n′′} then gotoOK; (* Literal l′ becomes true. *)
if l′ ∈ {l′1, . . . , l′n′} or l′′′1 ∨ · · · ∨ l′′′m ∨ l′ ∈ ∆ for some{l′′′1 , . . . , l

′′′
m} ⊆ {l′1, . . . , l′n′},

and l′ 6∈ {l′′1 , . . . , l′′n′′}
then gotoOK; (* Literal l′ was true and cannot become false. *)

end do
return false; (* Truth of the clause could not be guaranteed. *)
OK:

end do
return true;

Figure 3.3: Algorithm that tests if applyingo may falsifyl1 ∨ · · · ∨ ln in a state satisfying∆

Lemma 3.35 Let∆ be a set of clauses,φ = l1 ∨ · · · ∨ ln a clause, ando an operator of the form
〈l′1 ∧ · · · ∧ l′n′ , l′′1 ∧ · · · ∧ l′′n′′〉 wherel′j andl′′k are literals. If simplepreserved(φ,∆,o) returnstrue,
then appo(s) |= φ for any states such thats |= ∆ ∪ {φ} ando is applicable ins. (It may under
these conditions also returnfalse).

Proof: Assumes is a state such thats |= l′1 ∧ · · · ∧ l′n′ ands |= ∆ ands |= φ andappo(s) 6|= φ.
We show that the procedure returnsfalse.

Becauses |= φ andappo(s) 6|= φ, there are some literals{lf1 , . . . , l
f
m} ⊆ {l1, . . . ln} such that

s |= lf1 ∧ · · · ∧ l
f
m and{lf1 , . . . , l

f
m} ⊆ {l′′1 , . . . l′′n′′}, that is, applyingo makes them false, and the

rest of the literals inφ were false and do not become true.
Choose anyl ∈ {lf1 , . . . , l

f
m}. We show that when the outermostfor eachloop considersl the

procedure will returnfalse.
By assumptionl ∈ {l′′1 , . . . l′′n′′}, and the condition of the firstif inside the loop is not satisfied

and the execution proceeds by iteration of the innerfor eachloop.
Let l′ be any of the literals inφ exceptl.
Becauseφ is false inappo(s), l′ 6∈ {l′′1 , . . . l′′n′′}, and the condition of the firstif statement is not

satisfied.
If l′ ∈ {lf1 , . . . , l

f
m} then by assumptionl′ ∈ {l′′1 , . . . , l′′n′′} and the condition of the secondif

statement is not satisfied.
If l′ 6∈ {lf1 , . . . , l

f
m} then by assumptions 6|= l′. Because the operator is applicables |=

l′1 ∧ · · · ∧ l′n′ , and hencel′ 6∈ {l′1 ∧ · · · ∧ l′n′}. Becauses satisfies the preconditionl′1 ∧ · · · ∧ l′n′
ands |= ∆, there is also nol′′ ∨ l′ ∈ ∆ for any l′′ ∈ {l′1, . . . , l′n′}. Hence also in this case the
condition of theif statement is not satisfied.

Hence on none of the iterations of the innerfor eachloop is agoto OKexecuted, and as the loop
exits, the procedure returnsfalse. �

Figure 3.4 gives a similar algorithm for arbitrary operators. The structure of the algorithm is
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procedurepreserved(φ,∆,o);
Now φ = l1 ∨ · · · ∨ ln for somel1, . . . , ln ando = 〈c, e〉 for somec ande;
if ∆ |= ¬c then return true; (* Operator is not applicable. *)
for each l ∈ {l1, . . . , ln} do

if ∆ ∧ {EPCl(e)} |= ⊥ then gotoOK; (* Literal l cannot become false. *)
for each l′ ∈ {l1, . . . , ln}\{l} do

if ∆ ∪ {EPCl(e), c} |= EPCl′(e) then gotoOK; (* Literal l′ becomes true. *)
if ∆ ∪ {EPCl(e), c} |= l′ and ∆ ∪ {EPCl(e), c} |= ¬EPCl′(e) then gotoOK;

(* Literal l′ was true and cannot become false. *)
end do
return false; (* Truth of the clause could not be guaranteed. *)
OK:

end do
return true;

Figure 3.4: Algorithm that tests if applyingo may falsifyl1 ∨ · · · ∨ ln in a state satisfying∆

exactly the same, but the tests whether a certain literal becomes true or false or whether it was true
before the operator was applied, are more complicated.

The algorithm is allowed to fail in one direction: it may sometimes returnfalsewhenl1∨· · ·∨ln
actually is true after applying the operator. However, this is a necessary consequence of our
requirement that our invariant computation takes only polynomial time.

Lemma 3.36 Let ∆ be a set of clauses,φ = l1 ∨ · · · ∨ ln a clause, ando an operator. If
preserved(φ,∆,o) returns true, then appo(s) |= φ for any states such thats |= ∆ ∪ {φ} and
o is applicable ins. (It may under these conditions also returnfalse).

Proof: �

Figure 3.5 gives the algorithm for computing invariants consisting of at mostn literals.

Theorem 3.37 LetA be a set of state variables,I a state,O a set of operators, andn ≥ 1 an
integer.

Then the procedure call invariants(A, I,O, n) returns a setC ′ of clauses so that for any se-
quenceo1; . . . , om of operators fromO appo1;...,om(I) |= C ′.

Proof: LetC0 be the value first applied to the variableC in the procedureinvariants, andC1, C2, . . .
be the values of the variable in the end of each iteration of the outermostrepeatloop.

Induction hypothesis: for everyφ ∈ Ci, appo1;...,oi(I) |= φ.
Base casei = 0: appε(I) for the empty sequence is by definitionI itself, and by construction

C0 consists of only formulae that are true in the initial state.
Inductive casei ≥ 1:

�

The algorithm in Figure 3.4 does not run in polynomial time in the size of the problem instance
because the logical consequence tests may take exponential time. To make the procedure run
in polynomial time, we can again use an approximate logical consequence test, similar to the
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procedure invariants(A, I,O, n);
C := {a ∈ A|I |= a} ∪ {¬a|a ∈ A, I 6|= a};
repeat
C ′ := C;
for each l1 ∨ · · · ∨ lm ∈ C do (* Test every clause *)

for eacho ∈ O do (* with respect to every operator. *)
N := {l1 ∨ · · · ∨ lm};
repeat
N ′ :=N ;
for each l′1 ∨ · · · ∨ l′m′ ∈ N s.t. not preserved(l′1 ∨ · · · ∨ l′m′ ,C ′,o) do
N :=N\{l′1 ∨ · · · ∨ l′m′};
if m′ < n then (* Clause length within pre-defined limit. *)

begin
N :=N ∪ {l′1 ∨ · · · ∨ l′m′ ∨ a | a ∈ A};
N :=N ∪ {l′1 ∨ · · · ∨ l′m′ ∨ ¬a | a ∈ A};

end
end do

until N = N ′; (* N was not weakened further. *)
C := (C\{l1 ∨ · · · ∨ lm}) ∪N ;

end do
end do

until C = C ′;
return C;

Figure 3.5: Algorithm for computing a set of invariant clauses



CHAPTER 3. DETERMINISTIC PLANNING 53

procedure canbetruein(φ,D) used in Definition 3.16. The logical consequence test is allowed
to fail in one direction without invalidating the invariant algorithm in Figure 3.5:preservedis
allowed to returnfalsealso when the operator would not falsifyφ, and hence logical consequence
tests may be answerednoeven when the correct answer isyes.

The logical consequence tests have the form∆ ∪ S |= φ. The logical consequence∆ ∪ S |= φ
holds if and only if∆ ∪ {

∧
S ∧ ¬φ} is not satisfiable. A correct approximation is allowed to

answersatisfiableeven when the formula is unsatisfiable.
We present a polynomial time approximation of satisfiability tests for sets of formulae∆ ∪ S

in the case in which∆ consists of clauses of length at most 2. It is based on the definition of sets
of literals litconseqs(φ,∆) given below. The idea of litconseqs(φ,∆) is that this set consists of (a
subset of the) literals that must be true whenφ and∆ are true, that is, that are logical consequences
of φ and∆. The one-sided error litconseqs(φ,∆) is allowed to make and indeed does make is how
disjunction∨ is handled. if∆∪ {φ} is satisfiable, then litconseqs(φ,∆) does not contain⊥ nora
and¬a for anya ∈ A.

litconseqs(⊥,∆) = {⊥}
litconseqs(>,∆) = (∆ ∩A) ∪ (∆ ∩ {¬a|a ∈ A})
litconseqs(a,∆) = {a} ∪ {l|¬a ∨ l ∈ ∆} ∪ (∆ ∩A) ∪ (∆ ∩ {¬a|a ∈ A})

litconseqs(¬a,∆) = {¬a} ∪ {l|a ∨ l ∈ ∆} ∪ (∆ ∩A) ∪ (∆ ∩ {¬a|a ∈ A})
litconseqs(¬¬φ,∆) = litconseqs(φ,∆)

litconseqs(φ ∨ ψ,∆) = litconseqs(φ,∆) ∩ litconseqs(ψ,∆)
litconseqs(φ ∧ ψ,∆) = litconseqs(φ,∆) ∪ litconseqs(ψ,∆)

litconseqs(¬(φ ∨ ψ),∆) = litconseqs(¬φ,∆) ∪ litconseqs(¬ψ,∆)
litconseqs(¬(φ ∧ ψ),∆) = litconseqs(¬φ,∆) ∩ litconseqs(¬ψ,∆)

The approximation fails because the satisfiability test is too simple. Consider litconseqs((A ∨
B) ∧ ¬(A ∨ B), ∅) which is the empty set of literals because litconseqs(A ∨ B, ∅) = ∅ and
litconseqs(¬(A ∨B), ∅) = ∅. This formula is unsatisfiable because it has the formφ ∧ ¬φ.

There are some simple ways of strengthening this approximation. For example, conjunction
could be strengthened to

litconseqs(φ∧ψ,∆) = litconseqs(φ,∆∪ litconseqs(ψ,∆))∪ litconseqs(ψ,∆∪ litconseqs(φ,∆))

and further by computing more consequences for one of the conjuncts with the literals obtained
from the other until no more literals are obtained.

The function litconseqs(φ,∆) can also be used as a part of slightly more powerful (???) logical
consequence tests as follows.

Define

entailed(⊥, D) = false
entailed(>, D) = true
entailed(a,D) = true iff a ∈ D (for state variablesa ∈ A)

entailed(¬a,D) = true iff ¬a ∈ D (for state variablesa ∈ A)
entailed(¬¬φ,D) = entailed(φ,D)

entailed(φ ∨ ψ,D) = entailed(φ,D) or entailed(ψ,D)
entailed(φ ∧ ψ,D) = entailed(φ,D) and entailed(ψ,D)

entailed(¬(φ ∨ ψ), D) = entailed(¬φ,D) and entailed(¬ψ,D)
entailed(¬(φ ∧ ψ), D) = entailed(¬φ,D) or entailed(¬ψ,D)
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Notice that the definition of entailed(φ,D) is similar to canbetruein(φ,D) in Definition 3.16 ex-
cept that literalsa and¬a are handled differently: entailed(φ,D) is about logical consequences
of D, that is formulae that are guaranteed to be true whenD is true, while canbetruein(φ,D) is
aboutφ being consistent withD.

Now if entailed(φ, litconseqs(ψ,∆)) then∆ ∪ {ψ} |= φ.

3.6.2 Applications in planning by regression and satisfiability

The first application is in planning in the propositional logic. It has been noticed that adding the
2-literal invariants to all time points reduces runtimes of algorithms that test satisfiability. Notice
that invariants do not affect the set of models of a formula representing planning: any satisfying
valuation of the original formula also satisfies the invariants, because the values of propositions
describing the values of state variables at any time point corresponds to a state that is reachable
from the initial state, and hence this valuation also satisfies any invariant.

The second application is in planning by regression. Consider the blocks world with the goal
A-ON-B ∧ B-ON-C. Now we can regress with the operator that moves B onto C from the table,
obtaining the new goal A-ON-B∧B-CLEAR∧C-CLEAR∧B-ON-TABLE. Clearly, this does not
correspond to an intended blocks world state because A-ON-B is incompatible with B-CLEAR,
and indeed,¬A-ON-B∨¬B-CLEAR is an invariant for the blocks world. Any regression step that
leads to a goal that is incompatible with the invariants can be ignored, because that goal does not
represent any of the states that are reachable from the initial state, and hence no plan can reach the
goal in question.

Another application of invariants, and the intermediate setsCi produced by our invariant algo-
rithm, is improving the distance estimation in Section 3.4. Usingvi for testing whether an operator
precondition, for examplea ∧ b, has distancei from the initial state, the distances ofa andb are
used separately. But even when it is possible to reach botha andb with i operator applications,
it might still not be possible to reach them both simultaneously withi operator applications. For
example, fori = 1 and an initial state in which botha andb are false, there might be no single op-
erator that makes them both true, but two operators, each of which makes only one of them true. If
¬a∨¬b ∈ Ci, we know that afteri operator applications one ofa or b must still be false, and then
we know that the operator in question is not applicable at time pointi. Therefore the invariants
and the setsCi produced during the invariant computation can improve the distance estimates.

3.7 Planning with symbolic representations of sets of states

A complementary approach to planning for planning problems represented as formulae in the
propositional logic uses the formulae as a data structure. As discussed in Section 2.3.3 formulae
directly provide a representation of sets of states, and in this section we show how operations on
transition relations have a counterpart as operations on formulae that represent transition relations.

This yields a further planning algorithm for deterministic planning, typically implemented by
means of BDDs. The algorithm in Section 3.7.3 will later be generalized to different types of
nondeterministic planning.

Table 3.1 outlines a number of connections between operations on vectors and matrices, on
propositional formulae, and on sets and relations.

Computing the product of two matrices that are represented as propositional formulae is based
on theexistential abstractionoperation∃p.φ = φ[>/p] ∨ φ[⊥/p] that takes a formulaφ and a
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matrices formulas sets of states
vectorV1×n formula overA set of states
matrixMn×n formula overA ∪A′ transition relation
Mn×n ×Nn×n ∃A′.(φ(A,A′) ∧ ψ(A′, A′′)) sequential composition
S1×n ×Mn×n ∃A.(φ(A) ∧ ψ(A,A′)) successor states ofS
S1×n + S′1×n φ ∨ ψ set union

φ ∧ ψ set intersection

Table 3.1: Correspondence between matrix operations, Boolean operations as well as set-theoretic
and relational operations

propositionp and produces a formulaφ′ without occurrences ofp.
Let φ be a formula overA ∪ A′ andψ be a formula overA′ ∪ A′′. Now matrix product of

matrices corresponding toφ andψ′ is
∃A′.φ ∧ ψ.

Example 3.38 Let φ = A ↔ ¬A′ andψ = A′ ↔ A′′ represent two actions, reversing the
truth-value ofA and doing nothing. The sequential composition of these actions is

∃A′.φ ∧ ψ = ((A↔ ¬>) ∧ (> ↔ A′′)) ∨ ((A↔ ¬⊥) ∧ (⊥ ↔ A′′))
≡ ((A↔ ⊥) ∧ (> ↔ A′′)) ∨ ((A↔ >) ∧ (⊥ ↔ A′′))
≡ A↔ ¬A′′

�

Consider the representation of planning as satisfiability in the propositional discussed in Section
3.5.3.

ι0 ∧R1(A0, A1) ∧R1(A1, A2) ∧ · · · ∧ R1(An−1, An)︸ ︷︷ ︸∧Gn

The conjunction of formulae theR1(Ai, Ai+1) representing the transition relation corresponds
to the computation of then-fold product of the corresponding adjacency matrices. Further, when
the first factor in the product is the vector describing the initial state, we have the computation of
the set of states reachable inn steps.

ι0 × (R1(A0, A1)︸ ︷︷ ︸×R1(A1, A2)︸ ︷︷ ︸× · · · × R1(An−1, An))

︸ ︷︷ ︸
Taking the intersection of this set with the set of goal states tells us whether there is a plan of
lengthn.

In the following we discuss how this idea can be turned into a planning algorithm, in which
then-fold product of the initial state vector with the adjacency matrices is computed step by step,
yielding vectors describing the sets of states reachable ini ∈ {0, . . . , n} operator applications.

3.7.1 Operations on transition relations expressed as formulae

The most basic operation is the computation ofthe imageof a set of states with respect to a
transition relation.

imgR(S) = {s′|s ∈ S, 〈s, s′〉 ∈ R}



CHAPTER 3. DETERMINISTIC PLANNING 56

This is the set of states that can be reached fromS by transition relationR. When sets of states
and transition relation are represented as propositional formulae, the image computation can be
performed by the existential abstraction and renaming operations as follows.

imgR(A,A′)(φ) = (∃A.(φ ∧R(A,A′)))[p1/p
′
1, . . . , pn/p

′
n]

Similarly we can compute the product of two matrices that are represented as formulaeR(A,A′)
andQ(A′, A′′) by using existential abstraction.

R(A,A′) · Q(A′, A′′) = ∃A′.(R(A,A′) ∧Q(A′, A′′))

The resulting formula is over state variablesA andA′′, from which a formula onA andA′ is
obtained by renamingA′′ toA′.

Plan search can also be performed starting from the goal states, like done with all the algorithms
in Chapter 4. In this case we must compute sets of states from which any of the states in a given
set can be reached by one step. This is represented as the computation ofthe preimageof a set of
states with respect to a transition relation.2

wpreimgR(S) = {s|s′ ∈ S, 〈s, s′〉 ∈ R}

This is the set of states from which a state inS is reached by the transition relationR. The
corresponding computation in terms of formulae is as follows. Hereφ is a formula overA, and
first it has to be renamed to a formula overA′.

wpreimgR(A,A′)(φ) = ∃A′.(φ[p′1/p1, . . . , p
′
n/pn] ∧R(A,A′)) (3.3)

Notice that when the relationR(A,A′) corresponding to an operatoro has been represented as
discussed in Section 3.5.2, the Formula 3.3 forwpreimgR(A,A′)(φ) is logically equivalent to the
regressionregro(φ) as given in Definition 3.6.

Example 3.39 Consider the formulaA∧B that is regressed with the operatoro = 〈C,A∧ (A B
B)〉. Now we have

regro(φ) = C ∧ (> ∧ (B ∨A)) ≡ C ∧ (B ∨A).

The transition relation ofo is represented by the formula

τ = C ∧A′ ∧ ((B ∨A) ↔ B′) ∧ (C ↔ C ′).

The preimage ofA ∨B with respect too is represented by

∃A′B′C ′.((A′ ∧B′) ∧ τ) ≡ ∃A′B′C ′.((A′ ∧B′) ∧ C ∧A′ ∧ ((B ∨A) ↔ B′) ∧ (C ↔ C ′))
≡ ∃A′B′C ′.(A′ ∧B′ ∧ C ∧ (B ∨A) ∧ C ′)
≡ ∃B′C ′.(B′ ∧ C ∧ (B ∨A) ∧ C ′)
≡ ∃C ′.(C ∧ (B ∨A) ∧ C ′)
≡ C ∧ (B ∨A)

�
2This is often called theweak preimageto contrast it with the strong preimage operation defined in Section 4.3.
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procedureplanfwd(I,O,G)
i := 0;
D0 := {I};
while G ∩Di = ∅ and (i = 0 or Di−1 6= Di) do
i := i+ 1;
Di :=Di−1 ∪

⋃
o∈O imgo(Di−1); (* Possible successors of states inDi−1 *)

end
if G ∩Di = ∅ then terminate; (* There is no plan. *)
S :=G ∩Di;
for j := i-1 to 0 do (* Output plan, last operator first. *)

chooseo ∈ O such thatwpreimgo(S) ∩Dj 6= ∅;
outputo;
S := wpreimgo(S) ∩Dj ;

end

Figure 3.6: Algorithm for deterministic planning (forward, in terms of sets)

As we will see later, computation of preimages is applicable to all kinds of operators, not only
deterministic ones as required by our definition of regression, whereas defining regression for
arbitrary operators is more difficult (we will give a definition of regression only for a subclass of
nondeterministic operators.)

Hence our definition of regression can be viewed as a specialized method for computing preim-
age of formulae with respect to a transition relation corresponding to a deterministic operator. The
main advantage of regression is that no existential abstraction is needed.

Notice that defining progression for arbitrary formulae (sets of states) seems to require existen-
tial abstraction. A simple syntactic definition of progression similar to that of regression does not
seem to be possible because the value of state variable in a given state cannot be represented in
terms of the values of the state variables in the successor state. This is because of the asymmetry
of deterministic actions: the current state and an operator determine the successor state uniquely,
but the successor state and the operator do not determine the current state uniquely. In other words,
the changes that take place are a function of the current state, but not a function of the successor
state.

3.7.2 A forward planning algorithm

The algorithm in Figure 3.6 has two phases: the computation of distance from the initial state to
every reachable state, and the extraction of a plan. The setD0 consists of the initial state, the set
D1 of those states that can be reached from the initial state by one operator, and so on.

We can express the same algorithm in terms of formulae in the propositional logic, see Figure
3.7. The plan extraction proceeds by identifying the operators in the backwards direction starting
from the last one.

In the figure we give two variants of the algorithm, first expressed in terms of set-theoretic
operations on sets of states and transition relations, and then expressed in terms of the propositional
formulae.

Notice that in the first version of the algorithmDi is computed as the union ofDi−1 (reachability
by i − 1 steps or less) and the images ofDi−1 with respect to all of the operators, and henceDi
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procedureplanfwd(I,R1(A,A′),G)
i := 0;
D0 := I;
while Di |= ¬G and (i = 0 or 6|= Di−1 ↔ Di) do
i := i+ 1;
Di := (∃A.(Di−1 ∧R1(A,A′)))[p′1/p1, . . . , p

′
n/pn]; (* Possible predecessors of states inDi−1 *)

end
if Di |= ¬G then terminate; (* There is no plan. *)
S :=G ∧Di;
for j := i-1 to 0 do (* Output plan, last operator first. *)

chooseo ∈ O such thatDj 6|= ¬wpreimgτo(S);
outputo;
S := wpreimgτo(S) ∧Dj ;

end

Figure 3.7: Algorithm for deterministic planning (forward, in terms of formulae)

represents reachability byi steps or less. In the second version the transition relationR1(A,A′)
encodes reachability by 0 or 1 steps, so we directly obtain reachability byi steps or less, without
having to take union (∨) with Di−1.

Theorem 3.40 Let a states be inDi\Di−1. Then there is a plan that reachess from the initial
state byi operator applications.

Proof: �

3.7.3 A backward planning algorithm

The second algorithm computes the distances to the goal states. This computation proceeds by
preimage computation starting from the goal states, soD0 consists of the goal states,D1 the states
with distance 1 to the goal states, and so on. The algorithm is given in Figure 3.8.

We can express the same algorithm in terms of formulae in the propositional logic, see Figure
3.9.

Theorem 3.41 Let a states be inDi\Di−1. Then there is a plan that reaches froms a goal state
by i operator applications.

Proof: �

3.8 Computational complexity

In this section we discuss the computational complexity of the main decision problems related to
deterministic planning.

The plan existence problem of deterministic planning is PSPACE-complete. The result was
proved by Bylander[1994]. He proved the hardness part by giving a simulation of deterministic
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procedureplanbwd(I,O,G)
D0 :=G;
i := 0;
while I 6∈ Di and (i = 0 or Di−1 6= Di) do
i := i+ 1;
Di :=Di−1 ∪

⋃
o∈O wpreimgo(Di−1);

end
if I 6∈ Di then terminate; (* There is no plan. *)
s := I;
for j := i− 1 to 0 do (* Output plan, first operator first. *)

chooseo ∈ O such thatappo(s) ∈ Dj ;
outputo;
s := appo(s);

end

Figure 3.8: Algorithm for deterministic planning (backward, in terms of states)

procedureplanbwd(I,R1(A,A′),G)
D0 :=G;
i := 0;
while I 6|= Di and (i = 0 or 6|= Di−1 ↔ Di) do
i := i+ 1;
Di := ∃A′.(R1(A,A′) ∧ (Di−1[p′1/p1, . . . , p

′
n/pn]));

end

Figure 3.9: Algorithm for deterministic planning (backward, in terms of formulae)



CHAPTER 3. DETERMINISTIC PLANNING 60

polynomial-space Turing machines, and the membership part by giving an algorithm that solves
the problem in polynomial space. We later generalize his Turing machine simulation to alter-
nating Turing machines to obtain an EXP-hardness proof for nondeterministic planning with full
observability in Theorem 4.42.

Theorem 3.42 The problem of testing the existence of a plan is PSPACE-hard.

Proof: Let 〈Σ, Q, δ, q0, g〉 be any deterministic Turing machine with a polynomial space bound
p(x). Letσ be an input string of lengthn.

We construct a problem instance in deterministic planning with for simulating the Turing ma-
chine. The problem instance has a size that is polynomial in the size of the description of the
Turing machine and the input string.

The setA of state variables in the problem instance consists of

1. q ∈ Q for denoting the internal states of the TM,

2. si for every symbols ∈ Σ ∪ {|,�} and tape celli ∈ {0, . . . , p(n)}, and

3. hi for the positions of the R/W headi ∈ {0, . . . , p(n) + 1}.

The initial state of the problem instance represents the initial configuration of the TM. The
initial stateI is as follows.

1. I(q0) = 1

2. I(q) = 0 for all q ∈ Q\{q0}.

3. I(si) = 1 if and only if ith input symbol iss ∈ Σ, for all i ∈ {1, . . . , n}.

4. I(si) = 0 for all s ∈ Σ andi ∈ {0, n+ 1, n+ 2, . . . , p(n)}.

5. I(�i) = 1 for all i ∈ {n+ 1, . . . , p(n)}.

6. I(�i) = 0 for all i ∈ {0, . . . , n}.

7. I(|0) = 1

8. I(|i) = 0 for all n ∈ {1, . . . , p(n)}

9. I(h1) = 1

10. I(hi) = 0 for all i ∈ {0, 2, 3, 4, . . . , p(n) + 1}

The goal is the following formula.

G =
∨
{q ∈ Q|g(q) = accept}

To define the operators, we first define effects corresponding to all possible transitions.
For all〈s, q〉 ∈ (Σ∪{|,�})×Q, i ∈ {0, . . . , p(n)} and〈s′, q′,m〉 ∈ (Σ∪{|})×Q×{L,N,R}

define the effectτs,q,i(s′, q′,m) asα ∧ κ ∧ θ where the effectsα, κ andθ are defined as follows.
The effectα describes what happens to the tape symbol under the R/W head. Ifs = s′ then

α = > as nothing on the tape changes. Otherwise,α = ¬si ∧ s′i to denote that the new symbol in
theith tape cell iss′ and nots.
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procedure reach(O,s,s′,m)
if m = 0 then (* Plans of length 0 and 1 *)

if s = s’or there iso ∈ O such thats′ = appo(s) then return true
else return false

else
begin (* Longer plans *)

for all statess′′ do (* Iteration over intermediate states *)
if reach(O,s,s′′,m− 1) and reach(O,s′′,s′,m− 1) then return true

end
return false;

end

Figure 3.10: Algorithm for testing plan existence in polynomial space

The effectκ describes the change to the internal state of the TM. Again, either the state changes
or does not, soκ = ¬q ∧ q′ if q 6= q′ and> otherwise. We defineκ = ¬q wheni = p(n) and
m = R so that when the space bound gets violated, no accepting state can be reached.

The effectθ describes the movement of the R/W head. Either there is movement to the left, no
movement, or movement to the right. Hence

θ =


¬hi ∧ hi−1 if m = L

> if m = N
¬hi ∧ hi+1 if m = R

By definition of TMs, movement at the left end of the tape is always to the right. Similarly, we
have state variable for R/W head positionp(n) + 1 and moving to that position is possible, but no
transitions from that position are possible, as the space bound has been violated.

Now, these effects that represent possible transitions are used in the operators that simulate the
Turing machine. Let〈s, q〉 ∈ (Σ ∪ {|,�})×Q, i ∈ {0, . . . , p(n)} andδ(s, q) = {〈s′, q′,m〉}. If
g(q) = ∃, then define the operator

os,q,i = 〈hi ∧ si ∧ q, τs,q,i(s′, q′,m)〉.

We claim that the problem instance has a plan if and only if the Turing machine accepts without
violating the space bound.

If the Turing machine violates the space bound, the state variablehp(n)+1 becomes true and an
accepting state cannot be reached because no further operator will be applicable.

So, because all deterministic Turing machines with a polynomial space bound can be in polyno-
mial time translated to a planning problem, all decision problems in PSPACE are polynomial time
many-one reducible to deterministic planning, and the plan existence problem is PSPACE-hard.�

Theorem 3.43 The problem of testing the existence of a plan is in PSPACE.

Proof: A recursive algorithm for testingm-step reachability between two states withlogm mem-
ory consumption is given in Figure 3.10.

We show that when the algorithm is called with the numbern = |A| of state variables as the
last argument, it consumes a polynomial amount of memory inn. The recursion depth isn. At the
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recursive calls memory is needed for storing the intermediate statess′. The memory needed for
this is polynomial inn. Hence at any point of time the space consumption isO(m2).

A problem instance〈A, I,O,G〉with n = |A| state variables has a plan if and only if reach(O,I,s′,n)
returnstrue for somes′ such thats′ |= G. Iteration over all statess′ can be performed in polyno-
mial space and testings′ |= G can be performed in polynomial time in the size ofG. Hence the
whole memory consumption is polynomial. �

Part of the high complexity of planning is due to the fact that plans can be exponentially long.
If a polynomial upper bound for plan length exists, testing the existence of plans is still intractable
but much easier.

Theorem 3.44 The problem of testing the existence of plans having a length bounded by some
polynomial is NP-hard.

Proof: We reduce the satisfiability problem of the classical propositional logic to the plan existence
problem. The length of the plans, whenever they exist, is bounded by the number of propositional
variables and hence is polynomial.

Let φ be a formula over the propositional variables inA. LetN = 〈A, {(a, 0)|a ∈ A}, O, φ〉
whereO = {〈>, a〉|a ∈ A} We show that the problem instanceN has a plan if and only if the
formulaφ is satisfiable.

Assumeφ ∈ SAT , that is, there is a valuationv : A → {0, 1} such thatv |= φ. Now take the
operators{〈>, a〉|v |= a, a ∈ A} in any order: these operators form a plan that reach the statev
that satisfiesφ.

AssumeN has a plano1, . . . , om. The valuationv = {(a, 1)|(>, a) ∈ {o1, . . . , om}} ∪
{(a, 0)|a ∈ A, (>, a) 6∈ {o1, . . . , om}} of A is the terminal state of the plan and satisfiesφ. �

Theorem 3.45 The problem of testing the existence of plan having a length bounded by some
polynomial is in NP.

Proof: Let p(m) be a polynomial. We give a nondeterministic algorithm that runs in polynomial
time and determines whether a plan of lengthp(m) exists.

LetN = 〈A, I,O,G〉 be a problem instance.

1. Nondeterministically guess a sequence ofl ≤ p(m) operatorso1, . . . , ol from the setO. Be-
causel is bounded by the polynomialp(m), the time consumptionO(p(m)) is polynomial
in the size ofN .

2. Computes = appol
(appol−1

(· ·appo2(appo1(I)) · ·)). This takes polynomial time in the size
of the operators and the number of state variables.

3. Tests |= G. This takes polynomial time in the size of the operators and the number of state
variables.

This nondeterministic algorithm correctly determines whether a plan of length at mostp(m) exists
and it runs in nondeterministic polynomial time. Hence the problem is in NP. �

These theorems show the NP-completeness of the plan existence problem for polynomial-length
plans.
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3.9 Literature

The idea of progression and regression in planning is old[Rosenschein, 1981]. Our definition of
regression in Section 3.2.2 is related to the weakest precondition predicates for program synthesis
[de Bakker and de Roever, 1972; Dijkstra, 1976]. Planning researchers have earlier used regression
only for a very restricted type of operators without conditional effects.

There has recently been a lot of interest in using general-purpose search algorithms with pro-
gression and heuristics that estimate distances between states. Our distance estimation in Section
3.4 generalizes the additive heuristic by Bonet and Geffner[2001] by handling the truth-values
symmetrically and by being applicable to a more type of operators with arbitrary preconditions and
conditional effects. Other distance estimates with a flavor that is similar to Bonet and Geffner’s
exist[Haslum and Geffner, 2000; Hoffmann and Nebel, 2001].

Techniques for speeding up heuristic state-space planners include symmetry reduction[Starke,
1991; Emerson and Sistla, 1996] and partial-order reduction[Godefroid, 1991; Valmari, 1991;
Alur et al., 1997], both originally introduced outside planning in the context of reachability anal-
ysis and model-checking. Both of these techniques address the main problem in heuristic state-
space search, high branching factor (number of applicable operators) and high number of states.
Both techniques help in reducing the number of states to be traversed when searching for a plan.

The use of algorithms for the satisfiability problem of the classical propositional logic in plan-
ning was pioneered by Kautz and Selman, originally as a way of testing satisfiability algorithms,
and later shown to be more efficient than other planning algorithms at that time[Kautz and Sel-
man, 1992; 1996]. In addition to Kautz and Selman[1996], parallel plans were used by Blum and
Furst in their Graphplan planner[Blum and Furst, 1997]. Parallelism in this context serves the
same purpose as partial-order reduction[Godefroid, 1991; Valmari, 1991], namely to avoid con-
sidering all orderings of a number of independent actions and hence reduce the amount of search.
The notion of parallel plans considered in this lecture is not the only possible one[Rintanenet al.,
2004].

The algorithm for invariant computation was originally presented for simple operators with-
out conditional effects[Rintanen, 1998]. The computation parallels the construction of planning
graphs in the Graphplan algorithm[Blum and Furst, 1997], and it would seem to us that the notion
of planning graph emerged when Blum and Furst noticed that the intermediate stages of the in-
variant computation are useful for backward search algorithms: if a depth-bound ofn is imposed
on the search tree, then formulae obtained bym regression steps (suffixes of lengthm of possible
plans) that do not satisfy clausesRn−m cannot lead to a plan, and the search tree can be pruned.

Even though a lot of contemporary planning research uses Graphplan’s planning graphs[Blum
and Furst, 1997] for various purposes, we have not discussed them in more detail for several
reasons. First, the graph character of planning graphs becomes inconvenient when preconditions
are arbitrary formulae, not just conjunctions of state variables, and effects may be conditional.
As a result, the basic construction steps of planning graphs become unintuitive. Second, even
when the operators have the simple form, the practically and theoretically important properties
of planning graphs are not graph-theoretic. We can equivalently and just as intuitively represent
the contents of planning graphs as sequences of literals and 2-literal clauses, as we have done for
instance in Section 3.6. So it seems that the graph representation does not provide advantages over
more conventional logic based and set based representations.

The algorithms presented in this section cannot in general be ordered in terms of efficiency.
The general-purpose search algorithms with distance heuristics are often very effective in solving
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big problem instances with a suitable structure. Sometimes this entails better runtimes than in the
SAT/CSP approach because of the high overheads with handling big formulae or constraint nets
in the latter. Similarly, there are problems that are quickly solved by the SAT/CSP approach but
on which the distance estimation fails and the heuristic search algorithms are not able to find plans
quickly.

The main complexity result of the chapter, the PSPACE-completeness of the plan existence
problem, is due to Bylander[1994]. Essentially the same result for other kinds of succinct repre-
sentations of graphs had been established earlier by Lozano and Balcazar[1990].

Any computational problem just NP-hard – not to mention PSPACE-hard – is usually consid-
ered to be too difficult to be solved in any but the simplest cases. Because planning even in the
deterministic case is PSPACE-hard, there has been interest in finding useful special cases in which
it can be guaranteed that the worst-case complexity does not show up. Syntactic restrictions lead-
ing to polynomial time planning have been investigated by several researchers[Bylander, 1994;
Bäckstr̈om and Nebel, 1995], but the restrictions are so strict that very few or no interesting prob-
lems can be represented.

The computational complexity of planning with schematic operators has also been analyzed.
Schematic operators increase the conciseness of the representations of some problem instances
exponentially, and lift the worst-case complexity accordingly. For example, deterministic planning
with schematic operators is EXPSPACE-complete[Erol et al., 1995]. If function symbols are
allowed, encoding arbitrary Turing machines becomes possible, and the plan existence problem
consequently becomes undecidable[Erol et al., 1995].

3.10 Exercises

3.1 Show that regression for goalsG that are sets (conjunctions) of state variables and operators
with preconditionsp that are sets (conjunctions) of state variables and effects that consist of an
add lista (a set of state variables that become true) and a delete listd (a set of state variables that
become false) can equivalently be defined as(G\a) ∪ p whend ∩G = ∅.

3.2Show that the problem in Lemma 3.9 is in NP and therefore NP-complete.

3.3 Satisfiability testing in the propositional logic is tractable in some special cases, like for sets
of clauses with at most 2 literals in each, and for Horn clauses, that is sets of clauses with at most
one positive literal in each clause.

Can you identify special cases in which existence of ann-step plan can be determined in poly-
nomial time (inn and the size of the problem instance), because the corresponding formula trans-
formed to CNF is a set of 2-literal clauses or a set of Horn clauses?


