Chapter 3

Deterministic planning

In this chapter we describe a number of algorithms for solving the historically most important and
most basic type of planning problem. Two rather strong simplifying assumptions are made. First,
all actions are deterministic, that is, under every action every state has at most one successor state.
Second, there is only one initial state.

Under these restrictions, whenever a goal state can be reached, it can be reached by a fixed
sequence of actions. With more than one initial state it would be necessary to use a different se-
guence of actions for every initial state, and with nondeterministic actions the sequence of actions
to be taken is not simply a function of the initial state, and for producing appropriate sequences
of actions a more general notion of plans with branches/conditionals becomes necessary. This is
because after executing an action, even when the starting state was known, the state that is reached
cannot be predicted, and the way plan execution continues depends on the new state. In Chapter 4
we relax both of these restrictions, and consider planning with more than one initial state and with
nondeterministic actions.

The structure of this chapter is as follows. First we discuss the two ways of traversing the tran-
sition graphs without producing the graphs explicitly. In forward traversal we repeatedly compute
the successor states of our current state, starting from the initial state. In backward traversal we
must use sets of states, represented as formulae, because we must start from the set of goal states,
and further, under a given action a state may have several predecessor states.

Then we discuss the use of heuristic search algorithms for performing the search in the tran-
sition graphs and the computation of distance heuristics to be used in estimating the value of the
current states or sets of states. Further improvements to plan search are obtained by recognizing
symmetries in the transition graphs, and for backward search, restricting the search by invariants
that are formulae describing which states are reachable from the initial state.

A complementary approach to planning is obtained by translating the planning problem to the
classical propositional logic and then finding plans by algorithms that test the satisfiability of for-
mulae in the propositional logic. This is called satisfiability planning. We discuss two translations
of deterministic planning to the propositional logic. The second translation is more complicated
but also more efficient as it avoids considering all interleavings of a set of mutually independent
operators.

We conclude the chapter by presenting the main results on the computational complexity of
deterministic planning.

26

CHAPTER 3. DETERMINISTIC PLANNING 27

3.1 Problem definition
We formally define the deterministic planning problem.

Definition 3.1 A 4-tuple(A, I, O, G) consisting of a sef of state variables, a state(a valuation
of A), a setO of operators overd, and a propositional formul& over A, is a problem instance
in deterministic planning

The statd is theinitial stateand the formulaz describes the set gjoal states

Definition 3.2 LetIl = (A, I, O, G) be a problem instance in deterministic planning. A sequence
o1,...,0p, Of Operators is glanfor IT if and only if app,, (app,,_, (- --app,, (1) --+)) = G, that

is, when applying the operatots, . . ., 0, in this order starting in the initial state, one of the goal
states is reached.

3.2 State-space search

The simplest planning algorithm just generates all states (valuatiotis obnstructs the transition
graph, and then finds a path from the initial sthte a goal statg € G for example by a shortest-

path algorithm. The plan is then simply the sequence of actions corresponding to the edges on the
shortest path from the initial state to a goal state.

However, this algorithm is in general not feasible when the number of state variables is higher
than 20 or 30, as the number of valuations is very higft: = 1048576 ~ 10° for 20 Boolean
state variables, ar2f® = 1073741824 ~ 10? for 30.

Instead, it will often be much more efficient to avoid generating most of the state space explic-
itly, and just to produce the successor or predecessor states of the states currently under consider-
ation. This is how many of the modern planning algorithms work.

There are two main possibilities in finding a path from the initial state to a goal state: traverse
the transition graph forward starting from the initial state, or traverse it backwards starting from
the goal states.

The main difference between these is caused by the fact that there may be several goal states
(and even one goal state may have several possible predecessor states with respect to one operator)
but only one initial state: in forward traversal we repeatedly compute the unique successor state of
the current state, whereas with backward traversal we are forced to keep track of a possibly very
high number of possible predecessor states of the goal states.

Again, it is difficult to say which one is in general better. Backward search is slightly more
complicated to implement, but when the number of goal states is high, it allows to simultaneously
consider a high number of potential suffixes of a plan, each leading to one of the goal states.

3.2.1 Progression and forward search

We already defined progression for single statasapp,(s), and the definition of the determinis-

tic planning problem in Section 3.1 suggests a simple algorithm that does not require the explicit
representation of the transition graph: generate a search tree starting from the initial state as the
root node, and generate the children nodes by computing successor states by progression. Any
node corresponding to a statesuch thats = G corresponds to a plan: the plan is simply the
sequence of operators from the root node to the node.

CHAPTER 3. DETERMINISTIC PLANNING 28

Later in this chapter we discuss more sophisticated ways of doing plan search with progression,
as well as computation of distance estimates for guiding heuristic search algorithms.

3.2.2 Regression and backward search

With backward search the starting point is a propositional forréutaat describes the set of goal

states. An operator is selected, and the set of possible predecessor states is computed, and this set
again is described by a propositional formula. One step in this computation, madledsionis

more complicated than computing unigue successor states of deterministic operators by progres-
sion. Reasons for this are that a state and an operator do not in general determine the predecessor
state uniquely (one state may have several predecessors), and that we have to handle arbitrary
propositional formulae instead of single states.

Definition 3.3 We define the condition ER@) of literal | becoming true when the operat@f,)
is applied as EP@e) defined recursively as follows.

EPG(T) 1

EPG(l) = T

EPG(/') = Lwhenl#1" (forliteralsi’)
)
)

EPG(e1 A+ Aey) = EPG(er) V- VEPG(e,)
EPG(c>e) = EPG(e)Ac

For effectse, the truth-value of the formul&PG (e) indicates whethet is one of the literals
that the effect assigns the value true. The connection to the earlier definiti¢e] 0f explained
by the following lemma.

Lemma 3.4 Let A be the set of state variablespe a state o, [a literal on A, ande an effect
on A. Thenl € [e, if and only ifs = EPG(e).

Proof: Proof is by induction on the structure of the effect
Base case ¥, = T: By definition of [T|s we havel ¢ [T]s = (), and by definition oEPG/(T)
we haves -~ EPG(T) = L, so the equivalence holds.
Base case 2, = [: [€ [I]; = {l} by definition, ands = EPG(!) = T by definition.
Base case 3, = I for some literal’ # I: | & [I']s = {'l} by definition, ands (£ EPG(I') = L
by definition.
Inductive case Ig = e A --- Aey:
lele]s ifandonlyifl € [¢/]; for somee’ € {e1,..., e}
if and only if s = EPG(¢’) for somee’ € {ey,...,e,}
ifand only if s = EPG(e1) V- - VEPG(ey)
ifand only if s = EPG(e1 A--- Aey).
The second equivalence is by the induction hypothesis, the other equivalences are by the defi-
nitions of EPG (e) and|e]; as well as elementary facts about propositional formulae.
Inductive case 2 = c > ¢’
lele> €], ifandonlyifi € [¢/]s ands = ¢
if and only if s = EPG(€’) ands |= ¢
if and only if s = EPG/(c > ¢').
The second equivalence is by the induction hypothesis.

CHAPTER 3. DETERMINISTIC PLANNING 29

This completes the proof. O

Notice that any operatdr, ¢) can be expressed in normal form in term&6fG, (e) as

<c, /\ (EPC.(e) > a) A (EPCo4(e) &> ﬁa)> .

a€A

The formula(a A—EPC_,(e)) V EPG,(e) expresses the truth-valueok A after applying in
terms of truth-values of formulae before applyismgeithera was true before and did not become
false, ora became true.

Lemma 3.5 Leta € A be a state variable and = (c,e) € O an operator. Let be a state and
s’ = app,(s). Thens = (a A -EPC_,(e)) V EPG,(e) if and only ifs’ |= a.

Proof: Assume that = (a A -EPC_,(e)) V EPG,(e). We perform a case analysis and show that
s = a holds in both cases.

Case 1: Assume that= a A “EPC.,(e). By Lemma 3.4-a ¢ [e]s. Hencea remains true in
s

Case 2: Assume that= EPG,(e). By Lemma 3.4 € [e];, and hence’ | a.

For the other half of the equivalence, assume thgt (a A —=EPC_,(e)) V EPG,(e). Hence
s = (ma vV EPC.,(e)) A "EPG,(e).

Assume that = a. Now s = EPC_,(e) because = —a vV EPC,,(e), and hence by Lemma
3.4-a € [e]s and hence’ [~ a.

Assume that (~ a. Because = —EPG,(¢e), by Lemma 3.4 ¢ [¢]s and hence’ [~ a.

Therefores’ [~ a in all cases. O

The formulaeEPG (o) can now be used in defining regression for operators

Definition 3.6 (Regression)Let ¢ be a propositional formula. Lefp,e) be an operator. The
regressiorof ¢ with respecttw = (p, e) is regr,(¢) = &, Ap A f whereg, is obtained fromp by
replacing every proposition € A by (a A —-EPC,(¢e)) VEPG,(e), andf = A,c 4 7(EPCi(e) A
EPC..(e)). We also define regf¢) = ¢, A f.

The conjuncts off say that none of the state variables may simultaneously become true and
false.

Becauseegr.(¢) often contains many occurrences _bfand T, it is useful to simplify it by
applying equivalences like Ao = ¢, LAp =1L, TVe=T,LVe=¢ -L=T,and

Regression can equivalently be defined in terms of the conditions the state variables stay or
become false, that is, we could use the formia A -EPG,(e)) vV EPC.,(e) which tells when
a is false. The negation of this formula, which can be writteifcas —-EPC_,(¢)) V (EPG,(e) A
-EPC.,(e)), is not equivalent tdaN\—EPC_,(e)) VEPG, (e). However, ifEPC,(e) andEPC_,(e)
are never simultaneously true, we do get equivalence, that is,

~(EPGu(e) AEPC.4(e)) | ((a A —~EPC.a(e)) V (EPG,(e) A ~EPCoq(e)))
— ((a N —EPC.4(e)) V EPG,(e))

because-(EPG,(e) A EPC.,(e)) = (EPG,(e) A "EPC.,(e)) « EPG,(e).

CHAPTER 3. DETERMINISTIC PLANNING 30

Concerning the worst-case size of the formula obtained by regression with opekators o,,
starting from¢, the obvious upper bound on its size is the product of the sizésaf, . . ., 0,,
which is exponential im. However, because of the many possibilities of simplifying the formulae
and the typically simple structure of the operators, the formulae can often be simplified a lot. For

unconditional operators, . . . , o, (With no occurrences af), an upper bound on the size of the
formula (after the obvious simplifications that eliminate occurrencésafid 1) is the sum of the
sizes ofoq, ..., 0, ande.

The reason why regression is useful for planning is that it allows to compute the predecessor
states by simple formula manipulation. The same is not possible for progression, that is, there
does not seem to be a simple definition of successor statesatbhistates expressed in terms of
a formula: simple syntactic progression is restricted to individual states only.

The important property of regression is formalized in the following lemma.

Lemma 3.7 Let ¢ be a formula overA. Leto be an operator with effeet Lets be any state and
s’ = app,(s). Thens |= regr.(¢) if and only ifs’ = ¢.

Proof: The proof is by structural induction over subformuldeof ¢. We show that the formula
¢, obtained fromp by replacing propositions € A by (a A—-EPC_,(e)) vV EPG,(e) has the same
truth-value ins as¢ has ins'.

Induction hypothesiss = ¢! if and only if ' = ¢/.

Base case 1y = T: Now ¢/. = T and both are true in the respective states.

Base case 2y = 1: Now ¢/. = L and both are false in the respective states.

Base case 3y = a for somea € A: Now ¢, = (a A “EPC_,(e)) V EPG,(¢e). By Lemma 3.5
s ¢, ifandonlyifs’ = ¢'.

Inductive case 1¢' = —): By the induction hypothesis = v, iff s’ = ¢. Hences = ¢!, iff
s’ = ¢’ by the truth-definition of-.

Inductive case 2)' = ¢ Vv ¢': By the induction hypothesis = ¢, iff s’ =1, ands = ¢, iff
s' = 1'. Hences |= ¢/ iff s |= ¢ by the truth-definition of/.

Inductive case 39’ = i) A ¢’: By the induction hypothesis = ¢, iff s’ =1, ands = ¢, iff
s' = 1'. Hences |= ¢/ iff s = ¢ by the truth-definition of\. O

Operators for regression can be selected arbitrarily, but there is a simple property all useful
regression steps satisfy. For example, regressingth the effect—a is not useful, because the
new formula_L describes the empty set of states, and therefore the operators leading to it from
the goal formula are not the suffix of any plan. Another example is regregsirity the operator
(b, c), yieldingregr, .y (a) = a A b, which means that the set of states becomes smaller. This does
not rule out finding a plan, but finding a plan is more difficult than it was before the regression
step, because the set of possible prefixes of a plan leading to the current set of states is smaller
than it was before. Hence it would be better not to take this regression step.

Lemma 3.8 Letthere be aplany, ..., o, for (A, 1,0,G). Ifregr,, (regr,, ., (---regr,, (G)---)) F

regrok+1(- --regr,, (G)---) forsomek € {1,...,n — 1}, then also, ..., 05_1,0k+1, "+, 0n IS
aplanfor(A,I,0,G).

Proof: O

CHAPTER 3. DETERMINISTIC PLANNING 31

Hence any regression step that makes the set of states smaller in the set-inclusion sense is
unnecessary. However, testing whether this is the case may be computationally expensive.

Lemma 3.9 The problem of testing that regp) |~ ¢ is NP-hard.

Proof: We give a reduction from the NP-complete satisfiability problem of the propositional logic.
Let¢ be any formula. Let be a propositional variable not occurringdinNowregr ., q)(a)
a if and only if (=¢ — a) ¥ a, becauseegr 4 , . (a) = ¢ — a. (=¢ — a) ¥ a is equiv-
alent tol~ (—¢ — a) — a that is equivalent to the satisfiability ef((—-¢ — a) — a). Further,
=((-¢—a)—a) is logically equivalent to-(—(¢ V a) V a) and further to-(—¢ Vv a) and¢ A —a.
Satisfiability of o A —a is equivalent to the satisfiability of asa does not occur ir: if ¢ is
satisfiable, there is a valuatiansuch thatv = ¢, we can set: false inv to obtainv’, and asu
does not occur i, we still havev” |= ¢, and furthern’ = ¢ A —a. Clearly, if ¢ is unsatisfiable
alsogp A —ais.
Henceregr(—,_q,q)(a) = a if and only if ¢ is satisfiable. O

The problem is also in NP, but we do not show it here. Also the following problem is in NP, but
we just show the NP-hardness. The question is whether an empty set of states is produced by a
regression step, that is, whether the resulting formula is unsatisfiable.

Lemma 3.10 The problem of testing that regiv) is satisfiable is NP-hard.

Proof: By a reduction from satisfiability in the propositional logic. keie a formularegr ., (a)
is satisfiable if and only i6 is satisfiable becausegr . (a) = ¢.

The problem is NP-hard even if we restrict to operators that have a satisfiable preconglition:
is satisfiable if and only if¢ VV —a) A a is satisfiable if and only ifegr 4., 4y (a A) is satisfiable.
Herea is a proposition not occurring ip. Clearly,¢V —a is true wheru is false, and hencgV —a
is satisfiable. O

Of course, testing thakegr,(¢) ~ ¢ or thatregr,(¢) is satisfiable is not necessary for the
correctness of backward search, but avoiding useless steps improves its efficiency.

Early work on planning restricted to goals and operator preconditions that are conjunctions of
state variables, and to unconditional operator effects (STRIPS operators.) In this special case both
goalsG and operator effects can be viewed as sets of literals, and the definition of regression is
particularly simple: regressing with respect to(c, e) is (G\e) U c. If there isa € A such that
a € G and—a € e, then the result of regression s that is, the empty set of states. We do not
use this restricted type of regression in this lecture.

Some planners that use backward search and have operators with disjunctive preconditions and
conditional effects eliminate all disjunctivity by branching: for example, the backward steg;from
with operator{a VV b, g), producinga V b, is handled by producing two branches in the search tree,
one fora and another fob. Disjunctivity caused by conditional effects can similarly be handled
by branching. However, this branching leads to a very high branching factor for the search tree
and thus to poor performance.

In addition to being the basis of backward search, regression has many other useful applications
in reasoning about actions and formal manipulation of operators.

CHAPTER 3. DETERMINISTIC PLANNING 32

Definition 3.11 (Composition of operators)Leto; = (p1,e1) andos = (p2, e2) be two opera-
tors onA. Then theircompositiono; o os is defined as

/\ (((regre, (EPCy(e2)) V (EPG,(e1) A —regre, (EPC.4(e2)))) > a)A)
P ((regre, (EPCoq(e2)) V (EPCoq(e1) A —regre, (EPGy(e2)))) > —a)

a€A

wherep = p1 A regre, (p2) N /\aeA - (EPCa(el) A EPQa(el))'

Notice that ino; o o, first is o1 is applied and thens, so the ordering is opposite to the usual
notation for the composition of functions.

Theorem 3.12 Leto; and oy be operators and a state. Then app.., (s) is defined if and only
if appy, .0, (s) is defined, and appoo, () = aPP1;0,(S)-

Proof: O

The above construction can be used in eliminasieguantial compositiofiom operator effects
(Section 2.3.1).

3.3 Planning by heuristic search algorithms

Plan search can be performed in the forward or in the backward direction respectively with pro-
gression or regression, as described in Sections 3.2.1 and 3.2.2. There are several obvious algo-
rithms that could be used for the purpose, including depth-first search, breadth-first search and
iterative deepening, but without informed selection of branches of search trees these algorithms
perform poorly.

The use of additional information for guiding search is essential for achieving efficient planning
with general-purpose search algorithms. Algorithms that use heuristic estimates on the values of
the nodes in the search space for guiding the search have been applied to planning very success-
fully. Some of the more sophisticated search algorithms that can be used gaet al., 1964,

WA [Pearl, 198} IDA« [Korf, 1989, simulated annealintKirkpatrick et al,, 1983.

The effectiveness of these algorithms is dependent on good heuristics for guiding the search.
For planning with progression and regression the main heuristic information is in the form of
estimates on the distance between states. The distance is the minimum number of operators needed
for reaching a state from another state. In Section 3.4 we present techniques for estimating the
distances between states and sets of sets. In this section we discuss how heuristic search algorithms
are applied in planning assuming that we have a useful heuristics for guiding these algorithms

When plan search proceeds by progression in forward direction starting from the initial state,
we estimate the distance between the current state and the set of goal states. When plan search
proceeds by regression in backward direction starting from the goal states, we estimate the distance
between the initial state and the current set of goal states as computed by regression.

For progression, the search tree nodes are sequences of operators (prefixes of plans.)

01,02,...,0n

The initial node for search is the empty sequence. The children nodes are obtained by progression
with respect to an operator or by dropping out some of the last operators.

CHAPTER 3. DETERMINISTIC PLANNING 33

Definition 3.13 (Children for progression) Let(A, I, O, G) be a problem instance. For progres-

sion, the children of a search tree nodg o, . .., o, are the following.
1. o01,09,...,0n,0f0ranyo € O such thatapp.. .o,..(I) is defined
2. 01,09,...,0;foranyi <n

Whenapp,,.o.....0, (1) = G thenoy, ..., 0, is aplan.
For regression, the nodes of the search tree are also sequences of operators (suffixes of plans.)

Ony--.,01

The initial node for search is the empty sequence. The children of a node are those obtained by
prefixing the current sequence with an operator or by dropping out some of the first actions and
associated formulae.

Definition 3.14 (Children for regression) Let (A, I, O, G) be a problem instance. For regres-

sion, the children of node,, . . ., o1 are the following.
1. o0,04,...,01 foranyo € O
2. 0;,...,01foranyi <n

WhenI = regr,,... .., (G) the sequence,, ..., o1 is a plan.

For both progression and regression the neighbors that are obtained by removing some operators
from the incomplete plans are needed with local search algorithms only. The systematic search
algorithms can be implemented to keep track of the alternative extensions of an incomplete plan,
and therefore the backup steps are not needed. Further, for these algorithms it suffices to keep
track of the results of the state obtained by progression or the formula obtained by regression.

The states generated by progression from the initial state, and the formulae generated by regres-
sion are not the only possibilities for defining the search space for a search algorithm. In partial-
order plannindMcAllester and Rosenblitt, 1991the search space consists of incomplete plans
that are partially ordered multisets of operators. The neighbors of an incomplete plan are those
obtained by adding or removing an operator, or by adding or removing an ordering constraint.
Another form of incomplete plans is fixed length sequences of operators, with zero or more of
the operators missing. This has been formalized as planning with propositional satisfiability as
discussed in Section 3.5.

3.4 Distance estimation

Using progression and regression with just any search algorithm does not yield efficient planning.
Critical for the usefulness of the algorithms is the selection of operators for the progression and
regression steps. If the operators are selected randomly it is unlikely that search in possibly huge
transition graphs is going to end quickly.

Operator selection can be substantially improved by using estimates on the distance between the
initial state and the current goal states, for backward search, or the distance between the current
state and the set of goal states, for forward search. Computing exact distances is computationally
just as difficult as solving the planning problem itself. Therefore in order to speed up planning by
distance information, its computation should be inexpensive, and this means that only inaccurate
estimates of the distances can be used.

We present a method for distance estimation that generalizes the work of Bonet and Geffner
[2001] to operators with conditional effects and arbitrary propositional formulae as preconditions.

CHAPTER 3. DETERMINISTIC PLANNING 34

The set makestrig O), consisting of formulae such that ifp is true then applying an operator
o € O can make the literdltrue, is defined on the basis BPG (o) from Definition 3.3.

makestrud, O) = {EPG(o)]o € O}

Example 3.15Let (AAB, RA(Q > P)A(R > P)) be an operator i). ThenAABA(QVR) €
makestruéP, O) because forP to become true it suffices that the preconditiémn B of the
operator and one of the antecedeater R of a conditional effect is true. |

The idea of the method for estimating distances of goal states is based on the estimation of dis-
tances of states in which given state variables have given values. The estimates are not accurate for
two reasons. First, and more importantly, distance estimation is done one state variable at a time
and dependencies between values of different state variables are ignored. Second, tests whether
a formula is true in a set of states described by a set of literals is performed by an algorithm that
approximates NP-hard satisfiability testing. Of course, because we are interested in computing
distance estimates efficiently, that is in polynomial time, the inaccuracy is an acceptable compro-
mise.

We give a recursive procedure that computes a lower bound on the number of operator applica-
tions that are needed for reaching from a stadéestate in which given state variables A have
a certain value. This is by computing a sequence of Betsf literals. The seD; is a set of such
literals that must be true in any state that has a distant¢&om the states. If a literal [is in Dy,
thenlis true ins. If [€ D;\D;41, thenl is true in all states with distance ¢ and/ may be false
in some states having distanse;.

Definition 3.16 LetL = AU {—a|a € A} be the set of literals orl. Define the set®); for i > 0
as follows.

Dy = {lelL|sE1}

D; = D;_1\{l € L|o € O, canbetrueifEPC/0), D;_1)}

Because we consider only finite setof state variables andDy| = |A| and D; 1 C D, for all
i > 0, necessarilyD; = D, for somei < |A|.

Above canbetrueii®, D) is a function that tests whether there is a state in whicand the
literals D are true, that is, whethef¢} U D is satisfiable. This algorithm does not accurately
test satisfiability, and may claim tH} U D is satisfiable even when it is not. Hence it only
approximates the NP-complete satisfiability problem. The algorithm runs in polynomial time and
is defined as follows.

canbetrueif L, D) = false
canbetrueifT,D) = true
canbetrueifia, D) = trueiff-a ¢ D (for state variables. € A)
canbetrueif—a, D) = trueiffa ¢ D (for state variables € A)
canbetrueifi——¢, D) = canbetrueiip, D)
canbetrueiip V¢, D) = canbetrueifg, D) or canbetrueiriy, D)
canbetrueiip A ¢, D) = canbetrueitip, D) and canbetrueifr), D)
canbetrueif—(¢ V), D) = canbetrueifi—¢, D) and canbetrueif, D)
canbetrueii—(¢ A1), D) = canbetrueii—¢, D) or canbetrueii—, D)

CHAPTER 3. DETERMINISTIC PLANNING 35

The reason why the satisfiability test is not accurate is that for formblae) (respectively
—(¢ V ¥)) we make recursively two satisfiability tests that do not assume that the component
formulae¢ and+y (respectively-¢ and—1)) aresimultaneouslgatisfiable.

We give a lemma that states the connection between canbétsu&inand the satisfiabilty of

{¢yuD.

Lemma 3.17 Let ¢ be a formula andD a consistent set of literals (it contains at most one: of
and—a for everya € A.) If D U {¢} is satisfiable, then canbetrugin D) returns true.

Proof: The proof is by induction on the structure @f

Base case 19 = L: The setD U { L} is not satisfiable, and hence the implication trivially
holds.

Base case 2) = T: canbetrueiiT, D) always returns true, and hence the implication trivially
holds.

Base case 3p = a for somea € A: If D U {a} is satisfiable, thema ¢ D, and hence
canbetrueifu, D) returns true.

Base case 4p = —a for somea € A: If D U {-a} is satisfiable, them ¢ D, and hence
canbetrueifra, D) returns true.

Inductive case 1¢ = ——¢’ for some¢’: The formulae are logically equivalent, and by the
induction hypothesis we directly establish the claim.

Inductive case 2¢p = ¢’ v ¢': If DU {¢' Vv ¢’} is satisfiable, then eitheb U {¢'} or
D U {¢'} is satisfiable and by the induction hypothesis at least one of canbétlidin and
canbetrueifw’, D) returns true. Hence canbetruginVv ¢/, D) returns true.

Inductive case 3p = ¢/ AY: If DU{¢’ A’} is satisfiable, then botbU{¢'} andDU{v'} are
satisfiable and by the induction hypothesis both canbetfiieifv) and canbetruein)’, D) return
true. Hence canbetruditf A ¢/, D) returns true.

Inductive cases 4 and B, = —(¢’ vV ¢') and¢ = —(¢’ A ¢)'): Like cases 2 and 3 by logical
equivalence. O

The other direction of the implication does not hold because for example canbétruein
—A, D) returns true even though the formula is not satisfiable. The procedure is a polynomial-
time approximation of the logical consequence test from a set of literals: canbéruBinalways
returns true ifD U {¢} is satisfiable, but it may return true also when the set is not satisfiable.
Now we define the distances of states in which a litérialtrue byd,(I) = 0 if and only if
I € Dy, and ford > 1, §,(1) = difand only if| € Dy_1\D,4. For formulaep we similarly
defineds(¢) = 0 if canbetrueitio, Dy), and ford > 1, §5(¢) = d if canbetrueifp, D) and not
canbetrueify, Dy_1).

Lemma 3.18 Let s be a state and)y, Dy, ... the sets given in Definition 3.16 fer If s’ is the
state reached from by applying the operator sequeneg . . ., 0,,, thens’ = D,,.

Proof: By induction onn.

Base case = 0: The length of the operator sequence is zero, and h&€nees. The setD,
consists exactly of those literals that are trus,iand hence’ = D,.

Inductive casen > 1: Let s” be the state reached fromby applyingos,...,0,_1. Now
s’ = app,,, (s”). By the induction hypothesis’ = D,,_;.

CHAPTER 3. DETERMINISTIC PLANNING 36

Let [be any literal inD,,. We show it is true ins’. Becausd € D,, andD,, C D,,_4, also
l € D,,—1, and hence by the induction hypothesis= .

Let ¢ be any member of makestiie{o,, }). Becauseé € D,, it must be that canbetrudin, D,,_1)
returns false (Definition oD,,). HenceD,,_; U{¢} is by Lemma 3.17 not satisfiable, asitl}~ ¢.
Hence applying,, in s” does not makéfalse, and consequenty = .

(]

Theorem 3.19 Let s be a stateg a formula, andDy, D1, . .. the sets given in Definition 3.16 for
s. If ¢’ is the state reached fromby applying the operators, . .., 0, ands’ |= ¢ for any formula
¢, then canbetrueif®, D,,) returns true.

Proof: By Lemma 3.18s' = D,,. By assumptions’ = ¢. HenceD,, U {¢} is satisfiable. By
Lemma 3.17 canbetrugin, D,,) returns true. O

Corollary 3.20 Lets be a state an@ a formula. Then for any sequenag . . ., o,, of operators
such that executing them #results in states’ such thats’ = ¢, n > d5(¢).

Example 3.21 Consider the blocks world with three blocks and the initial state in which A is on
B and BisonC.

Dy = {A-CLEAR,A-ON-B,B-ON-C, C-ON-TABLE, ~A-ON-C, ~B-ON-A, ~C-ON-A,
~C-ON-B, ~A-ON-TABLE, -B-ON-TABLE, -B-CLEAR, ~C-CLEAR}

There is only one operator applicable, that moves A onto the table. Applying this operator makes
the literals B-CLEAR and A-ON-TABLE andA-ON-B true, and consequently their complemen-
tary literals do not occur i, because it is possible after at most 1 operator application that these
complementary literals are false.

D; = {A-CLEAR,B-ON-C,C-ON-TABLE, ~A-ON-C, -B-ON-A, ~C-ON-A,
~C-ON-B, ~B-ON-TABLE, ~C-CLEAR}

In addition the operator applicable in the initial states, now there are three more operators applica-
ble (their precondition does not contradiet), one moving A from the table on top of B (returning

to the initial state), one moving B from the top of C onto A, and one moving B from the top of C
onto the table. Henc®s is as follows.

D, = {C-ON-TABLE, -A-ON-C, ~C-ON-A, ~C-ON-B}

Now there are three further operators applicable, those moving C from the table onto A and onto
B, and the operator moving A onto C. Consequently,

D3:®
n

The next two examples demonstrate the best-case and worst-case scenarios for distance estima-
tion.

CHAPTER 3. DETERMINISTIC PLANNING 37

©6=UUUUU1LVU
2=0100000

5=0000100

1=1000000
\\\\ 4=0001000

3=0010000 7=0000001

Figure 3.1: A transition system on which distance estimates are very accurate

6=110— T

2=010
5=101

1=001

Y

3=011 7=111

Figure 3.2: A transition system for which distance estimates are very inaccurate

Example 3.22 Figure 3.1 shows a transition system on which the distance estimates from state

1 are very accurate. The accuracy of the estimates is caused by the fact that for each state one
can determine the distance accurately just on the basis of one of the state variables. Let the state
variablesbe A, B,C,D, E, F, G.

Dy = {A,~B,~C,~D,~E,~F,~G}
Dy = {~C,-D,-E,~G}

Dy, = {-C,-G}
D3 = @
Dy = 0

Example 3.23 Figure 3.2 shows a transition system on which the distance estimates from state 1
are very poor. The inaccuracy is caused by the fact that all possible values of state variables are
possible after taking just one action, and this immediately gives distance estimate 1 for all states

CHAPTER 3. DETERMINISTIC PLANNING 38

and sets of states.
-A,-B,C}

S
I

{
0
0

n

The way Bonet and Geffnd2001] express the method differs from our presentation. Their
definition is based on two mutually recursive equations that cannot be directly understood as ex-
ecutable procedures. The basic equation for distance computation for literals (negated and un-
negated) state variablégl = a orl = —a for somea € A) is as follows (the generalization of
this and the following definitions to arbitrary preconditions and conditional effects are due to us.)

5.(0) { 0 if s=1
s\t) = min . makestrug,0) (1 T 9s(¢)) otherwise
The equation gives a cost/distance estimate of making a propositiod true starting from state

s, in terms ofs and costys(¢) of reaching a state that satisfigs This costd,(¢) is defined as
follows in terms of the cost&;(a).

0s(L) = o0
ds(T) = 0
ds(a) = ds(a) for state variables € A
0s(—a) = d5(—a) for state variables € A
0s(—=p) = 06s(0)
0s(¢ V) = min(s(e),0s(¢))
0s(pAY) = max(ds(e),0s(¥))
0s(-(p V) = ds(~¢ A)
ds(~(@NY)) = ds(=pV —y)

This representation of the estimation method is useful because Bonet and G2@d#rhave
also considered another way of defining the cost of achieving a conjurctign Instead of taking
the maximum of the costs gfandy, Bonet and Geffner suggest taking the sum of the costs, which
is simply obtained by replacingax(ds(¢), ds(¢)) in the above equations By (¢) + (). They
call this theadditive heuristi¢ in contrast to the definition given above for theax heuristic
The justification for this is that the max heuristic assumes that it is the cost of the more difficult
conjunct that alone determines the difficulty of reaching the conjunction and the cost of the less
difficult conjuncts are ignored completely. The experiments Bonet and Geffner conducted showed
that the additive heuristic may lead to much more efficient planning. However, one should notice
that the additive heuristic is hot admissible, and indeed, Bonet and Geffner have used the max
heuristic and the additive heuristic in connection with the non-optimal best-first search algorithm.

3.5 Planning as satisfiability in the propositional logic

A very powerful approach to deterministic planning emerged starting in 1992 from the work by
Kautz and Selmaf1992; 199¢: translate problem instances to propositional formgaes:, ¢, . . .

so that every valuation that satisfies formglacorresponds to a plan of length Now an algo-
rithm for testing the satisfiability of propositional formulae can be used for finding a plan: test the

CHAPTER 3. DETERMINISTIC PLANNING 39

satisfiability of gy, if it is unsatisfiable, continue with,, ¢, and so on, until a satisfiable formula
¢n is found. From the valuation the satisfiability algorithm returns we can now construct a plan of
lengthn.

3.5.1 Actions as propositional formulae

First we need to represent all our actions in the propositional logic. We can view arbitrary propo-
sitional formulae as actions, or we can translate operators into formulae in the propositional logic.
We discuss both of these possibilities.

Given a set of state variables = {a1,...,a,}, one could describe an action directly as a
propositional formula over propositionsiU A’ whereA” = {a], ..., al,}. Here the propositions
A represent the values of state variables in the statevhich an action is taken, and propositions
A’ the values of state variables in a successor state

A pair of valuationss ands’ can be understood as a valuation/bf) A’ (the states assigns a
value to propositionst ands’ to propositionsA’), and a transition from to s’ is possible if and

only if s,s" = ¢.

Example 3.24 Let there be state variablas andas. The action that reverses the values of both
state variables is described by, — —a}) A (ag < —d}).
This action is represented by the following matrix.

ayay, dayal, djdy a}d)

00 01 10 11
ajag = 000 0 0 1
ajap =010 0 1 0
ajaz =10 |0 1 0 0
aijag = 111 0 0 0

The matrix can be equivalently represented as the following truth-table.

ajaga) al
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

OOOHOO!—‘OOHOO!—‘OOO‘

CHAPTER 3. DETERMINISTIC PLANNING 40

Of course, this is the truth-table 6f; < —a}) A (ag < —d)). [|

Example 3.25 Let the set of state variables He= {a1, a2, as}. The formula(a; < a)) A (ay «

as) A (a3 < a}) represents the action that rotates the values of the state variabtesandas

one position right. The formula can be represented as the following adjacency matrix. The rows
correspond to valuations of and the columns to valuations df = {a}, a, a%}.

000 001 010 011 100 101 110 111
000 | 1 0 0 0 0 0 0 0
001| O 0 0 0 1 0 0 0
010 O 1 0 0 0 0 0 0
011 0O 0 0 0 0 1 0 0
100 O 0 1 0 0 0 0 0
101 O 0 0 0 0 0 1 0
110 0O 0 0 1 0 0 0 0
1111 0 0 0 0 0 0 0 1

A more conventional way of depicting the valuations of this formula would be as a truth-table with
one row for every valuation oft U A’, a total of 64 rows. |

This kind of propositional formulae are the basis of a number of planning algorithms that are
based on reasoning in propositional logics. These formulae could be input to a planning algorithm,
but describing actions in that way is usually more tricky than as operators, and these formulae are
usually just automatically derived from operators.

The action in Example 3.25 is deterministic. Not all actions represented by propositional for-
mulae are deterministic. A sufficient (but not necessary) condition for the determinism is that the
formula is of the form(¢; < a}) A -+ A (¢ < al,) with exactly one equivalence for every
a’ € A" and formulaep; not having occurrences of propositionsdh This way the truth-value of
every state variable in the successor state is unambiguously defined in terms of the truth-values of
the state variables in the predecessor state, and hence the operator is deterministic.

3.5.2 Translation of operators into propositional logic

We first give the simplest possible translation of deterministic planning into the propositional logic.
In this translation every operator is separately translated into a formula, and the choice between
the operators can be represented by the disjunction connective of the propositional logic.

The formular, that represents operator= (z, e) is the conjunction of the preconditianand
the formulae

((EPC.(e) V (a A ~EPC.q(e))) < a') A ~(EPCy(€) A EPCy(¢))

for everya € A. Above the first conjunct expresses the value of the successor state in terms of

the values of the state variables in the predecessor state. This is like in the definition of regression
in Section 3.2.2. The second conjunct says that applying the operator is not possible if it assigns
both the value 1 and 0 @

Example 3.26 Consider operatofA Vv B, (BV C) > A) A (-C > —A) A (A > B)).

CHAPTER 3. DETERMINISTIC PLANNING 41

The corresponding propositional formula is

(AVB) AN((BVC)V(AAN-=C))— A)YAN=((BVC)A-C)
AN(AV (BAN-L)) < B)AN—=(AA L)
AN(LV(CA=L) = C)A=(LAL)

(AV B) /\(((B VOV (ANC)) o A A=((BVC)A-C)
AN(AV B) < B)
ANC < C’)

|

Applying any of the operators;, ..., 0, or none of the operators is now represented as the
formula
Ri(A,A) =715, V- V1, V((a1 < a)) A+ A(ag < ay))

whereA = {aq,...,ax} is the set of all state variables. The last disjunct is for the case that no
operator is applied.

The valuations that satisfy this formula do not uniquely determine which operator was applied,
because for a given state two operators may produce the same successor state. However, in such
cases it usually does not matter which operator is applied and one of them can be chosen arbitrarily.

3.5.3 Finding plans by satisfiability algorithms

We show how plans can be found by first translating problem instaptes O, G) into proposi-
tional formulae, and then finding satisfying valuations by a satisfiability algorithm.

In Section 3.5.1 we showed how operators can be described by propositional formulae over sets
A andA’ of propositions, the set describing the values of the state variables in the state in which
the operator is applied, and the sEtdescribing the values of the state variables in the successor
state of that state.

Now, for a fixed plan length, we define sets of proposition, . . ., A,, with propositions in
A; describing the values of the state variables at time poithiat is, when operators (or sets of
operators, if we have parallelism) have been applied.

Let (A, 1,0, G) be a problem instance in deterministic planning.

The state at the first time poiftis determined by, and at the last time point a goal state
must have been reached. Therefore we inclugih time-labelingd andG with time-labelingn
in the encoding.

0 /\Rl(Ao,Al) /\R]_(A]_,AQ) VAR /\Rl(Anfl,An) AG"

Here® = A{a’|a € A, I(a) = 1} U {=a’|a € A, I(a) = 0} andG™ is G with propositionsz
replaced by.".

Plans are found incrementally by increasing the plan length and testing the satisfiability of the
corresponding formulae: first try to find plans of length 0, then of length 1, 2, 3, and so on, until a
plan is found. If there are no plans, it has to be somehow decided when to stop increasing the plan
length that is tried. An upper bound on plan lengtBli§ — 1 whereA is the set of state variables,
but this upper bound does not provide a practical termination condition for this procedure.

The size of the encoding is linear in the plan length, and because the plan length may be ex-
ponential, the encoding might not be practical for very long plans, as runtimes of satisfiability
algorithms in general grow exponentially in the length of the formulae.

CHAPTER 3. DETERMINISTIC PLANNING 42

Example 3.27 Consider an initial state that satisfieg= A A B, the goalG = (AA—-B)V (-AA
B), and the operators, = (T, (A > —A) A (A > A))andoy = (T, (B > —B) A (-B > B)).

The following formula is satisfiable if and only {f4, I, {01, 02}, G) has a plan of length 3 or
less.

(A° A BY)

) A (B® e 2BV ((A° =AY A (BY 5 BY) V ((A° > A A (B® < BY))
A((AY = A2) A (BY < =B?)) v (A «» =A%) A (B! < B?)) v (A « A%) A (B! < B?)))
YA (B% < =B3)) V (A% «» =A3) A (B? < B?)) V ((4%2 « A3) A (B? < B?)))
) V (=A% A B?))
One of the valuations that satisfy the formula is the following.
time
0 1

10
11

Ai

3
0
B! 1

O O

This valuation corresponds to the plan that applies opetatat time point 0,0, at time point
1, andoy at time point 2. There are also other satisfying valuations. The shortest plans for this
problem instance ar@ ando,, each consisting of one operator only. |

Example 3.28 Consider the following problem. There are two operators, one for rotating the
values of bits ABC one step right, and the other for inverting the values of all the bits. Consider
reaching from the initial state 100 the goal state 001 with two actions. This is represented as the
following formula.

(AY A =BY A =C0)

A((A% «» BY A (B? < CYH A (CY = AY)) Vv ((mA° « A1) A (=B «» BY) A (=00 « O1)))
A(((AY « B?) A (Bt < C?) A (C «» A?)) Vv ((mAY «» A%) A (=B « B?) A (=C « C?)))
AN(=A%2 AN =B? A\ C?)

Because the literals describing the initial and the goal state must be true, we can replace other
occurrences of these state variablesTbgnd L.

(A% A =B A =C0)

AT = BYA (Lo CYA (Lo ANV (T = A) A (+L = BY A (=L = 1))
A((AY = L)YA (B & T)A(C = 1))V ((mA «» L) A (=Bl « L) A (20!« T)))
AN(=AZ N =B? A C?)

After simplifying we have the following.

(A A =B A =C9)

A(BYA=Ct AN=AY v (mA; ABYACH)
A(=AY A BYA=CY) v (A A BY A -CH))
A(=A2 AN =B? A C?)

Clearly, the only way of satisfying this formula is to make the first disjuncts of both disjunctions
true, that is,B! must be true andl! andC! must be false.

CHAPTER 3. DETERMINISTIC PLANNING 43

The resulting valuation corresponds to taking the rotation action twice.
Consider the same problem but now with the goal state 101.

(A% A =B A =C0)
A(((A° < BY A (BY « CY A (C0 «» AY)) V (=A% «» A1) A (=BY « BY) A (-C0 « C1)))
A(((AY > B2) A (B! 5 C2) A (C! A2)) V ((mA! > A2) A (=B! & B2) A (=C' « C2)))
A(A%2 A -B% A C?)

We simplify again and get the following formula.

(A A =B A =C?)
A(BY A =CH A =AY v (mA1 A BY A CY))
A(=AYABYACYH Vv (=AY A BY A -CY))
A(AZ AN -B2 A C?)

Now there are two possible plans, to rotate first and then invert the values, or first invert and then
rotate. These respectively correspond to making the first disjunct of the first disjunction and the
second disjunct of the second disjunction true, or the second and the first disjunct. |

3.5.4 Parallel plans

Plans so far always have had one operator at a time point. It turns out that it is often useful to allow
several operators in parallelThis is beneficial for two main reasons.

First, consider a number of operators that affect and depend on disjoint state variables so that
they can be applied in any order. If there arguch operators, there atéplans that are equivalent
in the sense that each leads to the same state. When a satisfiability algorithm is used in showing
that there is no plan of length consisting of these operators, it has to show that none oklthe
plans reaches the goals. This may be combinatorially very difficulisfhigh.

Second, when several operators can be applied simultaneously, it is not necessary to represent
all intermediate states of the corresponding sequential plans: parallel plans require less time points
than the corresponding sequential plans.

For sequences; 0o; . . . ; 0, Of Operators we defin@pp, ,.o.:.. .0, ($) asapm,, (- - - ap, (aP, (s)) - - -)-
For setsS of operators and statesve defineapps(s) as the result of simultaneously applying all
operator® € S: the preconditions of all operators fimust be true irs and the statapps(s) is
obtained froms by making the literals i), ., ¢ ([¢]s) true. Analogously to sequential plans we

can defineapps,.s,.....s, (s) asapps, (- - - apps, (apps, (s)) - - -).

Definition 3.29 (Step plans) For a set of operator$) and an initial state/, a planis a sequence
T =51,...,5 of sets of operators such that there is a sequence of sigtes , s; (the execution
of T') such that

1. so =1,

2. Uppeyes, ([els;i_,) is consistent for everye {1,...,1},

3. s; = apps,(si—1) fori e {1,...,1},

4. forall: e {1,...,l}and(p,e) = 0 € S; andS C S;\{o}, apps(si—1) = p, and
5. foralli e {1,...,1} and(p,e) = 0 € S; andS C S;\{o}, [els,_, = [e]apps(si_1)-

CHAPTER 3. DETERMINISTIC PLANNING 44

The last condition says that the changes an operator makes would be the same also if some of the
operators parallel to it would have been applied before it. This means that the parallel application
can be understood as applying the operators in any order, with the requirement that the state that
is reached is the same in every case.

Indeed, we can show that a parallel plan can be linearized in an arbitrary way, without affecting
which state it reaches.

Lemma 3.30 LetT = Sy,..., Sk, ..., S be astep plan. Let’ = Sl,...,S,g,Sli, ..., S bethe
step plan obtained frof by splitting the steg), into two stepssy andS] such thatS, = S U S}
andSp N S} = 0.

If s0,..., 8k, ...,s isthe execution df thensy, ..., s}, sk, . . ., s; for somes), is the execution
of T”.

Proof: Sos), = appsg(sk,l) andsy, = apps, (sx—1) and we have to prove thappsé(s;) = Sp.

We will show that the active effects of every operatos S} are the same in;_; and ins}, and
hence the changes from_; to s are the same in both plans. L&k, ..., o* be the operators in
S9, and letT; = {o', ..., o'} for everyi € {0, ..., z}. We show by induction that changes caused
by every operatos € S} are the same when executedsjn.; and inappr, (sx—1), from which the
claim follows because; = appr, (sx—1).

Base caseé = 0: Immediate becaush, = (.

Inductive casé > 1: By the induction hypothesis the changes caused by ever)S,% are the
same when executed in_; and inappr,_, (sx_1). In appr, (sx_1) additionally the operatos’
has been applied. We have to show that this operator application does affect the set of active effects
of 0. By the definition of step plan$¢]appri71(sk_l) = [e]apppi,lu{oz‘}(%—l)' This establishes the

induction hypothesis and completes the proof. O

Theorem3.31LetT = Sy,...,Sk,...,S; be a step plan. Then any = oi;...;0. ;03;

'y Ynyo

;08,5 .30h;..; 0l such that for every € {1,...,1} the sequencei;...;o} is a total

no »¥n 7Ny

ordering ofS;, is a plan, and its execution leads to the same terminal state as tfiat of

Proof: First, all empty steps can be removed from the step plan. By Lemma 3.30 non-singleton
steps can be split repeatedly to two smaller non-empty steps until every step is singleton and the
singleton steps are in the desired order. The resulting plan is a sequential plan. O

Lemma 3.32 Testing whether a sequence of sets of operators is a parallel plan is co-NP-hard.

Proof: We can reduce the NP-complete satisfiability problem of the propositional logic to it Let

be a propositional formula in which the propositional variables: {a1, ..., a,} occur. Letl be
an initial state in which all state variables are false. Noisg valid if and only if S} = {(T,¢ >
A),(T,a1),(T,az2),...,(T,a,)} is a parallel plan that reaches the gdal O

However, there are simple sufficient conditions that guarantee that a sequence of sets of oper-
ators satisfies the definition of parallel plans. A commonly used condition is that a state variable
affected by any of the operators at one step of a plan does not occur in the precondition or in the
antecedent of a conditional of any other operator in that step.

CHAPTER 3. DETERMINISTIC PLANNING 45

3.5.5 Translation of parallel planning into propositional logic

The second translation we give allows applying several operators is parallel. The translation differs
from the one in Section 3.5.2 in that the translation is not obtained simply by combining the
translations of individual operators, and that we use propositions for explicitly representing which
operators are applied.

Letoy,..., 0, be the operators, and, . .., e,, their respective effects. Let € A be one of
the state variables. Then we have the following formulae expressing the conditions under which
the state variablg may change from false to true and from true to false.

(maANd')—((o1 NEPG,(e1)) V -+ V (om N EPG(em)))
(a AN =a")— ((01 NEPCy(e1)) V-V (0m A EPCoa(em)))

Further, for every operataz,e) € O we have formulae that describe what values the state
variables have in the predecessor and in the successor states if the operator is applied. Then the
state variables,, . .., a,, may be affected as follows, and the preconditionf the operator must
be true in the predecessor state.

l

(0 NEPG(e) — df
(0 NEPCLq,(€)) — —d

(o NEPG,, (e)). al,
(o NEPC,,,, (€))

o — Z

1

Example 3.33 Consider the operatots = (~LAM P1, LAM P1) andoz = (~LAM P2, LAM P2).
The application of none, one or both of these operators is described by the following formula.

(~LAMP1 A LAMP1')
(LAMP1 A -~LAMP1')
(~LAMP2 A LAMP2')
(LAMP2 A ~LAMP?2')
01— LAMP1

01— -LAMP1

09 — LAMPQ’

09 — -LAM P2

(o1 AT)V (02N L)
((01 AN J_) V (02 VAN J_)
((01 A L) \Y (02 VAN T)
(()V ()

o1 N L o9 N\ L

L1l

Finally, we have to guarantee that the last two conditions of parallel plans, that the simultaneous
execution leads to the same result as executing them in any order, are satisfied. Encoding the
conditions exactly is difficult, but we can use a simple encoding that provides a sufficient condition
that the conditions are satisfied. We just have

—0; V 70,

whenever there is a state variableccurring as an effect in; and in the precondition or the
antecedent of a conditional effect @f.

CHAPTER 3. DETERMINISTIC PLANNING 46

We use
RQ(A7 A/)

to denote the conjunction of all the above formulae.

Like R1(A, A"), later we use als®, (A, A") with propositions labeled for different time points,
and then we also have to label the propositiorfer operators so that operator applications at
different time points correspond to different propositions, for examfle! and so on. For the
labels for other propositions we use the superseriptR: (A, A').

3.5.6 Plan existence as evaluation of quantified Boolean formulae

For a more concise representation of the deterministic planning problem we need a slightly more
expressive language than the propositional logic. Quantified Boolean formulae are exactly right
for this purpose.
Consider the following QBF that represents the existence of transition sequences oRlength
between two states.
JAFA (reach,(A, A) AT AG) (3.1)

Here I and G are the formulae describing the initial and goal states respectively expressed in
terms of variables from set$ and A’. Here reacl{ A, A’) means that a state represented in terms
of variables fromA’ can be reached witk 2° steps from a state represented in terms of variables
from A. Itis recursively defined as follows.

o
@
@,

reach(A, A"
reach, (A, A')

Ri(A,A)

E|TVCE|T1 ETQ(reach(Tl, Tg)
/\(C—>(T1 =ANTy = T))
A=e—(Ty = T ATy = A')))

e 1l

The setsT" and A consist of propositional variables, antl = T for A = {a4,...,a,} and
T ={t1,...,t,} meanga; < t1)A---A(a, < t,). The idea of the definition of reagh (A, A")

is that the variable§" describe a state halfway betwednand A’, and the two values for the
variablec correspond to two reachability tests, one betwdeandT', and the other betwe€eh
andA’.

This is how the PSPACE-hardness of evaluation of QBF can be provedRwitH, A’) rep-
resenting the transitions of a deterministic polynomial-space Turing machine, see for example
[Balcazaret al, 1989.

If we eliminate all universal variables from Formula 3.1, we see that it is essentially a concise
O(logt) space{ = 2") representation of

Iy A Rl(Ao, Al) A Rl(Al, AQ) AN ARy (At—h At) A Gy (32)

with only one occurrence of the transition relation.

The representation of deterministic planning as quantified Boolean formulae is more concise
that the representation in the propositional logic, but it currently seems that the algorithms for
testing the satisfiability solve the planning problem much more efficiently than algorithms for
evaluating the values of QBF.

CHAPTER 3. DETERMINISTIC PLANNING 47

3.6 Invariants

Planning with both regression and propositional satisfiability suffer from the problem of states
(valuations of state variables) that are not reachable from the initial state. Even when the number
of state variables is high, the number of possible states of the world might be rather small, because
not all valuations correspond to a possible world state. Hence for example regression may produce
formulae that represent states that are not reachable from the initial state, and due to this backward
search may spend a lot of time doing unfruitful warlClearly, search would be more efficient

if backward search could be restricted to state that are indeed reachable from the initial state.
Planning as propositional satisfiability suffers from the same problem.

It would be useful to eliminate those states from consideration that do not represent possible
world states. However, determining whether a given state is reachable from the initial state is
PSPACE-complete and equivalent to the plan existence problem of deterministic planning, and
consequently computing exact information on the reachability of states could not be used for
speeding up the basic forward and backward search algorithms: solving the subproblem would be
just as complex as solving the problem itself, and would just lead to slow planning.

However, there is the possibility of using inexact, less expensive information about the reach-
ability of states. In this section we present a polynomial time algorithm for computing inexact
information about the reachability of states that has turned out very useful in speeding up planning
algorithms based on backward search as well as other algorithms that use incomplete descriptions
of sets of states, like plan search by using propositional logic in Section 3.5.

An invariantis a formula that holds in the initial state of a planning problem and that holds in
every state that is reached by an action from a state in which it holds. A fogriglde strongest
invariantif for any invarianty), ¢ |= . The strongest invariant exactly characterizes the set of all
states that are reachable from the initial state: For all state$= ¢ if and only if s is reachable
from the initial state. The strongest invariant is unique up to a logical equivalence.

Example 3.34 Consider a set of blocks that are on the table, and that can be stacked on top of
each other so that every block can be on at most one block and on every block there can be at most
one block.

We can formalize the actions that are possible in this setting as the following schematic opera-
tors.

(ontabléx) A clear(z) A cleary),on(z,y) A —clealy) A —ontabl€z))
(cleafz) A on(x,y),ontabléx) A cleay) A —on(x,y))
(clearz) A on(z,y) A clear(z),on(z, z) A clealy) A —clear(z) A —on(z, y))

When instantiated with three objecxs= { A, B, C'} we get the following operators.

LA similar problem arises with forward search, because with progression one may reach states from which the goals
cannot be reached.

CHAPTER 3. DETERMINISTIC PLANNING 48

ontablg A) A cleal(A) A clea(B), on

)),on(A, B
ontablg A) A cleal(A) A clea(C),on(A, C
ontabld B) A cleaB) A cleaA),on(B, A) A —~clea(A) A —ontablé B)
B,C
C,4)

() A,
()

())), on(
(ontablé B) A cleal B) A cleal(C'), on(A —clea(C) A —ontablé B))
())))
()))

A —cleal(B) A —ontableg A

)
A —clear(C') A —ontabld A))
)

~ — —
~— —

ontabléC') A clea(C) A cleal(A), on(C, A) A —clea A) A —ontabléC')
ontabléC') A cleaC) A clear(B), on(C, B) A —clea(B) A —ontabléC'))

clear(A) A on(
clear(A) A on(

) ,ontablé A) A clea(B
)
clea(B) A on
)
)
)

) (A

,ontablg A) A clear(C') A —on(A
,A),ontablé B) A clea A) A —on(B,
,C) B

) A —0n
)

), ontabld B) A cleaC') A —on(
)

)

)

B
,C

QES@

A
A
(B
clea(B) Aon(B
cleafC) A on(C, A), ontabléC) A clearA) A —on(C, A))
clear(C') A on(C, B), ontabléC) A clea(B) A —on(C, B))

A

A

B

B

C

o~~~ o~~~

clea(4) Aon

(A clear(C),on(A, C) A clea(B
clea(4) A on(

(
A clear(B), on(A clea(C

))
, B))
) A clear(A)
))

(clear A) B)) A) A —on(
() ,C)),on(A, B A —clea(B) A —on(
(clea(B) Aon(B, A) A clear(C),on(B, C A —clear(C') A —on(
(cleaB) ANon(B,C') AcleafA),on(B, A) A clea(C) A —clea A) A —on(B,
(cleafC) Aon(C, A) A clear(B),on(C, B) A cleafA) A —cleaB) A —on(C, A

B

(clearC) Aon(C, B) A cleaA),on(C, A) A clea(B) A —cleaf A) A —on(C,

Here a block being clear means that no block is on top of it.
Let all the blocks be initially on the table. Hence the initial state satisfies the formula

cleaA) A clearB) A cleafC') A ontabld A) A ontablé B) A ontabléC')A
—0on(A4, B) A —on(A4,C) A —on(B, A) A —on(B,C) A —on(C, A) A —on(C, B)

that determines the truth-values of all state variables uniquely.
All the invariants in this problem instance are the following.

cleafA) « (—on(B, A) A —on(C, A))
clea(B) <« (—on(A, B) A —on(C, B))
clea(C) « (-on(A,C) A —on(B,C))
ontabld A) — (—on(A, B) A —on(A4, C))
ontablé B) « (—on(B, A) A —on(B,C'))
ontabléC) <~ (-on(C, A) A —on(C, B))
—on(A4, B) vV —on(4, C)

—on(B, A) v -on(B,C)

—0on

(
—on(
(

—_ —

~—

B
C,
BJ
A
A

)

Qzeze
<
]
(@]
>

)

a
=y

~(on(A, B) Aon(B,C) Aon(C, A))
—(on(A,C) Aon(C, B) Aon(B, A))
The conjunction of these formulae describes exactly the set of states that are reachable from the

initial state by the operators, and intuitively describes all the possible configurations the three
blocks can be in.

CHAPTER 3. DETERMINISTIC PLANNING 49

We can schematically give the invariants for any Xedf blocks as follows.

cleaz) « Yy € X\{z}.-on(y,)

ontabldz) « Vy € X\{z}.—on(z,y)

—on(z,y) V —on(z, z) wheny # z

—on(y,x) V —on(z, z) wheny # z

=(on(zy, x2) Aon(za, x3) A -+ AON(Tp_1,z) AON(zy,x1)) foralln > 1 and{x;,...,z,} C X

The last schematic formula says that trerelation is acyclic. |

Because testing whether a state satisfies all invariants, that is whether it is reachable from the
initial state, is PSPACE-hard, the requirement that invariant computation is polynomial time leads
to computing only invariants that are weaker than the strongest invariant. This kind of set of
invariants only gives an upper bound (with respect to set-inclusion) on the set of reachable states.

The algorithm we present computes invariants that are disjunctions of atntitetals, for a
fixed n. For representing all invariants, no finite upper boundvanay be imposed, but then also
invariant computation could not be performed in polynomial time. Although the computation is
polynomial time for any fixed:, the runtimes grow quickly as is increased, and it is most useful
for n = 2, that is, for invariants that are disjunctions of two literals.

The algorithm proceeds by first computing ailiteral clauses that are true in the initial state.
Then, the algorithm removes all clauses that are not true after 1 operator application, after 2
operator applications, and so on, until the set of clauses does not change. At this point all the
clauses are invariants and hold in all states that are reachable from the initial state.

3.6.1 Algorithms for computing invariants

Our algorithm for computing invariants has a similar flavor to distance estimation in Section 3.4:

starting from a description of what is possible in the initial state, we inductively determine what

is possible aftei operator applications. In contrast to the distance estimation method, the states
that are reachable aftéoperator applications are not characterized by sets of literals but by sets

of clauses. This complicates the computation somewhat.

LetC; be a set of clauses characterizing those states that are reachabfeebgtor applications.
Similarly to distance computation, we consider for each operator and for each cldysetiether
applying the operator may make the clause false. If it can, the clause could be fals@péetor
applications and therefore will not be in the clause(ggt; .

For this basic step of invariant computation, whether an operator application may falsify a
clause, we present two algorithms, first a simple one for a restricted class of operators, and then a
more general for arbitrary operators.

Figure 3.3 gives an algorithm that tests whether applying an opesato) in some states
may make a formuld Vv --- Vv [, false assuming that= AU {l; V --- VI, }.

The algorithm performs a case analysis for every literal in the clause, testing in each case that
the clause remains true: if a literal becomes false, either some other literal in the clause becomes
true simultaneously or some other literal in the clause was true already and does not become false.

The algorithm is defined only for operators that have a precondition that is a conjunction of liter-
als and an effect that is a conjunction of atomic effects (known as STRIPS operators for historical
reasons). We give a similar algorithm for arbitrary operators later in Figure 3.4.

CHAPTER 3. DETERMINISTIC PLANNING 50

procedure simplepreserved(A,o);
Nowgop =13 V---Vi,ando= ({{ A--- AT

n’’

I{A---NI1,) for somel;, l; andly/;
if {7, 1y C {1) for somel v -+ v I € A then return true;
(* Operator is not applicable. *)

foreachl € {l,...,l,} do

if 1 ¢ {1{,...,1",} then gotoOK; (* Literal cannot become false. *)
foreachl’ € {ly,...,l,}\{l} do
if /e {1{,...,1”,} then gotoOK; (* Literal I” becomes true. *)

if ' e {lf,.... 0, orlf"v---vIZVvI e Aforsome{l{’,....Im} C{ly,.... 1L},
andl’ ¢ {If,...,1/,}

then goto OK; (* Literal I’ was true and cannot become false. *)
end do
return false; (* Truth of the clause could not be guaranteed. *)
OK:
end do

return true;

Figure 3.3: Algorithm that tests if applyingmay falsifyl; Vv - - - Vv [,, in a state satisfying\

Lemma 3.35 Let A be a set of clause®,= I, V - - - V [,, a clause, an@ an operator of the form
(A AN - A) wherel and) are literals. If simplepreserved(A,o) returnstrue
then app(s) = ¢ for any states such thats = A U {¢} ando is applicable ins. (It may under
these conditions also retuffalse).

Proof: Assumes is a state such that= 1} A--- A/, ands = A ands |= ¢ andapp,(s) [~ ¢.
We show that the procedure retufiatse
Becauses = ¢ andapp,(s) = ¢, there are some Iiteralfgl{, . ,l{;} C {ly,...l,} such that

sk A A and{l], .. il {1, .17, }, that is, applying makes them false, and the
rest of the literals inp were false and do not become true.

Choose any < {l{, e l,f;}. We show that when the outermdst eachloop considerg the
procedure will returrialse

By assumptiori € {i{,...1”,}, and the condition of the first inside the loop is not satisfied
and the execution proceeds by iteration of the ifoeeachloop.

Let !’ be any of the literals i exceptl.

Becausep is false inapp,(s), I ¢ {l{,...1",}, and the condition of the first statement is not
satisfied.

If ! € {1f,....1},} then by assumptiolf € {I,.. .,1”,,} and the condition of the secoriid
statement is not satisfied.

If I" & {l{,...,l,f;} then by assumptior [~ I’. Because the operator is applicable=
IpN---Al,, and hencéd & {I' A--- Al ,}. Because satisfies the preconditiofy A --- A 17,
ands = A, thereis also nd’ v I’ € A for any!” € {l},...,l/,}. Hence also in this case the
condition of thef statement is not satisfied.

Hence on none of the iterations of the inf@reachloop is agoto OKexecuted, and as the loop
exits, the procedure returfelse O

Figure 3.4 gives a similar algorithm for arbitrary operators. The structure of the algorithm is

CHAPTER 3. DETERMINISTIC PLANNING 51

procedure preservedg,A,o);

Now ¢ =13 V --- VI, for somely, ..., I, ando = (c, e) for somec ande;
if A = —cthen return true; (* Operator is not applicable. *)
foreachl € {ly,...,l,} do
if AAN{EPG(e)} = L then gotoOK; (* Literal [cannot become false. *)
foreachl’ € {l1,...,l,}\{l} do
if AU{EPG{e),c} = EPG/(e) then gotoOK; (* Literal I’ becomes true. *)

if AU{EPG{(e),c} =1"and AU {EPG{e),c} = -EPGC;(e) then gotoOK;
(* Literal I’ was true and cannot become false. *)
end do
return false; (* Truth of the clause could not be guaranteed. *)
OK:
end do
return true;

Figure 3.4: Algorithm that tests if applyingmay falsifyl; Vv - - - Vv [,, in a state satisfying\

exactly the same, but the tests whether a certain literal becomes true or false or whether it was true
before the operator was applied, are more complicated.

The algorithm is allowed to fail in one direction: it may sometimes refatsewheni; v- - - Vi,
actually is true after applying the operator. However, this is a necessary consequence of our
requirement that our invariant computation takes only polynomial time.

Lemma 3.36 Let A be a set of clausesy = I; vV --- V [, a clause, anth an operator. If
preservedp,A,o) returnstrue, then app(s) = ¢ for any states such thats = A U {¢} and
o is applicable ins. (It may under these conditions also retdabse).

Proof: O

Figure 3.5 gives the algorithm for computing invariants consisting of at mosgrals.

Theorem 3.37 Let A be a set of state variableg,a state,O a set of operators, and > 1 an
integer.

Then the procedure call invariantd(1, O, n) returns a setC’ of clauses so that for any se-
quencen;. . ., o, of operators fronO app,,... o,.(I) = C".

Proof: Let Cy be the value first applied to the varialildn the procedurévariants andC4, Cs, . ..
be the values of the variable in the end of each iteration of the outerapesitioop.
Induction hypothesis: for every € C;, app,,....o, (1) = ¢.
Base caseé = 0: app.(/) for the empty sequence is by definitidritself, and by construction
C) consists of only formulae that are true in the initial state.
Inductive case > 1:
O

The algorithm in Figure 3.4 does not run in polynomial time in the size of the problem instance
because the logical consequence tests may take exponential time. To make the procedure run
in polynomial time, we can again use an approximate logical consequence test, similar to the

CHAPTER 3. DETERMINISTIC PLANNING 52

procedureinvariants@, I, O, n);
C:={a€c All Ea}U{-ala € A, I} a};

repeat
C':=C,
foreachly v--- Vi, € Cdo (* Test every clause *)
for eacho € O do (* with respect to every operator. *)
N={LV---Vip}
repeat
N’ =N,

foreachli v---VvI , € N s.t.notpreserved(V.-V ,Co0)do
N:=N\{{{jVv---VIU.,}
if m’ < nthen (* Clause length within pre-defined limit. *)
begin
N:=NU{ljVv---Vvl Val|aec A},
N=NU{ljVv---VIl V-alaec A},
end
end do
until N = N’/; (* N was not weakened further. *)
C=C\{LhVv---Vin})UN,
end do
end do
until C = C;
return C,

Figure 3.5: Algorithm for computing a set of invariant clauses

CHAPTER 3. DETERMINISTIC PLANNING 53

procedure canbetrugin, D) used in Definition 3.16. The logical consequence test is allowed
to fail in one direction without invalidating the invariant algorithm in Figure 3pbeserveds
allowed to returrfalsealso when the operator would not falsify and hence logical consequence
tests may be answered even when the correct answelyiss

The logical consequence tests have the f&m S = ¢. The logical consequence U S = ¢
holds if and only ifA U {A S A —¢} is not satisfiable. A correct approximation is allowed to
answersatisfiableeven when the formula is unsatisfiable.

We present a polynomial time approximation of satisfiability tests for sets of formulaes
in the case in whick\ consists of clauses of length at most 2. It is based on the definition of sets
of literals litconseq&p, A) given below. The idea of litconse@s A) is that this set consists of (a
subset of the) literals that must be true wigesind A are true, that is, that are logical consequences
of ¢ andA. The one-sided error litcons€gs A) is allowed to make and indeed does make is how
disjunctionV is handled. ifA U {¢} is satisfiable, then litconse@s A) does not contaid. nora
and—a for anya € A.

litconseq$.L, A
litconseq$T, A
litconseqsa, A
litconseq$—a, A

) = {i}
)
)
)
litconseqg——¢, A)
)
)
A)
A)

(ANA)U(AN{-ala € A})

= {a}U{l|maVvie A} UANA)U(AN{-ala € A})
{ma}U{llavie AU(ANA)U(AN{-ala € A})
litconseqséop, A)

litconseqs$p, A) N litconseqsy, A)

litconseqs$p, A) U litconseqsy, A)

= litconseq$—¢, A) U litconseqs—), A)

= litconseq$—¢, A) N litconseq$—, A)

litconseqso Vv 1, A

litconseqgp A 1, A
litconseq$— (¢ V 1),
litconseq$— (o A 1),

The approximation fails because the satisfiability test is too simple. Consider litcofdeqs
B) A =(A Vv B),0) which is the empty set of literals because litcongégs B,?) = 0 and
litconseq$—(A Vv B), D) = 0. This formula is unsatisfiable because it has the form—¢.

There are some simple ways of strengthening this approximation. For example, conjunction
could be strengthened to

litconseqsp A, A) = litconseq$e, AUlitconseqéy, A)) Ulitconseq$y, AUlitconseqéo, A))

and further by computing more consequences for one of the conjuncts with the literals obtained
from the other until no more literals are obtained.

The function litconsed®, A) can also be used as a part of slightly more powerful (???) logical
consequence tests as follows.

Define

= false
true

entailed L, D
entailed T, D
entaileda, D true iff « € D (for state variablea € A)

entailed—a, D) = trueiff -a € D (for state variablea € A)

)
)
|
entailed——¢, D) = entailed¢, D)
D)
D)
D)
D)

entailed¢ V v, entailed¢, D) or entailedt, D)
entailed¢ A v, entailed¢, D) and entaile¢y, D)
entailed—(¢ V ¢), entailed—¢, D) and entailetty, D)

entailed—(¢ A ¢), = entailed—¢, D) or entailed—), D)

CHAPTER 3. DETERMINISTIC PLANNING 54

Notice that the definition of entailéd, D) is similar to canbetruei, D) in Definition 3.16 ex-
cept that literals: and—a are handled differently: entailéd, D) is about logical consequences
of D, that is formulae that are guaranteed to be true when true, while canbetruejw, D) is
aboute being consistent wittb.

Now if entailed ¢, litconseqs$y, A)) thenA U {¢} |= ¢.

3.6.2 Applications in planning by regression and satisfiability

The first application is in planning in the propositional logic. It has been noticed that adding the
2-literal invariants to all time points reduces runtimes of algorithms that test satisfiability. Notice
that invariants do not affect the set of models of a formula representing planning: any satisfying
valuation of the original formula also satisfies the invariants, because the values of propositions
describing the values of state variables at any time point corresponds to a state that is reachable
from the initial state, and hence this valuation also satisfies any invariant.

The second application is in planning by regression. Consider the blocks world with the goal
A-ON-B A B-ON-C. Now we can regress with the operator that moves B onto C from the table,
obtaining the new goal A-ON-B B-CLEAR A C-CLEARA B-ON-TABLE. Clearly, this does not
correspond to an intended blocks world state because A-ON-B is incompatible with B-CLEAR,
and indeed;-A-ON-B Vv =B-CLEAR is an invariant for the blocks world. Any regression step that
leads to a goal that is incompatible with the invariants can be ignored, because that goal does not
represent any of the states that are reachable from the initial state, and hence no plan can reach the
goal in question.

Another application of invariants, and the intermediate égtgroduced by our invariant algo-
rithm, is improving the distance estimation in Section 3.4. Usirfgr testing whether an operator
precondition, for example A b, has distance from the initial state, the distances @fandb are
used separately. But even when it is possible to reach datidb with i operator applications,
it might still not be possible to reach them both simultaneously wiperator applications. For
example, for = 1 and an initial state in which bothandb are false, there might be no single op-
erator that makes them both true, but two operators, each of which makes only one of them true. If
—a V —b € C;, we know that aftef operator applications one afor b must still be false, and then
we know that the operator in question is not applicable at time poifherefore the invariants
and the set€’; produced during the invariant computation can improve the distance estimates.

3.7 Planning with symbolic representations of sets of states

A complementary approach to planning for planning problems represented as formulae in the
propositional logic uses the formulae as a data structure. As discussed in Section 2.3.3 formulae
directly provide a representation of sets of states, and in this section we show how operations on
transition relations have a counterpart as operations on formulae that represent transition relations.

This yields a further planning algorithm for deterministic planning, typically implemented by
means of BDDs. The algorithm in Section 3.7.3 will later be generalized to different types of
nondeterministic planning.

Table 3.1 outlines a number of connections between operations on vectors and matrices, on
propositional formulae, and on sets and relations.

Computing the product of two matrices that are represented as propositional formulae is based
on theexistential abstractioroperationdp.¢ = ¢[T /p] V ¢[L/p] that takes a formula and a

CHAPTER 3. DETERMINISTIC PLANNING 55

matrices formulas sets of states
vectorVi «p, formula overA set of states
matrix My, «n formula overd U A’ transition relation
Mysn X Npxn | FA(@(A, A") Np(A’, A7) | sequential composition
S1xn X Mpsn | A(P(A) Np(A, A)) successor states 6f
Sixn+S1un | @V Y set union

dNY set intersection

Table 3.1: Correspondence between matrix operations, Boolean operations as well as set-theoretic
and relational operations

propositionp and produces a formuld without occurrences af.
Let ¢ be a formula overd U A’ and be a formula overd’ U A”. Now matrix product of
matrices corresponding tand)’ is
JA" . A).

Example 3.38Let ¢ = A «— —A" andy = A’ «— A’ represent two actions, reversing the
truth-value ofA and doing nothing. The sequential composition of these actions is

WGAY = (Ao =T)A(T o AV (Ao L) A(L o A”))

(A= DA(T = A"V (A= T)A(L < A7)
A s _|A//

Consider the representation of planning as satisfiability in the propositional discussed in Section
3.5.3.

OARI(AY, AN ARL(AY, A?) A - ARy (A™L A™) AG™

The conjunction of formulae th&,(A?, A**1) representing the transition relation corresponds
to the computation of the-fold product of the corresponding adjacency matrices. Further, when
the first factor in the product is the vector describing the initial state, we have the computation of
the set of states reachablerirsteps.

0 x (R1(A% AY) xRy (A, A%) x - x Ry (A" A™))

N~

Taking the intersection of this set with the set of goal states tells us whether there is a plan of
lengthn.

In the following we discuss how this idea can be turned into a planning algorithm, in which
then-fold product of the initial state vector with the adjacency matrices is computed step by step,
yielding vectors describing the sets of states reachahleif0, ..., n} operator applications.

3.7.1 Operations on transition relations expressed as formulae

The most basic operation is the computationttté imageof a set of states with respect to a
transition relation.
imgg(S) = {s'|s € S, (s,s') € R}

CHAPTER 3. DETERMINISTIC PLANNING 56

This is the set of states that can be reached ffbhy transition relationR. When sets of states
and transition relation are represented as propositional formulae, the image computation can be
performed by the existential abstraction and renaming operations as follows.

iMgr (4,4 (¢) = (3A(6 AR(A, A)))p1/PLs -, Pn/Pr]

Similarly we can compute the product of two matrices that are represented as foRrjudad’)
andQ(A’, A”) by using existential abstraction.

R(A,A') - Q(A', A”) = 3A' (R(A, A') A Q(A', A"))

The resulting formula is over state variabldsand A”, from which a formula ond and A’ is
obtained by renaming” to A’.

Plan search can also be performed starting from the goal states, like done with all the algorithms
in Chapter 4. In this case we must compute sets of states from which any of the states in a given
set can be reached by one step. This is represented as the comput#tiepeimagef a set of
states with respect to a transition relatfon.

wpreimgz (S) = {s|s' € S, (s,s') € R}

This is the set of states from which a statednis reached by the transition relatidd. The
corresponding computation in terms of formulae is as follows. Heisea formula overA4, and
first it has to be renamed to a formula ov&r

wpreimgg 4,4 (¢) = 3A".(G[ph /p1, - -, pn/pn] A R(A, A)) (3.3)

Notice that when the relatioR (A, A’) corresponding to an operatohas been represented as
discussed in Section 3.5.2, the Formula 3.3vipreimgg 4, 4/)(¢) is logically equivalent to the
regressiomegr,(¢) as given in Definition 3.6.

Example 3.39 Consider the formulal A B that is regressed with the operatoe (C, A A (A >
B)). Now we have
regr,(¢p) =C A (TA(BVA)=CA(BVA).

The transition relation of is represented by the formula
Tr=CANA'AN(BVA)— B)A(C <.

The preimage ofd V B with respect tw is represented by

JA'B'C'.((A' AB') A T) JA'B'C'.((AAANBYANCANAAN((BVA)«— B)YA(C < C")
JA'B'C' (A" ANB'"ANC A (BVA)ANC)
AB'C'.(B'ANC N (BV A)AC)
AC'(CAN(BVA)ANC
CA(BVA)

2This is often called theveak preimagéo contrast it with the strong preimage operation defined in Section 4.3.

CHAPTER 3. DETERMINISTIC PLANNING 57

procedure planfwd(l,0,G)
1:=0;
Dy :={I};
while GND; =0 and (i =0or D; 1 # D;) do
=1+ 1
D;:=D;1UU,coimgy(Di—1); (* Possible successors of statesiip_ *)
end
if G N D; = () then terminate; (* There is no plan. *)
S:=GnN D;;
for j:=i-1to 0do (* Output plan, last operator first. *)
choosev € O such thawpreimg,(S) N D; # 0;
outputo;
S :=wpreimg,(S) N Dj;
end

Figure 3.6: Algorithm for deterministic planning (forward, in terms of sets)

As we will see later, computation of preimages is applicable to all kinds of operators, not only
deterministic ones as required by our definition of regression, whereas defining regression for
arbitrary operators is more difficult (we will give a definition of regression only for a subclass of
nondeterministic operators.)

Hence our definition of regression can be viewed as a specialized method for computing preim-
age of formulae with respect to a transition relation corresponding to a deterministic operator. The
main advantage of regression is that no existential abstraction is needed.

Notice that defining progression for arbitrary formulae (sets of states) seems to require existen-
tial abstraction. A simple syntactic definition of progression similar to that of regression does not
seem to be possible because the value of state variable in a given state cannot be represented in
terms of the values of the state variables in the successor state. This is because of the asymmetry
of deterministic actions: the current state and an operator determine the successor state uniquely,
but the successor state and the operator do not determine the current state uniquely. In other words,
the changes that take place are a function of the current state, but not a function of the successor
state.

3.7.2 A forward planning algorithm

The algorithm in Figure 3.6 has two phases: the computation of distance from the initial state to
every reachable state, and the extraction of a plan. Th®gebnsists of the initial state, the set
D, of those states that can be reached from the initial state by one operator, and so on.

We can express the same algorithm in terms of formulae in the propositional logic, see Figure
3.7. The plan extraction proceeds by identifying the operators in the backwards direction starting
from the last one.

In the figure we give two variants of the algorithm, first expressed in terms of set-theoretic
operations on sets of states and transition relations, and then expressed in terms of the propositional
formulae.

Notice that in the first version of the algorithBl is computed as the union &f;_; (reachability
by i — 1 steps or less) and the images/of ; with respect to all of the operators, and herige

CHAPTER 3. DETERMINISTIC PLANNING 58

procedure planfwd(I,R1 (A, A”),G)

1:=0;
Dy =1,
while D; = -G and (i =0 or = D;_; < D;)do
=1+ 1
D; = (3A.(Di—1 A R1(A, AN)) [Py /p1, - - -, Dl /pn]; (* Possible predecessors of states/in_; *)
end
if D; E —G thenterminate; (* There is no plan. *)
S=GA D;;
for j:=i-1to 0do (* Output plan, last operator first. *)
choosen € O such thatD; = —~wpreimg, (5);
outputo;
S :=wpreimg, (S) A Dj;
end

Figure 3.7: Algorithm for deterministic planning (forward, in terms of formulae)

represents reachability bysteps or less. In the second version the transition rel&igm, A’)
encodes reachability by 0 or 1 steps, so we directly obtain reachabilitgteps or less, without
having to take union\() with D;_1.

Theorem 3.40 Let a states be in D;\ D;_;. Then there is a plan that reachedrom the initial
state byi operator applications.

Proof: O

3.7.3 A backward planning algorithm

The second algorithm computes the distances to the goal states. This computation proceeds by
preimage computation starting from the goal stated)soonsists of the goal stateB; the states
with distance 1 to the goal states, and so on. The algorithm is given in Figure 3.8.

We can express the same algorithm in terms of formulae in the propositional logic, see Figure
3.9.

Theorem 3.41 Let a states be in D;\ D;_;. Then there is a plan that reaches frena goal state
by operator applications.

Proof: O

3.8 Computational complexity

In this section we discuss the computational complexity of the main decision problems related to
deterministic planning.

The plan existence problem of deterministic planning is PSPACE-complete. The result was
proved by Bylandef1994. He proved the hardness part by giving a simulation of deterministic

CHAPTER 3. DETERMINISTIC PLANNING 59

procedure planbwd(l,0,G)
Dy =G,
1:=0;
while I ¢ D;and (i = 0or D;_; # D;) do
=1+ 1;
D; = D; 1 UU,coWpreimg,(D;_1);
end
if I ¢ D; thenterminate; (* There is no plan. *)
s:=1,
for j:=i—1to0do (* Output plan, first operator first. *)
choosen € O such thatpp,(s) € Dj;
outputo;
5= app,(s);
end

Figure 3.8: Algorithm for deterministic planning (backward, in terms of states)

procedure planbwd(IR1(A, A’),G)

Dy = G,
1:=0;
while I = D; and (i = 0 or j= D;_; <> D;) do
=1+ 1
D; = 3A (R1(A, A") N (Dia[py/p15 - -+ P/ Pnl))s
end

Figure 3.9: Algorithm for deterministic planning (backward, in terms of formulae)

CHAPTER 3. DETERMINISTIC PLANNING 60

polynomial-space Turing machines, and the membership part by giving an algorithm that solves
the problem in polynomial space. We later generalize his Turing machine simulation to alter-
nating Turing machines to obtain an EXP-hardness proof for nondeterministic planning with full

observability in Theorem 4.42.

Theorem 3.42 The problem of testing the existence of a plan is PSPACE-hard.

Proof: Let (X, @, d, g0, g) be any deterministic Turing machine with a polynomial space bound
p(zx). Leto be an input string of length.

We construct a problem instance in deterministic planning with for simulating the Turing ma-
chine. The problem instance has a size that is polynomial in the size of the description of the
Turing machine and the input string.

The setA of state variables in the problem instance consists of

1. ¢ € @ for denoting the internal states of the TM,
2. s; for every symbok € X U {|,0} and tape cell € {0,...,p(n)}, and
3. h; for the positions of the R/W headc {0, ...,p(n) + 1}.

The initial state of the problem instance represents the initial configuration of the TM. The
initial statel is as follows.

1. I(q) =

2. I(q) =0forallg € Q\{qo}-

3. I(s;) = 1ifand only if ith input symbol iss € 3, foralli € {1,...,n}.
4. I(s;) =0foralls e Xandi € {O,n+1,n+2,...,p(n)}.

5 I(0;)=1foralie {n+1,...,p(n)}.

6. I(d;) =0foralli e {0,...,n}.

7. (o) =

8. I(|;) =0foralln e {1,...,p(n)}

9. I(hy) =

10. I(h;) =0foralli € {0,2,3,4,...,p(n) + 1}

The goal is the following formula.

G = \/{q € Qlg(q) = accep}

To define the operators, we first define effects corresponding to all possible transitions.

Forall(s,q) € (SU{|,0})xQ,i € {0,...,p(n)}and(s’,¢,m) € (SU{|}) xQx{L, N, R}
define the effect; 4,i(s’, ¢’,m) asa A k A 6 where the effecta, x andé are defined as follows.

The effecta describes what happens to the tape symbol under the R/W head= I’ then
a = T as nothing on the tape changes. Otherwise; —s; A s to denote that the new symbol in
theith tape cell iss’ and nots.

CHAPTER 3. DETERMINISTIC PLANNING 61

procedure reach(Q,s,s’,m)

if m = 0then (* Plans of length 0 and 1 *)
if s=s’or there iso € O such that’ = app,(s) then return true
else returnfalse

else
begin (* Longer plans *)
for all statess” do (* Iteration over intermediate states *)
if reach(Q,s,s”,m — 1) andreach(),s”,s’,m — 1) then return true
end
return false;
end

Figure 3.10: Algorithm for testing plan existence in polynomial space

The effectx describes the change to the internal state of the TM. Again, either the state changes
or does not, s& = —¢ A ¢ if ¢ # ¢’ and T otherwise. We define = —~¢ when: = p(n) and
m = R so that when the space bound gets violated, no accepting state can be reached.

The effectd describes the movement of the R/W head. Either there is movement to the left, no
movement, or movement to the right. Hence

=hiANhi—1 ifm=1L
0 = T ifm=N
—h; Nhiy1 ifm=R

By definition of TMs, movement at the left end of the tape is always to the right. Similarly, we
have state variable for R/W head positigfm) + 1 and moving to that position is possible, but no
transitions from that position are possible, as the space bound has been violated.

Now, these effects that represent possible transitions are used in the operators that simulate the
Turing machine. Lets,q) € (XU {[,0}) x Q,i € {0,...,p(n)} andd(s,q) = {(s',¢',m)}. If
g(q) = 3, then define the operator

O0s,q,i = <hz ANETIAN /S Ts,q,i(Sla q/7 m)>

We claim that the problem instance has a plan if and only if the Turing machine accepts without
violating the space bound.

If the Turing machine violates the space bound, the state varighle, ; becomes true and an
accepting state cannot be reached because no further operator will be applicable.

So, because all deterministic Turing machines with a polynomial space bound can be in polyno-
mial time translated to a planning problem, all decision problems in PSPACE are polynomial time
many-one reducible to deterministic planning, and the plan existence problem is PSPACE-hard.

Theorem 3.43 The problem of testing the existence of a plan is in PSPACE.

Proof: A recursive algorithm for testingn-step reachability between two states with m mem-
ory consumption is given in Figure 3.10.

We show that when the algorithm is called with the numbetr |A| of state variables as the
last argument, it consumes a polynomial amount of memory ifihe recursion depth is. At the

CHAPTER 3. DETERMINISTIC PLANNING 62

recursive calls memory is needed for storing the intermediate statdfhie memory needed for
this is polynomial inn. Hence at any point of time the space consumptiafi(is:?).
AprobleminstancéA, I, O, G) withn = | A| state variables has a plan if and only if rea@hi,s’,n)
returnstrue for somes’ such that’ |= G. lteration over all states can be performed in polyno-
mial space and testing = G can be performed in polynomial time in the size(@f Hence the
whole memory consumption is polynomial. O

Part of the high complexity of planning is due to the fact that plans can be exponentially long.
If a polynomial upper bound for plan length exists, testing the existence of plans is still intractable
but much easier.

Theorem 3.44 The problem of testing the existence of plans having a length bounded by some
polynomial is NP-hard.

Proof: We reduce the satisfiability problem of the classical propositional logic to the plan existence
problem. The length of the plans, whenever they exist, is bounded by the number of propositional
variables and hence is polynomial.

Let ¢ be a formula over the propositional variablesdnLet N = (A, {(a,0)|a € A}, O, ¢)
whereO = {(T,a)|la € A} We show that the problem instanéé has a plan if and only if the
formulag is satisfiable.

Assumep € SAT, that is, there is a valuation: A — {0, 1} such that = ¢. Now take the
operators{ (T, a)|v = a,a € A} in any order: these operators form a plan that reach the state
that satisfie®.

AssumeN has a plaroy,...,o,. The valuationv = {(a,1)|(T,a) € {o1,...,0m}} U
{(a,0)|a € A, (T,a) €{o1,...,0m}} of Ais the terminal state of the plan and satisfies [J

Theorem 3.45 The problem of testing the existence of plan having a length bounded by some
polynomial is in NP.

Proof: Let p(m) be a polynomial. We give a nondeterministic algorithm that runs in polynomial
time and determines whether a plan of length) exists.
Let N = (A, 1,0, G) be a problem instance.

1. Nondeterministically guess a sequencé €fp(m) operators., . . ., o; from the seD. Be-
causd is bounded by the polynomialm), the time consumptio®(p(m)) is polynomial
in the size ofN.

2. Computes = app,, (app,,_, (- - appm, (app, (1)) - -)). This takes polynomial time in the size
of the operators and the number of state variables.

3. Tests = G. This takes polynomial time in the size of the operators and the number of state
variables.

This nondeterministic algorithm correctly determines whether a plan of length apfmesexists
and it runs in nondeterministic polynomial time. Hence the problem is in NP. d

These theorems show the NP-completeness of the plan existence problem for polynomial-length
plans.

CHAPTER 3. DETERMINISTIC PLANNING 63

3.9 Literature

The idea of progression and regression in planning ifRsenschein, 1981 0ur definition of
regression in Section 3.2.2 is related to the weakest precondition predicates for program synthesis
[de Bakker and de Roever, 1972; Dijkstra, 1P #anning researchers have earlier used regression
only for a very restricted type of operators without conditional effects.

There has recently been a lot of interest in using general-purpose search algorithms with pro-
gression and heuristics that estimate distances between states. Our distance estimation in Section
3.4 generalizes the additive heuristic by Bonet and Geff2@01] by handling the truth-values
symmetrically and by being applicable to a more type of operators with arbitrary preconditions and
conditional effects. Other distance estimates with a flavor that is similar to Bonet and Geffner’s
exist[Haslum and Geffner, 2000; Hoffmann and Nebel, 2001

Techniques for speeding up heuristic state-space planners include symmetry refftetike,

1991; Emerson and Sistla, 199%&nd partial-order reductiofGodefroid, 1991; Valmari, 1991;

Alur et al,, 1997, both originally introduced outside planning in the context of reachability anal-
ysis and model-checking. Both of these techniques address the main problem in heuristic state-
space search, high branching factor (number of applicable operators) and high number of states.
Both techniques help in reducing the number of states to be traversed when searching for a plan.

The use of algorithms for the satisfiability problem of the classical propositional logic in plan-
ning was pioneered by Kautz and Selman, originally as a way of testing satisfiability algorithms,
and later shown to be more efficient than other planning algorithms at thafKiamgz and Sel-
man, 1992; 1996 In addition to Kautz and Selmd®994, parallel plans were used by Blum and
Furst in their Graphplan plannéBlum and Furst, 1997 Parallelism in this context serves the
same purpose as partial-order reduc{iGodefroid, 1991; Valmari, 1991namely to avoid con-
sidering all orderings of a number of independent actions and hence reduce the amount of search.
The notion of parallel plans considered in this lecture is not the only possiblgRamtanenet al.,

2004.

The algorithm for invariant computation was originally presented for simple operators with-
out conditional effect§Rintanen, 1998 The computation parallels the construction of planning
graphs in the Graphplan algoritiiBlum and Furst, 1997 and it would seem to us that the notion
of planning graph emerged when Blum and Furst noticed that the intermediate stages of the in-
variant computation are useful for backward search algorithms: if a depth-bounid @hposed
on the search tree, then formulae obtainedrbgegression steps (suffixes of lengthof possible
plans) that do not satisfy claus&s_.,, cannot lead to a plan, and the search tree can be pruned.

Even though a lot of contemporary planning research uses Graphplan’s planning[@apins
and Furst, 1997for various purposes, we have not discussed them in more detail for several
reasons. First, the graph character of planning graphs becomes inconvenient when preconditions
are arbitrary formulae, not just conjunctions of state variables, and effects may be conditional.
As a result, the basic construction steps of planning graphs become unintuitive. Second, even
when the operators have the simple form, the practically and theoretically important properties
of planning graphs are not graph-theoretic. We can equivalently and just as intuitively represent
the contents of planning graphs as sequences of literals and 2-literal clauses, as we have done for
instance in Section 3.6. So it seems that the graph representation does not provide advantages over
more conventional logic based and set based representations.

The algorithms presented in this section cannot in general be ordered in terms of efficiency.
The general-purpose search algorithms with distance heuristics are often very effective in solving

CHAPTER 3. DETERMINISTIC PLANNING 64

big problem instances with a suitable structure. Sometimes this entails better runtimes than in the
SAT/CSP approach because of the high overheads with handling big formulae or constraint nets
in the latter. Similarly, there are problems that are quickly solved by the SAT/CSP approach but
on which the distance estimation fails and the heuristic search algorithms are not able to find plans
quickly.

The main complexity result of the chapter, the PSPACE-completeness of the plan existence
problem, is due to Bylanddd994. Essentially the same result for other kinds of succinct repre-
sentations of graphs had been established earlier by Lozano and Bak2eGr

Any computational problem just NP-hard — not to mention PSPACE-hard — is usually consid-
ered to be too difficult to be solved in any but the simplest cases. Because planning even in the
deterministic case is PSPACE-hard, there has been interest in finding useful special cases in which
it can be guaranteed that the worst-case complexity does not show up. Syntactic restrictions lead-
ing to polynomial time planning have been investigated by several reseaf8ytaader, 1994;
Backstom and Nebel, 1995but the restrictions are so strict that very few or no interesting prob-
lems can be represented.

The computational complexity of planning with schematic operators has also been analyzed.
Schematic operators increase the conciseness of the representations of some problem instances
exponentially, and lift the worst-case complexity accordingly. For example, deterministic planning
with schematic operators is EXPSPACE-compleol et al, 1994. If function symbols are
allowed, encoding arbitrary Turing machines becomes possible, and the plan existence problem
consequently becomes undeciddliteol et al,, 1995.

3.10 Exercises

3.1 Show that regression for goalsthat are sets (conjunctions) of state variables and operators
with preconditions that are sets (conjunctions) of state variables and effects that consist of an
add lista (a set of state variables that become true) and a deleté(Bsset of state variables that
become false) can equivalently be defined@sa) U p whend N G =).

3.2Show that the problem in Lemma 3.9 is in NP and therefore NP-complete.

3.3 Satisfiability testing in the propositional logic is tractable in some special cases, like for sets
of clauses with at most 2 literals in each, and for Horn clauses, that is sets of clauses with at most
one positive literal in each clause.

Can you identify special cases in which existence ofiggtep plan can be determined in poly-
nomial time (inn and the size of the problem instance), because the corresponding formula trans-
formed to CNF is a set of 2-literal clauses or a set of Horn clauses?

