Probabilistic planning under partial observability

e Based on stochastic transition systems (S, A, p, R) like with full
observability

e Computational properties:

— Belief states are probability distributions on the state space.
— Belief space is continuous and infinite.

— Finite optimal plans do not always exist.

— Testing existence of plans with value > ¢ undecidable.
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Applications

There are many important applications.

Diagnosis (medical, fault, ...)
Many applications in economics
Robotics

Game playing, problem solving
e Almost everything : -)
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Belief states: example
State space S = {s1, s2}.
Belief states:

e everything between (0,1) and (1,0), e.g. (0.9,0.1) and
(0.8,0.2).

e Contrast to the non-probabilistic case with only 3 (hon-empty)
belief states {s1}, {s2}, {51, 52}-
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Example: value functions

Actions a1, ae and a3 do nothing (i.e. p(s|s,a;) = 1.0 for all i €
{1,2,3} and s € S) and have rewards

R(al, 81) = 1.0 R(al, 52) 5.0
2.0 R(ag, 82) 4.0
R(as,s1) = 4.0 R(as,s2) = 0.0

oy
=
Q
b
»
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-
I

Expected reward of a; in belief state B s.t. B(s;) = 0.7 and
B(s2) =0.3i80.7-1.0 +0.3-5.0 = 2.2.
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Form of value functions Example: form of value functions

sl S2
e Value functions represented by finite sets of actions/plans are 5
piecewise linear and convex. (diagram on the next slide) . maximum of al, a2, &3 ay is best between
. o L NS T (&, Lyand (0,1).
e Optimal value function is convex but not necessarily piecewise 3 _ |
linear because it may consist of an infinite number of plans. 5 | a2 | aois best between
: T . : (2,3) and (3,3).
o Belief states with high probability on some states have higher 1 44 L
value th_an ones with more eyen propabllltles: less uncertainty 0 | | | | as is best between
= possible to take useful actions (higher expected rewards). 08 06 04 o2 (1,0) and <§,%>_
Jussi Rintanen July 12, Al Planning 5/27 Jussi Rintanen July 12, Al Planning 6/27
Representation of value functions Representation of value functions: example
sl SZ2
A value function V' is represented as a set of vectors (vy, ..., v,) 5 | s
. . . . maximum of al, a2,
that indicate the value of an action/plan in every state s € S = 4 1= n
{s1,.- .. 5} 3 | e Value function as a set of vectors:
. ™ . . . . 27 @ = {(1?5>?<2?4>?<470>}'
Value of a belief state B (a probability distribution on S) is
1 -a
o e Each vector indicates the value of
I I I I .
08 06 04 02 a plan in every state.
max B(s;) - v;
(V1yees, vp)EV Z ( ’L) ’

i€{1,mmn}
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Plans: example Value of a plan in a state

ATE
¢ (C1,...,Cy) is the partition of S to observational classes.
. ;> Values of finite acyclic plans 7 in states s € S is defined as
Plans are written as (a, 71, 72, . . . , T, ) Where e
a is an .actlon and m is the number of vye = 0 (base case: the empty plan)
observational classes. —oo if action a is not applicable in s
1 (Av ()’ ()) V(a,my,emm),s = R(Sv a)+
_ A0, ('8, Q) U, o+ + D (s'|s,a)v
T2 = (37 ()7 ()) A éﬂz secy P ’ 1,8 s'eCm P )
T3 = (Bv7T277T1)
Ty = (A, 7s3,m) Value Vector (v s,, Ur. sy, - - - s Unr,s,,) TOr states S = {s1, s2,..., 5, }
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Value of a plan in a state: example Dominated plans

Let s, belong to the first observational class and s3 to the
second, let discount factor be 0.96 and let

R(s,a) = 50
p(sals,a) = 0.3 p(ssls,a) = 0.7
Ura,sg = 10 Urp,sy = 20
NOW ¥(q x s 7 p),s = 90 +0.96(0.3 - 10 + 0.7 - 20) = 66.32.
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Dominated plans: identification by LP
Test whether plan « is for at least one belief state strictly better
than any other plan in IT = {7y, ..., 7, }.

Variables are d and p, for every s € S. Value of d is to be
maximized. Constants v, , are values of plans = in states s € S.

YoecsPsUns = Do cgPsVars +dforallan’ € I\{n}
Zsesps =1
ps > Oforallse S

If the maximum value of d is > 0, then there is a belief state in
which the value of 7 is higher than the value of any other plan.
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Dominated plans: Identification, example
For s; and s, and value vectors v,, = (1,5),vr, = (2,4),Vr, =
(4,0), the following LP tests whether 7; is somewhere better than

79 and 3.

maximize d subject to

1pSl + 5p52 > 2]351 + 4p52 +d
1ps; +9ps, > 4ps, +0ps, +d
Psy +Dsy = 1
ps;, = 0
Psy = 0
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The value iteration algorithm: outline

1.::=0 (value function for i = 0 assigns O to all states.)
2.0 =i+1

3. Construct all plans of depth .

4. Compute the value vectors of the plans.

5. Remove all value vectors dominated by the rest.

6. If the last two value function differ by > ¢, go to 2.
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The value iteration algorithm

1:=0
o := {0}
=141

II; := {(G,,T('l, . ,Trn)|a €A, {7‘(’1, . ,7T'n} - Hi—l}

. Evaluate the values of plans in II; in all states.

. As long as there is 7 € II, that is dominated by IT;\ {7}, set
II; := Hl\{’fr}

7. If the difference between value functions represented by II;

and IT,_, is > ¢ for some belief state, go to 3.

S o
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The value iteration algorithm: example Example: plans of depth 1, value vectors

We use the discount constant A = 0.5.

Plans of depth 1 with the corresponding value vectors for all
states S = {s1, s9, s3, 54} are the following.

T = (R’()v())
T2 = (Bv()v())

The values of these plans in states sy, s, s3, s4 are as follows.

vr, = (1.0,0.0,0.0,0.0)
vr, = (0.0,1.0,0.0,0.0)
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Example: value function at iteration 1 Example: values of plans of depth 2
sl 2 3 4
T i T i T3 (R,m,m) wv., = (1.0,0.0,0.0,0.0)
. B 7 B m = (Rym,m) vy, = (1.0,0.0,0.0,0.0)
8 - 8 - s = (R,ma,m) vy, = (1.35,0.0,0.0,0.0)
10— 10 - - 16 = (R,m,m) vy = (1.35,0.0,0.0,0.0)
] m ) L ] L mr = (B,m,m) v, = (0.5,1.5,0.5,0.0)
i N | N s = (B,m,ma) Ung = (0.5,1.5,0.5,0.0)
i N i N 9 = (B,7T277T1) Ung = <00, 10,00700>
m o 10 (B, ™9, 7T2) U,Tw <00, 10, OO, 00>
00 00 00 00
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Example: value function at iteration 2

sl 2 s3 s
- 1 15 - -
135
4 174 - 4 -
] ] L — L
0.5 — - 0.5 m -
5
00 00 0.0
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Example: value function at iteration 3
sl 2 3 s
i 1675 T i
1575
4 g
0.675 0.675 a6
- o - 0.25
0.125 a4
0.0
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Example: values of plans of depth 3

T (R, 75, T5) Vryy (1.0,0.0,0.0,0.0)

me = (R,ms5,m7) vx, = (1.05,0.125,0.0,0.25)

ms = (R,m7,7m5) vry = (1.525,0.0,0.0,0.0)

ma = (Rymp,m7) ve, = (1.575,0.125,0.0,0.25)

ms = (B, 75, 7m5) Un. = (0.675,1.675,0.675,0.0)

6 = (B,ms5,7m7) vn, = (0.675,1.675,0.675,0.25)

7 = (B,m7,7m5) vn, = (0.25,1.25,0.25,0.0)

T8 (B, 77, ™7) Uy (0.25,1.25,0.25, 0.25)
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Example: values of plans of depth 4

To = (R, M4, 7T14) Umyg (1.05625,0.0625, 0.125, 0.0)
Too = (R, M4, T16) Umy = (1.12375,0.23125,0.125,0.3375)
To1 = (R, 16, M14) Umy = (1.59875,0.0625,0.125,0.0)
Toa = (R, 16, T16) Umy = (1.66625,0.23125,0.125,0.3375)
To3 = (B,T14,7M14) Ury = (0.7875,1.7875,0.7875,0.0)
T4 = (B,T14,T16) Umy, = (0.7875,1.7875,0.7875,0.3375)
mos = (B,T16,m14) Umys = (0.3375,1.3375,0.3375,0.0)
Tog (B, 16, T16)  VUrpg (0.3375,1.3375,0.3375, 0.3375)
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Example: value function at iteration 4 Example: plan for horizon length 4

4
st ) S s BLUE  Use of plans like in the FO case:

] |1.788 i L . .
1667 24 h=N 1. Choose action by executing the plan

22 from the beginning.
6 4 . .
- "BLOE  RED 2. Compute the new belief state by using
- - — - the observation and the probabilities.

0.788 L 0.788] 04 L 3. Continue from 1. (This is known as
i i 1 i [=A—— receding-horizon control)
0.338
-1 -1 Tl22 - . . - -
Bt e o Y e When horizon really is finite, execute the
BLUE RED plan in the normal way.
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Comments on the algorithm
e The algorithm we described can easily be extended with
sensory uncertainty.

e There are many improvements to the generation and pruning
of the value vectors.

e Algorithms for planning with partial observability is an active
research topic: how to scale up to big state spaces?
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