Chapter 2

Background

In this chapter we define the formal machinery needed in the rest of the lecture for describing
different planning problems and algorithms. We give the basic definitions related to the classical
propositional logic, theory of computational complexity, and the definition of the transition system
model that is the basis of most work on planning. The transition systems in this lecture are closely
related to finite automata and transition systems in other areas of computer science.

2.1 Transition systems

The most important way of modeling the application underlying a planning problem is based on
the notion ofa transition systemA transition system consists of a setstétes which represent
the world at a given instant, and a numberaationsthat describe the possible changes in the
world that can be caused by the agent/robot/something. The states fostaténepace

The actions are best understood as directed graphs with the states as the nodes.

Now a transition system is a 2-tup|8, O) whereQ is a finite set of actions C .S x S.

In the beginning we consider deterministic actions only. An action O is deterministicif
and only if it is a (partial) function o, that is, for everys € S there is at most on€ € S such
that(s, s’) € o. Fornondeterministi@ctions the number of successor statesay be higher than
one.

Later in Section 5.1 we will not just associate more than one successor state with a state, but a
probability distribution on the states so that some of the successor states can be more likely than
others.

2.1.1 Incidence matrices

Graphs can be represented graphically, or in terms of incidence matrfi¢asijacency matrices)
in which element)/; ; indicates that a transition from statéo j is possible. We will later derive
representations of transition systems as propositional formulae that are best understood as succinct
representations of the kind of incidence matrices described here. Matrix operations like sum and
product have counterparts as operations on propositional formulae, and they are used in some of
the algorithms that we will discuss later.

Figure 2.1 depicts the transition graph of an action and the corresponding incidence matrix. The
action can be seen to be deterministic because for every state there is at most one arrow going out
of it, and each row of the matrix contains at most one non-zero element.

CHAPTER 2. BACKGROUND 10

N
/)\ B
'

Figure 2.1: The transition graph and the incidence matrix of a deterministic action

M TQW e

coocooolh
o~ o ooy
oo~ r=ooln
oo oo ooy
o oo ooy
oo oo~ oy

A B C D E F A B C|D|E F A B C D E F
AJ0O 1 0 0 0 0 A0 1 oo][0 o0 A0 0 0 0 0 1
B[o 0 0 0 0 1 B0 0 01010 1 B0 0 0 1 0 0
cClo 0 1 0 0 0 x C|]1 0 01J0{0 o0 = C|1 0 0 0 0 O
DIo 0 1 0o 0 O D|0 0 O 1 0 O D|1 0 0 O 0 O
El0O 1 0 0 0 0 E|f0 0 001 O Ef0O 0 0 0 0 1
Flo o o o 1 o F|0 0 0110 O F|10 0 0 O 1 O

Figure 2.2: Matrix product corresponds to sequential composition.
For matrices\fy, . .., M, that represent the transition relations of actians . . , a,,, the com-

bined transition relation i8/ = My + My + - -- + M,,. The matrix)/ now tells whether a state
can be reached from another state by at least one of the actions.

Here+ is the usual matrix addition that uses the Boolean addition for integers 0 and 1, which
is defined a® + 0 = 0, andb + & = 1if b = 1 ord/ = 1. Later in Chapter 5 we will use normal
addition and interpret the matrix elements as probabilities of nondeterministic transitions.

Boolean addition is used because later in the presence of nondeterminism we could have 1 for
both of two transitions from A to B and from A to C. Later, when the matrix elements represent
transition probabilities, we will be using the ordinary arithmetic addition for real numbers.

2.1.2 Reachability as product of matrices

The incidence matrix corresponding to first taking actigrand theru, is M M. This is illus-
trated by Figure 2.2 The inner product of two vectors in the definition of matrix product corre-
sponds to the reachability of a state from another state through all possible intermediate states.
Now we can compute for all pairs s’ of states whethet' is reachable from by a sequence of
actions.
Let M be the matrix that is the (Boolean) sum of the matrices of the individual actions. Then

define
RO = Inxn
Ri = Ri_l + MRi_l for all ¢ >1

Heren is the number of states adgy,, is the unit matrix of size:.

CHAPTER 2. BACKGROUND 11

. Q
/)\ B
L

Figure 2.3: A transition graph and the corresponding maltfix

Figure 2.4: A transition graph extended with composed paths of length 2 and the corresponding
matrix M + M?

© O OO OO
OHOOO»—ADU
OO&—‘HOOQ
OOOOOOU
HOOOOON
Sl

MmO QW

MmO QWm

ReBeleBeRelhN
»—AHOOO»ADJ
S o= o o0
OOOOOOU
»—AOOOHON
Or—'OOb—‘Hﬁj

This computation ends because every element that is 1 for $0ié also for all; > 4, and
because of this monotonicity property there is a fixpoint by Tarski’s fixpoint theorem. Matrix
represents reachability hiyactions.

Matrix R; = M° U M' U --- U M’ represents reachability byactions or less.

R; = R; forsomei € {1,...,n} and allj > i.

2.2 Classical propositional logic

Let P be a set of atomic propositions. We define the set of propositional formulae inductively as
follows.

1. Forallp € P, pis a propositional formula.
2. If ¢ is a propositional formula, then so-igb.
3. If ¢ and¢’ are propositional formulae, then sodis/ ¢'.
4. If ¢ and¢’ are propositional formulae, then sodis\ ¢'.
5

. Th symbolsL and T, respectively denoting truth-values false and true, are propositional
formulae.

CHAPTER 2. BACKGROUND 12

\\\

CF‘\~/E

=NeleleleNelhN
HHOOD—‘)—‘DU
oo o0N
OOOOOOU
HHOOD—‘)—‘N
b—‘HOOP—‘Hﬁj

MmO QW

Figure 2.5: A transition graph extended with composed paths of length 3 and the corresponding
matrix M + M? + M3

We define the implicatiom — ¢’ as an abbreviation for¢ \V ¢/, and the equivalencg « ¢’ as
an abbreviation fofp — ¢') A (¢' — ¢).

A valuation onP is a functionv : P — {0,1}. Here 0 denotes false and 1 denotes true. For
propositiong € P we definev |= p if and only if v(p) = 1. Given a valuation of the propositions
P, we can extend it to a valuation of all propositional formulae dvexs follows.

1. v = —¢ifand only ifv [~ ¢

2. vE ¢V ifandonlyifv = ¢orv = ¢
.vE¢AP ifandonlyifv = ¢ andv = ¢
4. vET

5. v L

Computing the truth-value of a formula under a given valuation of propositional variables is
polynomial time in the size of the formula by the obvious recursive procedure.

A propositional formulap is satisfiable(consistentif there is at least one valuatianso that
v | ¢. Otherwise it isunsatisfiable(inconsistent A propositional formulag is valid or a
tautologyif v = ¢ for all valuationsv. We write this as= ¢. A propositional formulap is a
logical consequencef a propositional formul@’, written ¢’ |= ¢, if v = ¢ for all valuationsv
such thaty = ¢’. A propositional formula that is a propositigror a negated propositionp for
somep € P is aliteral. A formula that is a disjunction of literals &clause

2.2.1 Quantified Boolean formulae

There is an extension of the satisfiability and validity problems of the classical propositional logic
that introduces quantification over the truth-values of propositional variables. Syntactjcalty,

tified Boolean formulagQBF) are defined like propositional formulae, but there are two new
syntactic rules for the quantifiers.

6. If ¢ is aformula ang € P, thenVpe is a formula.

7. If ¢ isaformula ang € P, thendp¢ is a formula.

CHAPTER 2. BACKGROUND 13

The truth-value of these formulae is defined if the following two conditions are fulfilled.

e For everyp € P occurring ing, there is exactly one occurrence=)f or Vp in ¢.

e All occurrences op € P are insidedp or Vp.

Define ¢[¢/z] as the formula obtained from by replacing occurrences of the propositional
variablex by .

We define the truth-value of QBF by reducing them to ordinary propositional formulae without
occurrences of propositional variables. The atomic formulae in these formulae are the constants
T and_L. The truth-value of these formulae is independent of the valuation, and is recursively
computed by the Boolean function associated with the connectivasand—.

Definition 2.1 (Truth of QBF) A formula3z¢ is true if and only if¢[T /x] V ¢[L/x] is true.
(Equivalently, ifp[T /x| is true or¢[L /x] is true.)

A formulaVvz¢ is true if and only if¢[T /] A ¢[L/z] is true. (Equivalently, ifp[T /x] is true
and¢[L/x] is true.)

A formulag with an empty prefix (and consequently without occurrences of propositional vari-
ables) is true if and only ip is satisfiable (equivalently, valid: for formulae without propositional
variables validity coincides with satisfiability.)

Example 2.2 The formulae/z3y(x < y) and3xTJy(x A y) are true.
The formulaedzVy(z < y) andvaVy(x V y) are false. [

Notice that a QBF with only existential quantifiers is true if and only if if the formula stripped
from the quantifiers is satisfiable. Similarly, truth of QBF with only universal quantifiers coincides
with the validity of the corresponding formulae without quantifiers.

Changing the order of two consecutive variables quantified by the same quantifier does not
affect the truth-value of the formula. It is often useful to ignore the ordering in these cases, and
view each guantifier as quantifying a set of formulae, for exaraple:oVy1 y2¢.

Quantified Boolean formulae are interesting because evaluating their truth-value is PSPACE-
complete[Meyer and Stockmeyer, 19F2and several computational problems that presumably
cannot be translated to the satisfiability of the propositional logic in polynomial time (assuming
that NRP£PSPACE) can be efficiently translated to QBF.

2.2.2 Binary decision diagrams

Propositional formulae can be transformed to different normal forms. The most well-known nor-
mal forms are the conjunctive normal form (CNF) and the disjunctive normal form (DNF). For-
mulae in conjunctive normal form are conjunctions of disjunctions of literals, and in disjunctive
normal form they are disjunctions of conjunctions of literals. For every propositional formula
there is a logically equivalent one in both of these normal forms. However, the formula in normal
form may be exponentially bigger.

Normal forms are useful for at least two reasons. First, certain types of algorithms are easier to
describe when assumptions of the syntactic form of the formulae can be made. For example, the
resolution rule which is the basis of many theorem-proving algorithms, is defined for formulae in
the conjunctive normal form only (the clausal form). Defining resolution for non-clausal formulae
is more difficult.

CHAPTER 2. BACKGROUND 14

The second reason is that certain computational problems can be solved more efficiently for
formulae in normal form. For example, testing the validity of propositional formulae is in general
co-NP-hard, but if the formulae are in CNF then it is polynomial time: just check whether every
conjunct contains both and—p for some propositiop.

Transformation into a normal form in general is hot a good solution to any computationally
intractable problem like validity testing, because for example in the case of CNF, polynomial-time
validity testing became possible only by allowing a potentially exponential increase in the size of
the formula.

However, there are certain normal forms for propositional formulae that have proved very useful
in various types of reasoning needed in planning and other related areas, like model-checking in
computer-aided verification.

In this section we discuss (ordered) binary decision diagrams (B[Ergant, 1992. Other
normal forms of propositional formulae that have found use in Al and could be applied to planning
include the decomposable negation normal f¢Barwiche, 2001 which is less restricted than
binary decision diagrams (formulae in DNNF can be viewed as a superclass of BDDs) and are
sometimes much smaller. However, smaller size means that some of the logical operations that
can be performed in polynomial time for BDDs, like equivalence testing, are NP-hard for formulae
in DNNF.

The main reason for using BDDs is that the logical equivalence of BDDs coincides with syn-
tactic equivalence: two BDDs are logically equivalent if and only if they are the same BDD.
Propositional formulae in general, or formulae in CNF or in DNF do not have this property. Fur-
thermore, computing a BDD that represents the conjunction or disjunction of two BDDs or the
negation of a BDDs also takes only polynomial time.

However, like with other normal forms, a BDD can be exponentially bigger than a correspond-
ing unrestricted propositional formula. One example of such a propositional formulae is the binary
multiplier: Any BDD representation af-bit multipliers has a size exponential in Also, even
though many of the basic operations on BDDs can be computed in polynomial time in the size
of the component BDDs, iterating these operations may increase the size exponentially: some of
these operator may double the size of the BDD, and doublitimes is exponential im and in
the size of the original BDD.

A main application of BDDs has been model-checking in computer-aided verifid@ionhet
al., 1994; Clarkeet al, 1994, and in recent years these same techniques have been applied to Al
planning as well. We will discuss BDD-based planning algorithms in Chapter 4.

BDDs are expressed in terms of the ternary Boolean operator if-thentelges;, ¢2) defined
as(pA¢1)V (—pAg2), wherep is a proposition. Any Boolean formula can be represented by using
this operator together with propositions and the constaraad_L. Figure 2.6 depicts a BDD for
the formula(A v B) A (B Vv C). The normal arrow coming from a node fér corresponds to
the case in whiclP is true, and the dotted arrow to the case in whitts false. Note that BDDs
are graphs, not trees like formulae, and this provides a further reduction in the BDD size as a
subformula never occurs more than once.

There is an ordering condition on BDDs: the occurrences of propositions on any path from the
root to a leaf node must obey a fixed ordering of the propositions. This ordering condition together
with the graph representation is required for the good computational properties of BDDs, like the
polynomial time equivalence test.

A BDD corresponding to a propositional formula can be obtained by repeated application of an

CHAPTER 2. BACKGROUND 15

Figure 2.6: A BDD

equivalence called the Shannon expansion.
¢ = (pAO[T/p)V (=p A ¢[L/p]) = ite(p, [T /pl, p[L/p))

Example 2.3 We show how the BDD fo(A Vv B) A (B V C) is produced by repeated application
of the Shannon expansion. We use the variable ordeting, C' and use the Shannon expansion
to eliminate the variables in this order.

(AVB)AN(BVC)
ite(A,(TVB)AN(BVC),(LVB)A(BV())
ite(A, BV C, B)

ite(A,ite(B, TV C, LV C),ite(B, T, 1))
ite(A,ite(B, T,C),ite(B, T, 1))
ite(A,ite(B, T,ite(C, T, 1)),ite(B, T, L))

The simplifications in the intermediate steps are by the equivalehces = T and L V ¢ = ¢
andT A¢g=¢andl A ¢ = 1. When

ite(A,ite(B, T,ite(C, T, 1)),ite(B, T, 1))

is first turned into a tree and then equivalent subtrees are identified, we get the BDD in Figure 2.6.
The terminal node 1 correspondsTaand the terminal node 0 to. |

There are many operations on BDDs that are computable in polynomial time. These include
forming the conjunctiom and the disjunctiory of two BDDs, and forming the negation of a
BDD. However, conjunction and disjunction efBDDs may have a size that is exponentiahin
as adding a new disjunct or conjunct may double the size of the BDD.

An important operation in many applications of BDDs is the existential abstraction operation
Jp.¢, which is defined by

Ip-¢ = ¢[T/p] v ¢[L/p]

where¢[y)/p] means replacing all occurrencespah ¢ by . Also this is computable in polyno-
mial time, but existentially abstractingvariables may result in a BDD that has size exponential
in n, and hence may take exponential time. Existential abstraction can of course be used for any
propositional formulae, not only for BDDs.
The formulag’ obtained fromyp by existentially abstracting is in general not equivalent to,
but has many properties that make the abstraction operation useful.

CHAPTER 2. BACKGROUND 16

(b)
Figure 2.7: Three ADDs, the first of which is also a BDD.

Lemma 2.4 Let¢ be a formula ang a proposition. Le®’ = 3p.¢ = &[T /p] V ¢[L/p]. Now the
following hold.

1. ¢ is satisfiable if and only i’ is.

2. ¢ isvalid if and only if¢’ is.

3. If x is a formula without occurrences pf theng |= x if and only if¢’ |= x.
Example 2.5

dB.((A—B) AN (B—C())
= (A=T)AN(T=C)V(A=L)A(L=0C))
=CV-A=A—-C

JAB.(AVB)=3dB(TVB)V(LVB)=(TVT)V(LVT)V{(TVL)V(LVL)

2.2.3 Algebraic decision diagrams

Algebraic decision diagrams (ADD§Fujita et al., 1997; Bahaet al,, 1997 are a generalization

of binary decision diagrams that has been applied to many kinds of probabilistic extensions of
problems solved by BDDs. BDDs have only two terminal nodes, 1 and 0, and ADDs generalize
this to a finite number of real numbers.

While BDDs represent Boolean functions, ADDs represent mapping from valuations to real
numbers. The Boolean operations on BDDs, like taking the disjunction or conjunction of two
BDDs, generalize to the arithmetic operations to take the arithmetic sum or the arithmetic product
of two functions. There are further operations on ADDs that have no counterpart for BDDs, like
constructing a function that on any valuation equals the maximum of two functions.

Figure 2.7 depicts three ADDs, the first of which is also a BDD. The product of ADDs is a
generalization of conjunction of BDDs: if for some valuation/state ARRssigns the value;
and ADD B assigns the value,, then the product ADDA - B assigns the value, - r5 to the
valuation.

The following are some of the operations typically available in implementations of ADDs. Here
we denote ADDs by andg and view them as functions from valuatians$o real numbers.

CHAPTER 2. BACKGROUND 17

I‘ Jussi-in-FR' . ' Jussi—in—ST, i Jussi-in—BA|
suitcase—1n— FR . suitcase—in—FR, \suitcase—in— -FR'!

| Ju551—1n—BA‘
\suitcase—in—ST

I‘ Juss1—1n—FR‘ Jussi—in—ST|
suitcase—in—ST' . suitcase—in—ST,

’ Jussi—in— FR‘< ,‘ Jussi—in— ST‘ ’ Jussi—in— BA‘I
\ suitcase—in—BA | suitcase—in—BA, \suitcase—in—BA |

Figure 2.8: A simple transition system based on state variables

operation notation meaning

sum ftg (F+9@=Ff@)+g@)

product fg (f-9)(z) = f(z) g(z)
maximization max(f,g) (max(f,g))(z)=max(f(x),g(z))

There is an operation for ADDs that corresponds to the existential abstraction operation on
BDDs, and that is used in multiplication of matrices represented as ADDs, just like existential
abstraction is used in multiplication of Boolean matrices represented as BDDs.

Let f be an ADD andp a proposition. Therarithmetic existential abstractionf f, written
dp.f, is an ADD that satisfies the following.

Gp-f)(z) = (FIT/pD) (@) + (f[L/p])(2)

2.3 Operators and state variables

Transition systems are widely used in Al planning and other areas of computer science, and it is a
model that can very well be used for describing all kinds of systems, especially man-made systems
and abstractions of the real-world used by human beings.

However, describing a transition system by giving a set of states and then relations representing
the actions is usually not the most natural nor the most concise description. This is because the
individual states usually have a certain meaning, which determines which actions are possible in
the state and what the possible successor states of the state under the given action are.

The common type of description of states is basedtate variables Let A be a finite set of
state variables. Each state variable A can have a finite number of different valuBs Now a
states can be understood as a valuationA — R that assigns a value to each state variable.

In this lecture we will restrict to Boolean state variables with= {0, 1}, but almost everything
in the lecture directly generalizes to any finite &edf values.

The state spac€ is now the set of all valuations of.

Example 2.6 Figure 2.8 illustrates a small transition system induced by state variables. We have

CHAPTER 2. BACKGROUND 18

depicted each state by enumerating the state variables that have thewaloet (exactly two in
each of the states in the figure), and left out states that do not correspond to the intuitive meaning
of the states. Each state variable indicates whether one of the two objects is in one of the three
locations (Freiburg, Strassburg, Basel.)

The two actions respectively correspond to traveling with and without the suitcase.

Clearly, if we were using many-valued state variables, it would suffice to have only two of them,
each having three possible values corresponding to the three locations. |

It remains to give a description of the set of actions in terms of state variables. Intuitively,
we have to say whether an action is applicable in a given statad what the successor state
of that state under the given action‘iictions are represented aperators(c, ¢), wherec is a
propositional formula oved that has to be satisfied by the valuatioior the action to be possible,
ande describes hows' is obtained by changing the values of state variables in

Atomic effects in general are of the form:= r fora € A andr € R. In the Boolean
case it is common to simply write for ¢ := 1 and—a for a := 0, and also we will do so. Be
careful to avoid confusion with an effect like= a; A —a2 and exactly the same looking formula
¢ = a1 A —as. After the effecte the formulag will be true, but this is the only direct relationship
between formulae and effects; in particular, there are no disjunctioimseffects and there is
nothing in the propositional logic that corresponds-to

Definition 2.7 Let A be a set of state variables. An operator is a p@ire) wherec is a proposi-
tional formula overA describing the precondition, ands an effect over. Effects are recursively
defined as follows.

1. T is an effect (the dummy effect).
2. a and—q for state variables: ¢ A are effects.

3. e1 A--- ANeyis an effectifer, ..., e, are effects over (the special case with = 0 is the
empty conjunction .)

4. c 1> eis an effect ifc is a formula overd ande is an effect over.

Notice that the representation of transition systems in terms of state variables and operators
opens the possibility that the size of the transition system, the number of states in the transition
system, may be exponential in the size of the set of operators. This idaaaifict representations
of various objects is present in very many areas of computer science. As we will see later in this
lecture, succinctness usually means that algorithms for reasoning about the objects in question
increases: if a computational problem, like finding shortest paths in transition systems represented
as graphs, is solvable in polynomial time, solving the same problem for succinctly represented
transition systems will be much higher.

Definition 2.8 (Operator application) Let (c,e) be an operator oved. Lets be a state, that
is an assignment of truth values to The operator is applicable is if s = ¢ and the sefe]s,,
defined below, does not contairand —a for anya € A.

Recursively assign each effeca set[e| of literalsa and—a for a € A (theactive effecty

1. [T]s = @

1We discuss nondeterministic actions in Chapter 4.

CHAPTER 2. BACKGROUND 19

000 101

100 011

110
111

)

010 001 (BANC)V (mAANBA-C)V (mANC),
(BAC) > =C)A (=B (AAB))A(—C > A))

Figure 2.9: A transition graph with valuations df, B and C as states and, a corresponding
operator

2. [a]s = {a} fora € A.

3. [-a]s = {—a} fora € A.

4. [er N Nepls = [e1]s U... U en]s.

5. [d >e]s = [e]s if s E ¢ and[¢ > e]; = () otherwise.

The successor state efunder the operator is the one that is obtained frenby making the
literals in [e], true and retaining the truth-values of state variables not occurringejn. This

state is denoted by apfs). We call the process of computing the successor state of a state with
respect to an operator gsrogression

Example 2.9 Consider the operatdu, ¢) wheree = —a A (—c > —b) and a state with a, b andc
all true. The operator is applicable becasge a. Now [e]; = {—a} andapp, (s) = ~aAbAc.
|

Example 2.10 Figure 2.9 depicts a transition graph with valuations of three state varidblBs
andC as nodes, and a corresponding operator. |

2.3.1 Extensions

The basic language for effects could be extended with further constructs. A natural construct
would besequential compositioof effects. Ife ande’ are effects, then alse; ¢’ is an effect

that corresponds to first executirgand thene’. We do not discuss this topic further in this
lecture. Definition 3.11 and Theorem 3.12 show how sequential composition can be eliminated
from effects.

2.3.2 Normal forms

We introduce a normal form for effects that will be used in later sections for defining operations
on propositional formulae describing sets of states.

Table 2.1 lists a number of equivalences on effects. Their proofs of correctness with Definition
2.8 are straightforward. An effeetis equivalent toT A e, and conjunctions of effects can be

CHAPTER 2. BACKGROUND 20

(61 AN Nep) = (ee)AN--A(e>ep) (2.1)
(c >e) = (cAd)>e (2.2)

(c1 > e) ANlea>e) = (aVe)>e (2.3)
eN(c>e) = e (2.4)

e = Tp>e (2.5)

e1N(eaNe3) = (eg1 Nea)Aes (2.6)

et Nes = eaNey (2.7)

c>T = T (2.8)

eNT = e (2.9)

(2.10)

Table 2.1: Equivalences on effects

arbitrarily reordered without affecting the meaning of the operator. These trivial equivalences will
later be used without explicitly mentioning them, for example in the definitions of the normal
forms and when applying equivalences.

The normal form corresponds to moving the conditionals inside so that their consequents are
atomic effects, and it is useful for example in the computation of properties satisfied by predecessor
states by regression in Section 3.2.2.

Definition 2.11 An effecte is in normal formif it is T or a conjunction of one or more effects of
the forme > a andc > —a whereq is a state variable, and there is at most one occurrence of
atomic effects: and —a for any state variable:. An operator(c, e) is in normal form ife is in
normal form.

Theorem 2.12 For every operator there is an equivalent one in normal form. There is one that
has a size that is polynomial in the size of the operator.

Proof. We can transform any operator into normal form by using the equivalences 2.1, 2.2, 2.3,
2.6,2.7,and 2.8 in Table 2.1.

The proof is by structural induction on the effeadf the operatokc, e).

Induction hypothesis: the effeetcan be transformed to normal form.

Base case k = T: This is already in normal form.

Base case % = a or e = —a: An equivalent effect in normal form i$ > e by Equivalence
2.5.

Inductive case le = e; A es: By the induction hypothesis; andey can be transformed into
normal form, so assume that they already are. If ong @inde, is T, by Equivalence 2.9 we can
eliminate it.

Assumee; containsc; > [for some literal ande, containses > [. We can reordes; A e with
Equivalences 2.6 and 2.7 so that one of the conjundts is- [) A (c2 > [). Then by Equivalence
2.3 this conjunct can be replaced @y V ¢2) > . Because this can be done repeatedly for every
literal [, we can transform; A es into normal form.

CHAPTER 2. BACKGROUND 21

Inductive case 1¢ = z > e;: By the induction hypothesis, can be transformed to normal
form, so assume that it already is.

If e1is T, e can be replaced with the equivalent efféct

If e; = 2/ > ey for somez’ ande,, thene can be replaced by the equivalent (by Equivalence
2.2) effect(z A 2') > e2 in normal form.

Otherwise; is a conjunction of effects > [. By Equivalence 2.1 we can moxeinside the
conjunction. Applications of Equivalences 2.2 transform the effect into normal form.

In this transformation the conditiorsin ¢ > e are copied into front of the atomic effects. Let
m be the sum of the sizes of all the conditianand letn be the number of occurrences of atomic
effectsa and—a in the effect. An upper bound on size increas@ism), which is polynomial in
the size of the original operator. O

A further reduction in the size of the descriptions of transition systems is obtained by using
schematic operatorsistead of operators as described above.

There are often regularities in the set of operators and corresponding regularities in the transition
system. A common regularity is that there are several almost ideptipattsthat behave in the
same way. For example, operators describing driving car 1 and car 2 between cities are otherwise
identical except that in one case a reference to state variables about car 1 are used and in the other
state variables about car 2. This kind of regularities are ubiquitous, and operators allowing easy
expression of such sets of operators are used by almost all implementations of planning algorithms.

Example 2.13 Consider the schematic operator
(in(z,t1),in(x, ta) A =in(x,t1))
where the schema variablest; andt, take values as follows.

x € {carl carz}

t1 € {Freiburg StrassburgBase}
to € {Freiburg StrassburgBase}
t1 # to

This schematic operator corresponds to the following set of operators.

{ (in(carl, Freiburg,in(carl Base) A —in(carl Freiburg),
(in(carl Freiburg, in(carl, StrassburgA —in(carl Freiburg),
(in(carl Strassbury in(carl, Freiburg A —in(carl, Strassburd,
(in(carl, Strassbury in(carl, Base) A —in(carl, Strassbury),
(in(carl Base), in(carl, Freiburg A —in(carl Base}),

(in(carl Base), in(carl, StrassburgA —in(carl, Base}),
(in(car2 Freiburg, in(car2 Base) A —in(car2 Freiburg),
(in(car2 Freiburg, in(car2 StrassburgA —in(car2 Freiburg),
(in(car2 Strassbury in(car2 Freiburg A —in(car2 Strassbury,
(in(car2 Strassbury in(car2 Base) A —in(car2 Strassbury),
(in(car2 Base), in(car2 Freiburg A —in(car2 Base}),

(in(car2 Base), in(car2 StrassburgA —in(car2 Base)) }

CHAPTER 2. BACKGROUND 22

Schematic operators may also allewistentialanduniversalquantification over sets of objects
for encoding disjunctions and conjunctions more concisely. For example,{ A, B, C'}in(z, Freiburg
is a short-hand for if4, Freiburg V in(B, Freiburg V in(C, Freiburg.

Non-schematic operators are often caligdund operatorsand the process of producing a set
of ground operators from a schematic operator is cglednding In this lecture we will be using
ground operators only. Most planning programs take schematic operators as input, and have a
preprocessor that grounds them.

2.3.3 Sets of states as propositional formulae

Because we identified states with valuations of state variables, we can now identify sets of states
with propositional formulae over the state variables. This allows us to perform set-theoretic opera-
tions on sets as logical operations, and test relations between sets by inference in the propositional

logic.
operation on sets | operation on formulae
AUB AV B
ANB ANB
A\B AN-B
question about setsquestion about formulae
A C B? = A—B?
AcCB? = A— B and not= B— A?
A= B? = A< B?

Any inconsistent formula, liked A —A or L, is not true in any state, and therefore represents
the empty set. Similarly, any valid formula, for instan€eor A vV —A, represents the set of all
states (all valuations of the state variables.)

2.4 Computational complexity

In this section we discuss deterministic, nondeterministic and alternating Turing machines (DTMs,
NDTMs and ATMs) and define several complexity classes in terms of them. For a detailed intro-
duction to computational complexity see any of the standard textbldi®disazaret al, 1988;
1990; Papadimitriou, 1994

The definition of ATMs we use is like that of Balzar et al[1990 but without a separate input
tape. Deterministic and nondeterministic Turing machines (DTMs, NDTMs) are a special case of
a alternating Turing machines.

Definition 2.14 Analternating Turing machinis a tuple(>, @, 9, qo, g) Where

e () is afinite set of states (the internal states of the ATM),

Y is a finite alphabet (the contents of tape cells),

§ is a transition function’ : Q x X U {|,0} — 2ZUAX@{LN R}

qo is the initial state, and

g : Q — {V,3,acceptreject} is a labeling of the states.

CHAPTER 2. BACKGROUND 23

The symbols| and, the end-of-tape symbol and the blank symbol, in the definitiod of
respectively refer to the beginning of the tape and to the end of the tape. It is required=that
andm = R for all (s,¢',m) € d(q,|) for anyq € @Q, that is, at the left end of the tape the
movement is always to the right and the end-of-tape syrmby not be changed. Fere ¥ we
restricts’ in (s, ¢',m) € §(q,s) to s’ € X, that is,| gets written onto the tape only in the special
case when the R/W head is on the end-of-tape symbol. Notice that the transition function is a total
function, and the ATM computation terminated upon reaching an accepting or a rejecting state.

A configuration of an ATM idq, o, ') wheregq is the current state;, is the tape contents left of
the R/W head with the rightmost symbol under the R/W head cdnslthe tape contents strictly
right of the R/W head. This is a finite representation of the finite non-blank segment of the tape of
the ATM.

The computation of an ATM starts from the initial configuratiae, |a, o) whereao is the input
string of the Turing machine. Beloevdenotes the empty string.

The configuration of an ATM changes as follows.

1. From(q,0a,0’) to (¢',0,a’c’) whend(q,a) = (d’, ¢, L).

2. From(q,ca,c’) to (¢',0d’,0") whend(q,a) = (d’, ¢, N).
3. From(q,ca,bo’) to (¢, 0a’b, o) whend(q,a) = (d’, ¢, R).
4 q,0a,€) to (¢',0a'0, €) whend(q,a) = (d/, ¢, R).

A configuration(q, o, o’) of an ATM isfinal if g(q) = accept ory(q) = reject.

The acceptance of an input string by an ATM is defined recursively starting from final configu-
rations. A final configuration is acceptingjifq) = accept. Non-final configurations are accepting
if the state is universal and all the immediate successor configurations are accepting, or if the
state is existentiald) and at least one of the immediate successor configurations is accepting.
Finally, the ATM accepts a given input string if the initial configuration is accepting.

A nondeterministic Turing machine is an ATM without universal states. A deterministic Turing
machine is an ATM withd(q, s)| = 1 forall ¢ € Q ands € X.

The complexity classes used in this lecture are the following. PSPACE is the class of decision
problems solvable by deterministic Turing machines that use a number of tape cells bounded by a
polynomial on the input length. Formally,

PSPACE= |_] DSPACHn").
k>0

Similarly other complexity classes are defined in terms of the time consumption (DFMB(
on a deterministic Turing machine, time consumption (NTIYI&()) on a nondeterministic Tur-
ing machine, or time or space consumption on alternating Turing machines (AFIMB(or

CHAPTER 2. BACKGROUND 24

ASPACE(f(n))) [Balcazaret al., 1988; 1990.

P = U DTIME(n")

NP Us>o NTIME (n*)

EXP = (J,», DTIME(2"")
NEXP = JzqNTIME(2"")
EXPSPACE = |J,., DSPACH2"")
2-EXP = Uk>0DTIME(22”k)

k
2-NEXP = J;5o NTIME(22")

APSPACE = |J;(ASPACHnR")
AEXPSPACE = [J,.,ASPACEH2"")

There are many useful connections between complexity classes defined in terms of deterministic
and alternating Turing maching8handraet al, 1981, for example

EXP = APSPACE
2-EXP = AEXPSPACE

Roughly, an exponential deterministic time bound corresponds to a polynomial alternating space
bound.

We have defined all the complexity classes in terms of Turing machines. However, for all
purposes of this lecture, we can equivalently use conventional programming languages (like C
or Java) or simplified variants of them for describing computation. The main difference between
conventional programming languages and Turing machines is that the former use random-access
memory whereas memory access in Turing machines is local and only the current tape cell can
be directly accessed. However, these two computational models can be simulated with each other
with a polynomial overhead and are therefore for our purposes equivalent. The differences show up
in complexity classes with very strict (subpolynomial) restrictions on time and space consumption.

Later in this lecture, in some of the proofs that a given computational problem belongs to a
certain class we will usually give a program in a simple programming language comparable to a
small subset of C or Java, instead of giving a formal description of a Turing machine, because the
latter would usually be very complicated and difficult to understand.

A problemL is C-hard (where C is any of the complexity classes) if all problems in the class C
are polynomial timemany-one reduciblé it; that is, for all problemd.” € C there is a function
fr that can be computed in polynomial time on the size of its inputfan@:) € L if and only if
x € L. We say that the functioifi. is a translation fronl.’ to L. A problem isC-completsf it
belongs to the class C and is C-hard.

In complexity theory the most important distinction between computational problems is that
betweertractableandintractableproblems. A problem is considered to be tractable, efficiently
solvable, if it can be solved in polynomial time. Otherwise it is intractable. Most planning prob-
lems are highly intractable, but for many algorithmic approaches to planning it is important than
certain basic steps in these algorithms can be guaranteed to be tractable.

In this lecture we analyze the complexity of many computational problems, showing them to
be complete problems for some of the classes mentioned above. The proofs consist of two parts.
We show that the problem belongs to the class. This is typically by giving an algorithm for the

CHAPTER 2. BACKGROUND 25

problem, possibly a nondeterministic one, and then showing that the algorithm obeys the resource
bounds on time or memory consumption as required by the complexity class. Then we show
the hardness of the problem for the class, that is, we can reduce any problem in the class to the
problem in polynomial time. This can be either by simulating all Turing machines that represent
computation in the class, or by reducing a complete problem in the class to the problem in question
in polynomial time (a many-one reduction).

For almost all commonly used complexity classes there are more or less natural complete prob-
lems that often have a central role in proving the completeness of other problems for the class in
question. Some complete problems for the complexity classes mentioned above are the féllowing.

class \ complete problem

P truth-value of formulae in the propositional logic in a given valuation
NP satisfiability of formulae in the propositional logic (SAT)

PSPACE| truth-value of quantified Boolean formulae

Complete problems for classes like EXP and NEXP can be obtained from the P-complete and
NP-problems by representing propositional formulae succinctly in terms of other propositional
formulae[Papadimitriou and Yannakakis, 1986We will not discuss this topic further in this
lecture.

2.5 Exercises

2.1 Show that for any transition syste{f, {o1, ..., 0,}) in which the states € S are valuations
of a setA of propositional variables (as in Example 2.10), the actigns. . , o, can be represented
in terms of operators.

2.2Show that conditional effects with are necessary, that is, find a transition system where states
are valuations of a set of state variables and the actions cannot be represented as operators without
conditional effects with>. Hint: There is an example with two states and one state variable.

2For definition of P-hard problems we have to use more restricted many-one reductions that use only logarithmic
space instead of polynomial time. Otherwise all non-trivial problems in P would be P-hard and P-complete.

