
Scheduling

• Basic scheduling problems: open shop, job shop, flow job

• The disjunctive graph representation

• Algorithms for solving the job shop problem

• Computational complexity of the job shop problem
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Open shop, job shop, flow shop scheduling

• Perform certain jobs, each consisting of operations.

• Each operation can be performed on one of machines.
Operations have a duration (an integer). Each machine can
handle one operation at a time.

• Objective: schedule operations so that

1. time consumption is less than or equal some constant T , or
2. time consumption is smallest possible.
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Open shop, job shop, flow shop scheduling

1. Open shop: no ordering constraints on operations

2. Job shop: Operations of a job totally ordered

3. Flow shop: in each job exactly one operation for every
machine, all jobs go through all the machines in the same
order

Preemptive scheduling: no operation may be interrupted when it
has already been started.
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Related problems

• Planning.

• Others:

– Course scheduling for schools (lecture halls, lecturers)
– Timetabling for railways
– Crew scheduling for airlines/railways etc.
– Flight timetabling for airlines
– Fleet assignment for airlines
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Formalization of job shop scheduling

A problem instance P = 〈M, O, J〉 in job shop scheduling
consists of

• a set M of machines,

• a set O of operations o, each associated with a machine
m(o) ∈M and having a duration d(o) ∈ N , and

• a set J of jobs 〈o1, . . . , on〉 (each operation has exactly one
occurrence.)
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Formalization of job shop scheduling

A schedule S for P assigns to every operation o a time b(o):

1. b(o) ≥ 0 for all o ∈ O

2. b(o) ≥ b(o′) + d(o′) for operations o′ preceding o in the same
job

3. b(o) ≥ b(o′) + d(o′) or b(o′) ≥ b(o) + d(o) for all o′ ∈ O with
m(o′) = m(o) and o 6= o′

Schedule S has cost T if b(o) + d(o) ≤ T for all o ∈ O.
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The (“disjunctive”) graph representation

JOB2

JOB3

JOB1

Jussi Rintanen July 12, AI Planning 7/23

The dotted edges indicate that two operations are on the same
machine, and one of the operations has to precede the other.

Finding a schedule proceeds as follows.

1. Assign a direction to every edge without introducing cycles.

2. Topologically sort the graph (total order.)

3. Assign starting and ending times to the operations.

The topologically sorted graph determines the earliest possible
starting and ending times of all operations uniquely.
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One schedule for the problem instance
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The ordering in the schedule

We draw the graph so that all edges go from left to right:
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Assignment of time points to the schedule

Given the ordering of operations, assign all the operations the
earliest possible time points (here all operations have duration
one):

60 1 2 3 4 5 7 8
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Assignment of time points to the schedule

Obviously, the preceding schedule is not the best possible. E.g.
the following is much better.

60 1 2 3 4 5 7 8
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Algorithms for scheduling
There are two main approaches to finding schedules:

1. branch and bound: systematic binary search in the space of
all schedules,

2. local search: schedule is gradually improved.

Both can be used with different schedule representations:

1. the disjunctive graphs (most popular representation), or

2. assignments of time points/intervals to operations.
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Algorithms for scheduling: branch and bound

• Labels of search tree nodes are x1x2 . . . xn, with xi ∈ {0, 1, ?}

representing the undirected edges. (→,←, undecided.)

• One child assigns 0 to xi and the other assigns 1.

• Search tree is pruned by computing lower bounds on the cost.

• If the graph becomes cyclic or lower bound exceeds cost of
the best schedule so far, prune the subtree.

• When all xi have value 0 or 1, we have found a schedule.
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Branch and bound: an example
????? lb = 3

???0? lb = 4 ???1? lb = 5

?1?0? ?0?0? ???11 lb = 7 ???10
PRUNE

11000: schedule 00101: schedule
cost = 6cost = 7
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Lower bounds of schedule cost

Given a disjunctive graph, define for an operation o

• head(o): time necessarily needed before processing o

Highest duration of a directed path that ends in o

• tail(o): time necessarily needed after processing o

Highest duration of a directed path that starts from o
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Lower bounds of schedule cost (cont’d)

Define for a set S of operations

• the shortest head H(S) = mino∈S head(o)

• the shortest tail T (S) = mino∈S tail(o)

• the sum of processing times P (S) =
∑

o∈S
d(o)
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Lower bounds of schedule cost (cont’d)

Given a set of operations S on one machine, H(S)+P (S)+T (S)

is a lower bound on the cost of the schedule:

• Operations S cannot overlap because they are on the same
machine: at least time P (S) is needed for processing S.

• If from operations in S the one with the smallest head is
performed first, at least time H(S) is needed before S.

• If from operations in S the one with the smallest tail is
performed last, at least time T (S) is needed after S.
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Lower bounds of schedule cost (cont’d)

Let Om be the set of operations on machine m.

Now a lower bound on the cost of schedule is

max
m∈M

(

max
S⊆Om

H(S) + P (S) + T (S)

)

In other words, we compute the lower bounds on all sets S of
operations that are computed on one machine.
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Algorithms for scheduling: local search

• Idea: two schedules are neighbors if one can be obtained from
the other by a small modification (to its graph).

• Modifications:

– reverse an arrow, or
– reorder consecutive operations in the graph (preserving

their locations in their respective jobs.)

Modifications must preserve acyclicity
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Algorithms for scheduling: local search

Finding good schedules proceeds as follows:

1. Start from an randomly chosen schedule.

2. Go from the current schedule to a neighboring schedule (if the
neighboring schedule is sufficiently good.)

3. Algorithms: simulated annealing, tabu search, ...
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Computational intractability of scheduling

Optimal solutions for job shop scheduling can be found
polynomial time if

• number of jobs is 2,

• number of machines is 2, all jobs have 1 or 2 operations, or

• number of machines is 2, all operations have duration 1.

In all cases the problem obtained by incrementing the number of
machines, jobs, operations or durations by 1, is NP-hard.
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Approximability of job shop scheduling
THEOREM (Williamson et al. 1993) Deciding if there is a
schedule of length 4 is NP-complete.

COROLLARY There is no polynomial-time algorithm that finds
schedules of length < 5

4
from optimal (unless P=NP.)

PROOF SKETCH: A schedule of length 4 exists if and only if p-
approximation algorithm with p < 5

4
finds a schedule of length 4.

(Schedule of length 5 would be more than p from the optimal.)

THEOREM (Shmoys et al. 1994) There is a poly-time algorithm
that produces schedules of length log2

m

log log m
times the optimal.
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