
Chapter 2

Background

In this chapter we define the formal machinery needed in the rest of the lecture for describing
different planning problems and algorithms. We give the basic definitions related to the classical
propositional logic, theory of computational complexity, and the definition of the transition system
model that is the basis of most work on planning. The transition systems in this lecture are closely
related to finite automata and transition systems in other areas of computer science.

2.1 Transition systems

The most important way of modeling the application underlying a planning problem is based on
the notion ofa transition system. A transition system consists of a set ofstates, which represent
the world at a given instant, and a number ofactionsthat describe the possible changes in the
world that can be caused by the agent/robot/something. The states form thestate space.

The actions are best understood as directed graphs with the states as the nodes.
Now a transition system is a 2-tuple〈S,O〉 whereO is a finite set of actionso ⊆ S × S.
In the beginning we consider deterministic actions only. An actiono ∈ O is deterministicif

and only if it is a (partial) function onS, that is, for everys ∈ S there is at most ones′ ∈ S such
that(s, s′) ∈ o. Fornondeterministicactions the number of successor statess′ may be higher than
one.

Later in Section 5.1 we will not just associate more than one successor state with a state, but a
probability distribution on the states so that some of the successor states can be more likely than
others.

2.1.1 Incidence matrices

Graphs can be represented graphically, or in terms of incidence matricesM (adjacency matrices)
in which elementMi,j indicates that a transition from statei to j is possible. We will later derive
representations of transition systems as propositional formulae that are best understood as succinct
representations of the kind of incidence matrices described here. Matrix operations like sum and
product have counterparts as operations on propositional formulae, and they are used in some of
the algorithms that we will discuss later.

Figure 2.1 depicts the transition graph of an action and the corresponding incidence matrix. The
action can be seen to be deterministic because for every state there is at most one arrow going out
of it, and each row of the matrix contains at most one non-zero element.

9

CHAPTER 2. BACKGROUND 10

A

B

EF

D

C

A B C D E F

A 0 1 0 0 0 0
B 0 0 0 0 0 1
C 0 0 1 0 0 0
D 0 0 1 0 0 0
E 0 1 0 0 0 0
F 0 0 0 0 1 0

Figure 2.1: The transition graph and the incidence matrix of a deterministic action

A B C D E F

A 0 1 0 0 0 0

B 0 0 0 0 0 1

C 0 0 1 0 0 0
D 0 0 1 0 0 0
E 0 1 0 0 0 0
F 0 0 0 0 1 0

×

A B C D E F

A 0 1 0 0 0 0
B 0 0 0 0 0 1
C 1 0 0 0 0 0
D 0 0 0 1 0 0
E 0 0 0 0 1 0
F 0 0 0 1 0 0

=

A B C D E F

A 0 0 0 0 0 1
B 0 0 0 1 0 0
C 1 0 0 0 0 0
D 1 0 0 0 0 0
E 0 0 0 0 0 1
F 0 0 0 0 1 0

Figure 2.2: Matrix product corresponds to sequential composition.

For matricesM1, . . . ,Mn that represent the transition relations of actionsa1, . . . , an, the com-
bined transition relation isM = M1 +M2 + · · ·+Mn. The matrixM now tells whether a state
can be reached from another state by at least one of the actions.

Here+ is the usual matrix addition that uses the Boolean addition for integers 0 and 1, which
is defined as0 + 0 = 0, andb+ b′ = 1 if b = 1 or b′ = 1. Later in Chapter 5 we will use normal
addition and interpret the matrix elements as probabilities of nondeterministic transitions.

Boolean addition is used because later in the presence of nondeterminism we could have 1 for
both of two transitions from A to B and from A to C. Later, when the matrix elements represent
transition probabilities, we will be using the ordinary arithmetic addition for real numbers.

2.1.2 Reachability as product of matrices

The incidence matrix corresponding to first taking actiona1 and thena2 isM1M2. This is illus-
trated by Figure 2.2 The inner product of two vectors in the definition of matrix product corre-
sponds to the reachability of a state from another state through all possible intermediate states.

Now we can compute for all pairss, s′ of states whethers′ is reachable froms by a sequence of
actions.

LetM be the matrix that is the (Boolean) sum of the matrices of the individual actions. Then
define

R0 = In×n

Ri = Ri−1 +MRi−1 for all i ≥ 1

Heren is the number of states andIn×n is the unit matrix of sizen.

CHAPTER 2. BACKGROUND 11

A

B

EF

D

C

A B C D E F

A 0 1 0 0 0 0
B 0 0 0 0 0 1
C 0 0 1 0 0 0
D 0 0 1 0 0 0
E 0 1 0 0 0 0
F 0 0 0 0 1 0

Figure 2.3: A transition graph and the corresponding matrixM

A

B

EF

D

C

A B C D E F

A 0 1 0 0 0 1
B 0 0 0 0 1 1
C 0 0 1 0 0 0
D 0 0 1 0 0 0
E 0 1 0 0 0 1
F 0 1 0 0 1 0

Figure 2.4: A transition graph extended with composed paths of length 2 and the corresponding
matrixM +M2

This computation ends because every element that is 1 for somei, is 1 also for allj > i, and
because of this monotonicity property there is a fixpoint by Tarski’s fixpoint theorem. MatrixRi

represents reachability byi actions.
Matrix Ri = M0 ∪M1 ∪ · · · ∪M i represents reachability byi actions or less.
Ri = Rj for somei ∈ {1, . . . , n} and allj ≥ i.

2.2 Classical propositional logic

Let P be a set of atomic propositions. We define the set of propositional formulae inductively as
follows.

1. For allp ∈ P , p is a propositional formula.

2. If φ is a propositional formula, then so is¬φ.

3. If φ andφ′ are propositional formulae, then so isφ ∨ φ′.

4. If φ andφ′ are propositional formulae, then so isφ ∧ φ′.

5. Th symbols⊥ and>, respectively denoting truth-values false and true, are propositional
formulae.

CHAPTER 2. BACKGROUND 12

A

B

EF

D

C

A B C D E F

A 0 1 0 0 1 1
B 0 1 0 0 1 1
C 0 0 1 0 0 0
D 0 0 1 0 0 0
E 0 1 0 0 1 1
F 0 1 0 0 1 1

Figure 2.5: A transition graph extended with composed paths of length 3 and the corresponding
matrixM +M2 +M3

We define the implicationφ→φ′ as an abbreviation for¬φ ∨ φ′, and the equivalenceφ ↔ φ′ as
an abbreviation for(φ→φ′) ∧ (φ′→φ).

A valuation onP is a functionv : P → {0, 1}. Here 0 denotes false and 1 denotes true. For
propositionsp ∈ P we definev |= p if and only if v(p) = 1. Given a valuation of the propositions
P , we can extend it to a valuation of all propositional formulae overP as follows.

1. v |= ¬φ if and only if v 6|= φ

2. v |= φ ∨ φ′ if and only if v |= φ or v |= φ′

3. v |= φ ∧ φ′ if and only if v |= φ andv |= φ′

4. v |= >

5. v 6|= ⊥

Computing the truth-value of a formula under a given valuation of propositional variables is
polynomial time in the size of the formula by the obvious recursive procedure.

A propositional formulaφ is satisfiable(consistent) if there is at least one valuationv so that
v |= φ. Otherwise it isunsatisfiable(inconsistent). A propositional formulaφ is valid or a
tautologyif v |= φ for all valuationsv. We write this as|= φ. A propositional formulaφ is a
logical consequenceof a propositional formulaφ′, writtenφ′ |= φ, if v |= φ for all valuationsv
such thatv |= φ′. A propositional formula that is a propositionp or a negated proposition¬p for
somep ∈ P is a literal. A formula that is a disjunction of literals isa clause.

2.2.1 Quantified Boolean formulae

There is an extension of the satisfiability and validity problems of the classical propositional logic
that introduces quantification over the truth-values of propositional variables. Syntactically,quan-
tified Boolean formulae(QBF) are defined like propositional formulae, but there are two new
syntactic rules for the quantifiers.

6. If φ is a formula andp ∈ P , then∀pφ is a formula.

7. If φ is a formula andp ∈ P , then∃pφ is a formula.

CHAPTER 2. BACKGROUND 13

The truth-value of these formulae is defined if the following two conditions are fulfilled.

• For everyp ∈ P occurring inφ, there is exactly one occurrence of∃p or ∀p in φ.

• All occurrences ofp ∈ P are inside∃p or ∀p.

Defineφ[ψ/x] as the formula obtained fromφ by replacing occurrences of the propositional
variablex byψ.

We define the truth-value of QBF by reducing them to ordinary propositional formulae without
occurrences of propositional variables. The atomic formulae in these formulae are the constants
> and⊥. The truth-value of these formulae is independent of the valuation, and is recursively
computed by the Boolean function associated with the connectives∨, ∧ and¬.

Definition 2.1 (Truth of QBF) A formula∃xφ is true if and only ifφ[>/x] ∨ φ[⊥/x] is true.
(Equivalently, ifφ[>/x] is true orφ[⊥/x] is true.)

A formula∀xφ is true if and only ifφ[>/x] ∧ φ[⊥/x] is true. (Equivalently, ifφ[>/x] is true
andφ[⊥/x] is true.)

A formulaφ with an empty prefix (and consequently without occurrences of propositional vari-
ables) is true if and only ifφ is satisfiable (equivalently, valid: for formulae without propositional
variables validity coincides with satisfiability.)

Example 2.2 The formulae∀x∃y(x↔ y) and∃x∃y(x ∧ y) are true.
The formulae∃x∀y(x↔ y) and∀x∀y(x ∨ y) are false. �

Notice that a QBF with only existential quantifiers is true if and only if if the formula stripped
from the quantifiers is satisfiable. Similarly, truth of QBF with only universal quantifiers coincides
with the validity of the corresponding formulae without quantifiers.

Changing the order of two consecutive variables quantified by the same quantifier does not
affect the truth-value of the formula. It is often useful to ignore the ordering in these cases, and
view each quantifier as quantifying a set of formulae, for example∃x1x2∀y1y2φ.

Quantified Boolean formulae are interesting because evaluating their truth-value is PSPACE-
complete[Meyer and Stockmeyer, 1972], and several computational problems that presumably
cannot be translated to the satisfiability of the propositional logic in polynomial time (assuming
that NP6=PSPACE) can be efficiently translated to QBF.

2.2.2 Binary decision diagrams

Propositional formulae can be transformed to different normal forms. The most well-known nor-
mal forms are the conjunctive normal form (CNF) and the disjunctive normal form (DNF). For-
mulae in conjunctive normal form are conjunctions of disjunctions of literals, and in disjunctive
normal form they are disjunctions of conjunctions of literals. For every propositional formula
there is a logically equivalent one in both of these normal forms. However, the formula in normal
form may be exponentially bigger.

Normal forms are useful for at least two reasons. First, certain types of algorithms are easier to
describe when assumptions of the syntactic form of the formulae can be made. For example, the
resolution rule which is the basis of many theorem-proving algorithms, is defined for formulae in
the conjunctive normal form only (the clausal form). Defining resolution for non-clausal formulae
is more difficult.

CHAPTER 2. BACKGROUND 14

The second reason is that certain computational problems can be solved more efficiently for
formulae in normal form. For example, testing the validity of propositional formulae is in general
co-NP-hard, but if the formulae are in CNF then it is polynomial time: just check whether every
conjunct contains bothp and¬p for some propositionp.

Transformation into a normal form in general is not a good solution to any computationally
intractable problem like validity testing, because for example in the case of CNF, polynomial-time
validity testing became possible only by allowing a potentially exponential increase in the size of
the formula.

However, there are certain normal forms for propositional formulae that have proved very useful
in various types of reasoning needed in planning and other related areas, like model-checking in
computer-aided verification.

In this section we discuss (ordered) binary decision diagrams (BDDs)[Bryant, 1992]. Other
normal forms of propositional formulae that have found use in AI and could be applied to planning
include the decomposable negation normal form[Darwiche, 2001] which is less restricted than
binary decision diagrams (formulae in DNNF can be viewed as a superclass of BDDs) and are
sometimes much smaller. However, smaller size means that some of the logical operations that
can be performed in polynomial time for BDDs, like equivalence testing, are NP-hard for formulae
in DNNF.

The main reason for using BDDs is that the logical equivalence of BDDs coincides with syn-
tactic equivalence: two BDDs are logically equivalent if and only if they are the same BDD.
Propositional formulae in general, or formulae in CNF or in DNF do not have this property. Fur-
thermore, computing a BDD that represents the conjunction or disjunction of two BDDs or the
negation of a BDDs also takes only polynomial time.

However, like with other normal forms, a BDD can be exponentially bigger than a correspond-
ing unrestricted propositional formula. One example of such a propositional formulae is the binary
multiplier: Any BDD representation ofn-bit multipliers has a size exponential inn. Also, even
though many of the basic operations on BDDs can be computed in polynomial time in the size
of the component BDDs, iterating these operations may increase the size exponentially: some of
these operator may double the size of the BDD, and doublingn times is exponential inn and in
the size of the original BDD.

A main application of BDDs has been model-checking in computer-aided verification[Burchet
al., 1994; Clarkeet al., 1994], and in recent years these same techniques have been applied to AI
planning as well. We will discuss BDD-based planning algorithms in Chapter 4.

BDDs are expressed in terms of the ternary Boolean operator if-then-elseite(p, φ1, φ2) defined
as(p∧φ1)∨(¬p∧φ2), wherep is a proposition. Any Boolean formula can be represented by using
this operator together with propositions and the constants> and⊥. Figure 2.6 depicts a BDD for
the formula(A ∨ B) ∧ (B ∨ C). The normal arrow coming from a node forP corresponds to
the case in whichP is true, and the dotted arrow to the case in whichP is false. Note that BDDs
are graphs, not trees like formulae, and this provides a further reduction in the BDD size as a
subformula never occurs more than once.

There is an ordering condition on BDDs: the occurrences of propositions on any path from the
root to a leaf node must obey a fixed ordering of the propositions. This ordering condition together
with the graph representation is required for the good computational properties of BDDs, like the
polynomial time equivalence test.

A BDD corresponding to a propositional formula can be obtained by repeated application of an

CHAPTER 2. BACKGROUND 15

BB

01

C

A

Figure 2.6: A BDD

equivalence called the Shannon expansion.

φ ≡ (p ∧ φ[>/p]) ∨ (¬p ∧ φ[⊥/p]) ≡ ite(p, φ[>/p], φ[⊥/p])

Example 2.3 We show how the BDD for(A∨B)∧ (B ∨C) is produced by repeated application
of the Shannon expansion. We use the variable orderingA, B, C and use the Shannon expansion
to eliminate the variables in this order.

(A ∨B) ∧ (B ∨ C)
≡ ite(A, (> ∨B) ∧ (B ∨ C), (⊥ ∨B) ∧ (B ∨ C))
≡ ite(A,B ∨ C,B)
≡ ite(A, ite(B,> ∨ C,⊥ ∨ C), ite(B,>,⊥))
≡ ite(A, ite(B,>, C), ite(B,>,⊥))
≡ ite(A, ite(B,>, ite(C,>,⊥)), ite(B,>,⊥))

The simplifications in the intermediate steps are by the equivalences> ∨ φ ≡ > and⊥ ∨ φ ≡ φ
and> ∧ φ ≡ φ and⊥ ∧ φ ≡ ⊥. When

ite(A, ite(B,>, ite(C,>,⊥)), ite(B,>,⊥))

is first turned into a tree and then equivalent subtrees are identified, we get the BDD in Figure 2.6.
The terminal node 1 corresponds to> and the terminal node 0 to⊥. �

There are many operations on BDDs that are computable in polynomial time. These include
forming the conjunction∧ and the disjunction∨ of two BDDs, and forming the negation¬ of a
BDD. However, conjunction and disjunction ofn BDDs may have a size that is exponential inn,
as adding a new disjunct or conjunct may double the size of the BDD.

An important operation in many applications of BDDs is the existential abstraction operation
∃p.φ, which is defined by

∃p.φ = φ[>/p] ∨ φ[⊥/p]

whereφ[ψ/p] means replacing all occurrences ofp in φ by ψ. Also this is computable in polyno-
mial time, but existentially abstractingn variables may result in a BDD that has size exponential
in n, and hence may take exponential time. Existential abstraction can of course be used for any
propositional formulae, not only for BDDs.

The formulaφ′ obtained fromφ by existentially abstractingp is in general not equivalent toφ,
but has many properties that make the abstraction operation useful.

CHAPTER 2. BACKGROUND 16

BB

01

C

A

×
2 3

B

=

BB

0

C

A

2 3

(a) (b) (c)

Figure 2.7: Three ADDs, the first of which is also a BDD.

Lemma 2.4 Letφ be a formula andp a proposition. Letφ′ = ∃p.φ = φ[>/p]∨φ[⊥/p]. Now the
following hold.

1. φ is satisfiable if and only ifφ′ is.

2. φ is valid if and only ifφ′ is.

3. If χ is a formula without occurrences ofp, thenφ |= χ if and only ifφ′ |= χ.

Example 2.5

∃B.((A→B) ∧ (B→C))
= ((A→>) ∧ (>→C)) ∨ ((A→⊥) ∧ (⊥→C))
≡ C ∨ ¬A ≡ A→C

∃AB.(A ∨B) = ∃B.(> ∨B) ∨ (⊥ ∨B) = ((> ∨>) ∨ (⊥ ∨>)) ∨ ((> ∨⊥) ∨ (⊥ ∨⊥))

�

2.2.3 Algebraic decision diagrams

Algebraic decision diagrams (ADDs)[Fujita et al., 1997; Baharet al., 1997] are a generalization
of binary decision diagrams that has been applied to many kinds of probabilistic extensions of
problems solved by BDDs. BDDs have only two terminal nodes, 1 and 0, and ADDs generalize
this to a finite number of real numbers.

While BDDs represent Boolean functions, ADDs represent mapping from valuations to real
numbers. The Boolean operations on BDDs, like taking the disjunction or conjunction of two
BDDs, generalize to the arithmetic operations to take the arithmetic sum or the arithmetic product
of two functions. There are further operations on ADDs that have no counterpart for BDDs, like
constructing a function that on any valuation equals the maximum of two functions.

Figure 2.7 depicts three ADDs, the first of which is also a BDD. The product of ADDs is a
generalization of conjunction of BDDs: if for some valuation/state ADDA assigns the valuer1
and ADDB assigns the valuer2, then the product ADDA · B assigns the valuer1 · r2 to the
valuation.

The following are some of the operations typically available in implementations of ADDs. Here
we denote ADDs byf andg and view them as functions from valuationsx to real numbers.

CHAPTER 2. BACKGROUND 17

Jussi−in−FR

Jussi−in−FR Jussi−in−ST Jussi−in−BA

Jussi−in−ST Jussi−in−BA

Jussi−in−FR Jussi−in−ST Jussi−in−BA

suitcase−in−BA

suitcase−in−ST

suitcase−in−FR suitcase−in−FR suitcase−in−FR

suitcase−in−ST suitcase−in−ST

suitcase−in−BA suitcase−in−BA

Figure 2.8: A simple transition system based on state variables

operation notation meaning
sum f + g (f + g)(x) = f(x) + g(x)
product f · g (f · g)(x) = f(x) · g(x)
maximization max(f, g) (max(f, g))(x) = max(f(x), g(x))

There is an operation for ADDs that corresponds to the existential abstraction operation on
BDDs, and that is used in multiplication of matrices represented as ADDs, just like existential
abstraction is used in multiplication of Boolean matrices represented as BDDs.

Let f be an ADD andp a proposition. Thenarithmetic existential abstractionof f , written
∃p.f , is an ADD that satisfies the following.

(∃p.f)(x) = (f [>/p])(x) + (f [⊥/p])(x)

2.3 Operators and state variables

Transition systems are widely used in AI planning and other areas of computer science, and it is a
model that can very well be used for describing all kinds of systems, especially man-made systems
and abstractions of the real-world used by human beings.

However, describing a transition system by giving a set of states and then relations representing
the actions is usually not the most natural nor the most concise description. This is because the
individual states usually have a certain meaning, which determines which actions are possible in
the state and what the possible successor states of the state under the given action are.

The common type of description of states is based onstate variables. LetA be a finite set of
state variables. Each state variablea ∈ A can have a finite number of different valuesR. Now a
states can be understood as a valuations : A→ R that assigns a value to each state variable.

In this lecture we will restrict to Boolean state variables withR = {0, 1}, but almost everything
in the lecture directly generalizes to any finite setR of values.

The state spaceS is now the set of all valuations ofA.

Example 2.6 Figure 2.8 illustrates a small transition system induced by state variables. We have

CHAPTER 2. BACKGROUND 18

depicted each state by enumerating the state variables that have the valuetrue in it (exactly two in
each of the states in the figure), and left out states that do not correspond to the intuitive meaning
of the states. Each state variable indicates whether one of the two objects is in one of the three
locations (Freiburg, Strassburg, Basel.)

The two actions respectively correspond to traveling with and without the suitcase.
Clearly, if we were using many-valued state variables, it would suffice to have only two of them,

each having three possible values corresponding to the three locations. �

It remains to give a description of the set of actions in terms of state variables. Intuitively,
we have to say whether an action is applicable in a given states, and what the successor states′

of that state under the given action is.1 Actions are represented asoperators〈c, e〉, wherec is a
propositional formula overA that has to be satisfied by the valuations for the action to be possible,
ande describes hows′ is obtained by changing the values of state variables ins.

Atomic effects in general are of the forma := r for a ∈ A and r ∈ R. In the Boolean
case it is common to simply writea for a := 1 and¬a for a := 0, and also we will do so. Be
careful to avoid confusion with an effect likee = a1 ∧ ¬a2 and exactly the same looking formula
φ = a1 ∧ ¬a2. After the effecte the formulaφ will be true, but this is the only direct relationship
between formulae and effects; in particular, there are no disjunctions∨ in effects and there is
nothing in the propositional logic that corresponds toB.

Definition 2.7 LetA be a set of state variables. An operator is a pair〈c, e〉 wherec is a proposi-
tional formula overA describing the precondition, ande is an effect overA. Effects are recursively
defined as follows.

1. > is an effect (the dummy effect).

2. a and¬a for state variablesa ∈ A are effects.

3. e1 ∧ · · · ∧ en is an effect ife1, . . . , en are effects overA (the special case withn = 0 is the
empty conjunction>.)

4. c B e is an effect ifc is a formula overA ande is an effect overA.

Notice that the representation of transition systems in terms of state variables and operators
opens the possibility that the size of the transition system, the number of states in the transition
system, may be exponential in the size of the set of operators. This idea ofsuccinct representations
of various objects is present in very many areas of computer science. As we will see later in this
lecture, succinctness usually means that algorithms for reasoning about the objects in question
increases: if a computational problem, like finding shortest paths in transition systems represented
as graphs, is solvable in polynomial time, solving the same problem for succinctly represented
transition systems will be much higher.

Definition 2.8 (Operator application) Let 〈c, e〉 be an operator overA. Let s be a state, that
is an assignment of truth values toA. The operator is applicable ins if s |= c and the set[e]s,
defined below, does not containa and¬a for anya ∈ A.

Recursively assign each effecte a set[e]s of literalsa and¬a for a ∈ A (theactive effects.)

1. [>]s = ∅
1We discuss nondeterministic actions in Chapter 4.

CHAPTER 2. BACKGROUND 19

011

111
110

010 001

100

000 101

〈(B ∧ C) ∨ (¬A ∧B ∧ ¬C) ∨ (¬A ∧ C),
((B ∧ C) B ¬C) ∧ (¬B B (A ∧B)) ∧ (¬C B A)〉

Figure 2.9: A transition graph with valuations ofA, B andC as states and, a corresponding
operator

2. [a]s = {a} for a ∈ A.

3. [¬a]s = {¬a} for a ∈ A.

4. [e1 ∧ · · · ∧ en]s = [e1]s ∪ . . . ∪ [en]s.

5. [c′ B e]s = [e]s if s |= c′ and[c′ B e]s = ∅ otherwise.

The successor state ofs under the operator is the one that is obtained froms by making the
literals in [e]s true and retaining the truth-values of state variables not occurring in[e]s. This
state is denoted by appo(s). We call the process of computing the successor state of a state with
respect to an operator asprogression.

Example 2.9 Consider the operator〈a, e〉 wheree = ¬a∧ (¬c B ¬b) and a states with a, b andc
all true. The operator is applicable becauses |= a. Now [e]s = {¬a} andapp〈a,e〉(s) |= ¬a∧b∧c.
�

Example 2.10 Figure 2.9 depicts a transition graph with valuations of three state variablesA, B
andC as nodes, and a corresponding operator. �

2.3.1 Extensions

The basic language for effects could be extended with further constructs. A natural construct
would besequential compositionof effects. If e and e′ are effects, then alsoe; e′ is an effect
that corresponds to first executinge and thene′. We do not discuss this topic further in this
lecture. Definition 3.11 and Theorem 3.12 show how sequential composition can be eliminated
from effects.

2.3.2 Normal forms

We introduce a normal form for effects that will be used in later sections for defining operations
on propositional formulae describing sets of states.

Table 2.1 lists a number of equivalences on effects. Their proofs of correctness with Definition
2.8 are straightforward. An effecte is equivalent to> ∧ e, and conjunctions of effects can be

CHAPTER 2. BACKGROUND 20

c B (e1 ∧ · · · ∧ en) ≡ (c B e1) ∧ · · · ∧ (c B en) (2.1)

c B (c′ B e) ≡ (c ∧ c′) B e (2.2)

(c1 B e) ∧ (c2 B e) ≡ (c1 ∨ c2) B e (2.3)

e ∧ (c B e) ≡ e (2.4)

e ≡ > B e (2.5)

e1 ∧ (e2 ∧ e3) ≡ (e1 ∧ e2) ∧ e3 (2.6)

e1 ∧ e2 ≡ e2 ∧ e1 (2.7)

c B > ≡ > (2.8)

e ∧ > ≡ e (2.9)

(2.10)

Table 2.1: Equivalences on effects

arbitrarily reordered without affecting the meaning of the operator. These trivial equivalences will
later be used without explicitly mentioning them, for example in the definitions of the normal
forms and when applying equivalences.

The normal form corresponds to moving the conditionals inside so that their consequents are
atomic effects, and it is useful for example in the computation of properties satisfied by predecessor
states by regression in Section 3.2.2.

Definition 2.11 An effecte is in normal formif it is > or a conjunction of one or more effects of
the formc B a and c B ¬a wherea is a state variable, and there is at most one occurrence of
atomic effectsa and¬a for any state variablea. An operator〈c, e〉 is in normal form ife is in
normal form.

Theorem 2.12 For every operator there is an equivalent one in normal form. There is one that
has a size that is polynomial in the size of the operator.

Proof: We can transform any operator into normal form by using the equivalences 2.1, 2.2, 2.3,
2.6, 2.7, and 2.8 in Table 2.1.

The proof is by structural induction on the effecte of the operator〈c, e〉.
Induction hypothesis: the effecte can be transformed to normal form.
Base case 1,e = >: This is already in normal form.
Base case 2,e = a or e = ¬a: An equivalent effect in normal form is> B e by Equivalence

2.5.
Inductive case 1,e = e1 ∧ e2: By the induction hypothesise1 ande2 can be transformed into

normal form, so assume that they already are. If one ofe1 ande2 is>, by Equivalence 2.9 we can
eliminate it.

Assumee1 containsc1 B l for some literall ande2 containsc2 B l. We can reordere1∧e2 with
Equivalences 2.6 and 2.7 so that one of the conjuncts is(c1 B l) ∧ (c2 B l). Then by Equivalence
2.3 this conjunct can be replaced by(c1 ∨ c2) B l. Because this can be done repeatedly for every
literal l, we can transforme1 ∧ e2 into normal form.

CHAPTER 2. BACKGROUND 21

Inductive case 1,e = z B e1: By the induction hypothesise1 can be transformed to normal
form, so assume that it already is.

If e1 is>, e can be replaced with the equivalent effect>.
If e1 = z′ B e2 for somez′ ande2, thene can be replaced by the equivalent (by Equivalence

2.2) effect(z ∧ z′) B e2 in normal form.
Otherwise,e1 is a conjunction of effectsz B l. By Equivalence 2.1 we can movez inside the

conjunction. Applications of Equivalences 2.2 transform the effect into normal form.
In this transformation the conditionsc in c B e are copied into front of the atomic effects. Let

m be the sum of the sizes of all the conditionsc, and letn be the number of occurrences of atomic
effectsa and¬a in the effect. An upper bound on size increase isO(nm), which is polynomial in
the size of the original operator. �

A further reduction in the size of the descriptions of transition systems is obtained by using
schematic operatorsinstead of operators as described above.

There are often regularities in the set of operators and corresponding regularities in the transition
system. A common regularity is that there are several almost identicalobjectsthat behave in the
same way. For example, operators describing driving car 1 and car 2 between cities are otherwise
identical except that in one case a reference to state variables about car 1 are used and in the other
state variables about car 2. This kind of regularities are ubiquitous, and operators allowing easy
expression of such sets of operators are used by almost all implementations of planning algorithms.

Example 2.13 Consider the schematic operator

〈in(x, t1), in(x, t2) ∧ ¬in(x, t1)〉

where the schema variablesx, t1 andt2 take values as follows.

x ∈ {car1, car2}
t1 ∈ {Freiburg,Strassburg,Basel}
t2 ∈ {Freiburg,Strassburg,Basel}
t1 6= t2

This schematic operator corresponds to the following set of operators.

{ 〈in(car1,Freiburg), in(car1,Basel) ∧ ¬in(car1,Freiburg)〉,
〈in(car1,Freiburg), in(car1,Strassburg) ∧ ¬in(car1,Freiburg)〉,
〈in(car1,Strassburg), in(car1,Freiburg) ∧ ¬in(car1,Strassburg)〉,
〈in(car1,Strassburg), in(car1,Basel) ∧ ¬in(car1,Strassburg)〉,
〈in(car1,Basel), in(car1,Freiburg) ∧ ¬in(car1,Basel)〉,
〈in(car1,Basel), in(car1,Strassburg) ∧ ¬in(car1,Basel)〉,
〈in(car2,Freiburg), in(car2,Basel) ∧ ¬in(car2,Freiburg)〉,
〈in(car2,Freiburg), in(car2,Strassburg) ∧ ¬in(car2,Freiburg)〉,
〈in(car2,Strassburg), in(car2,Freiburg) ∧ ¬in(car2,Strassburg)〉,
〈in(car2,Strassburg), in(car2,Basel) ∧ ¬in(car2,Strassburg)〉,
〈in(car2,Basel), in(car2,Freiburg) ∧ ¬in(car2,Basel)〉,
〈in(car2,Basel), in(car2,Strassburg) ∧ ¬in(car2,Basel)〉 }

�

CHAPTER 2. BACKGROUND 22

Schematic operators may also allowexistentialanduniversalquantification over sets of objects
for encoding disjunctions and conjunctions more concisely. For example,∃x ∈ {A,B,C}in(x,Freiburg)
is a short-hand for in(A,Freiburg) ∨ in(B,Freiburg) ∨ in(C,Freiburg).

Non-schematic operators are often calledground operators, and the process of producing a set
of ground operators from a schematic operator is calledgrounding. In this lecture we will be using
ground operators only. Most planning programs take schematic operators as input, and have a
preprocessor that grounds them.

2.3.3 Sets of states as propositional formulae

Because we identified states with valuations of state variables, we can now identify sets of states
with propositional formulae over the state variables. This allows us to perform set-theoretic opera-
tions on sets as logical operations, and test relations between sets by inference in the propositional
logic.

operation on sets operation on formulae
A ∪B A ∨B
A ∩B A ∧B
A\B A ∧ ¬B

question about setsquestion about formulae
A ⊆ B? |= A→B?
A ⊂ B? |= A→B and not|= B→A?
A = B? |= A↔ B?

Any inconsistent formula, likeA ∧ ¬A or ⊥, is not true in any state, and therefore represents
the empty set. Similarly, any valid formula, for instance> or A ∨ ¬A, represents the set of all
states (all valuations of the state variables.)

2.4 Computational complexity

In this section we discuss deterministic, nondeterministic and alternating Turing machines (DTMs,
NDTMs and ATMs) and define several complexity classes in terms of them. For a detailed intro-
duction to computational complexity see any of the standard textbooks[Balcázaret al., 1988;
1990; Papadimitriou, 1994].

The definition of ATMs we use is like that of Balcázar et al.[1990] but without a separate input
tape. Deterministic and nondeterministic Turing machines (DTMs, NDTMs) are a special case of
a alternating Turing machines.

Definition 2.14 Analternating Turing machineis a tuple〈Σ, Q, δ, q0, g〉 where

• Q is a finite set of states (the internal states of the ATM),

• Σ is a finite alphabet (the contents of tape cells),

• δ is a transition functionδ : Q× Σ ∪ {|,�} → 2Σ∪{|}×Q×{L,N,R},

• q0 is the initial state, and

• g : Q→ {∀,∃,accept, reject} is a labeling of the states.

CHAPTER 2. BACKGROUND 23

The symbols| and �, the end-of-tape symbol and the blank symbol, in the definition ofδ
respectively refer to the beginning of the tape and to the end of the tape. It is required thats = |
andm = R for all 〈s, q′,m〉 ∈ δ(q, |) for any q ∈ Q, that is, at the left end of the tape the
movement is always to the right and the end-of-tape symbol| may not be changed. Fors ∈ Σ we
restricts′ in 〈s′, q′,m〉 ∈ δ(q, s) to s′ ∈ Σ, that is,| gets written onto the tape only in the special
case when the R/W head is on the end-of-tape symbol. Notice that the transition function is a total
function, and the ATM computation terminated upon reaching an accepting or a rejecting state.

A configuration of an ATM is〈q, σ, σ′〉 whereq is the current state,σ is the tape contents left of
the R/W head with the rightmost symbol under the R/W head, andσ′ is the tape contents strictly
right of the R/W head. This is a finite representation of the finite non-blank segment of the tape of
the ATM.

The computation of an ATM starts from the initial configuration〈q0, |a, σ〉whereaσ is the input
string of the Turing machine. Belowε denotes the empty string.

The configuration of an ATM changes as follows.

1. From〈q, σa, σ′〉 to 〈q′, σ, a′σ′〉 whenδ(q, a) = 〈a′, q′, L〉.

2. From〈q, σa, σ′〉 to 〈q′, σa′, σ′〉 whenδ(q, a) = 〈a′, q′, N〉.

3. From〈q, σa, bσ′〉 to 〈q′, σa′b, σ′〉 whenδ(q, a) = 〈a′, q′, R〉.

4. From〈q, σa, ε〉 to 〈q′, σa′�, ε〉 whenδ(q, a) = 〈a′, q′, R〉.

A configuration〈q, σ, σ′〉 of an ATM isfinal if g(q) = accept org(q) = reject.
The acceptance of an input string by an ATM is defined recursively starting from final configu-

rations. A final configuration is accepting ifg(q) = accept. Non-final configurations are accepting
if the state is universal (∀) and all the immediate successor configurations are accepting, or if the
state is existential (∃) and at least one of the immediate successor configurations is accepting.
Finally, the ATM accepts a given input string if the initial configuration is accepting.

A nondeterministic Turing machine is an ATM without universal states. A deterministic Turing
machine is an ATM with|δ(q, s)| = 1 for all q ∈ Q ands ∈ Σ.

The complexity classes used in this lecture are the following. PSPACE is the class of decision
problems solvable by deterministic Turing machines that use a number of tape cells bounded by a
polynomial on the input lengthn. Formally,

PSPACE=
⋃
k≥0

DSPACE(nk).

Similarly other complexity classes are defined in terms of the time consumption (DTIME(f(n))
on a deterministic Turing machine, time consumption (NTIME(f(n)) on a nondeterministic Tur-
ing machine, or time or space consumption on alternating Turing machines (ATIME(f(n)) or

CHAPTER 2. BACKGROUND 24

ASPACE(f(n))) [Balcázaret al., 1988; 1990].

P =
⋃

k≥0 DTIME(nk)
NP =

⋃
k≥0 NTIME(nk)

EXP =
⋃

k≥0 DTIME(2nk
)

NEXP =
⋃

k≥0 NTIME(2nk
)

EXPSPACE =
⋃

k≥0 DSPACE(2nk
)

2-EXP =
⋃

k≥0 DTIME(22nk

)

2-NEXP =
⋃

k≥0 NTIME(22nk

)

APSPACE =
⋃

k≥0 ASPACE(nk)
AEXPSPACE =

⋃
k≥0 ASPACE(2nk

)

There are many useful connections between complexity classes defined in terms of deterministic
and alternating Turing machines[Chandraet al., 1981], for example

EXP = APSPACE
2-EXP = AEXPSPACE.

Roughly, an exponential deterministic time bound corresponds to a polynomial alternating space
bound.

We have defined all the complexity classes in terms of Turing machines. However, for all
purposes of this lecture, we can equivalently use conventional programming languages (like C
or Java) or simplified variants of them for describing computation. The main difference between
conventional programming languages and Turing machines is that the former use random-access
memory whereas memory access in Turing machines is local and only the current tape cell can
be directly accessed. However, these two computational models can be simulated with each other
with a polynomial overhead and are therefore for our purposes equivalent. The differences show up
in complexity classes with very strict (subpolynomial) restrictions on time and space consumption.

Later in this lecture, in some of the proofs that a given computational problem belongs to a
certain class we will usually give a program in a simple programming language comparable to a
small subset of C or Java, instead of giving a formal description of a Turing machine, because the
latter would usually be very complicated and difficult to understand.

A problemL is C-hard(where C is any of the complexity classes) if all problems in the class C
are polynomial timemany-one reducibleto it; that is, for all problemsL′ ∈ C there is a function
fL′ that can be computed in polynomial time on the size of its input andfL′(x) ∈ L if and only if
x ∈ L′. We say that the functionfL′ is a translation fromL′ to L. A problem isC-completeif it
belongs to the class C and is C-hard.

In complexity theory the most important distinction between computational problems is that
betweentractableand intractableproblems. A problem is considered to be tractable, efficiently
solvable, if it can be solved in polynomial time. Otherwise it is intractable. Most planning prob-
lems are highly intractable, but for many algorithmic approaches to planning it is important than
certain basic steps in these algorithms can be guaranteed to be tractable.

In this lecture we analyze the complexity of many computational problems, showing them to
be complete problems for some of the classes mentioned above. The proofs consist of two parts.
We show that the problem belongs to the class. This is typically by giving an algorithm for the

CHAPTER 2. BACKGROUND 25

problem, possibly a nondeterministic one, and then showing that the algorithm obeys the resource
bounds on time or memory consumption as required by the complexity class. Then we show
the hardness of the problem for the class, that is, we can reduce any problem in the class to the
problem in polynomial time. This can be either by simulating all Turing machines that represent
computation in the class, or by reducing a complete problem in the class to the problem in question
in polynomial time (a many-one reduction).

For almost all commonly used complexity classes there are more or less natural complete prob-
lems that often have a central role in proving the completeness of other problems for the class in
question. Some complete problems for the complexity classes mentioned above are the following.2

class complete problem
P truth-value of formulae in the propositional logic in a given valuation
NP satisfiability of formulae in the propositional logic (SAT)
PSPACE truth-value of quantified Boolean formulae

Complete problems for classes like EXP and NEXP can be obtained from the P-complete and
NP-problems by representing propositional formulae succinctly in terms of other propositional
formulae[Papadimitriou and Yannakakis, 1986]. We will not discuss this topic further in this
lecture.

2.5 Exercises

2.1Show that for any transition system〈S, {o1, . . . , on}〉 in which the statess ∈ S are valuations
of a setA of propositional variables (as in Example 2.10), the actionso1, . . . , on can be represented
in terms of operators.

2.2Show that conditional effects withB are necessary, that is, find a transition system where states
are valuations of a set of state variables and the actions cannot be represented as operators without
conditional effects withB. Hint: There is an example with two states and one state variable.

2For definition of P-hard problems we have to use more restricted many-one reductions that use only logarithmic
space instead of polynomial time. Otherwise all non-trivial problems in P would be P-hard and P-complete.

