

Belief states: example

State space $S = \{s_1, s_2\}.$

Belief states:

- everything between $\langle 0,1\rangle$ and $\langle 1,0\rangle,$ e.g. $\langle 0.9,0.1\rangle$ and $\langle 0.8,0.2\rangle.$
- Contrast to the non-probabilistic case with only 3 (non-empty) belief states $\{s_1\}, \{s_2\}, \{s_1, s_2\}$.

Jussi Rintanen

July 12, AI Planning 3/27

Example: value functions

Actions a_1, a_2 and a_3 do nothing (i.e. $p(s|s, a_i) = 1.0$ for all $i \in \{1, 2, 3\}$ and $s \in S$) and have rewards

 $\begin{array}{rcrrr} R(a_1,s_1) &=& 1.0 & & R(a_1,s_2) &=& 5.0 \\ R(a_2,s_1) &=& 2.0 & & R(a_2,s_2) &=& 4.0 \\ R(a_3,s_1) &=& 4.0 & & R(a_3,s_2) &=& 0.0 \end{array}$

Expected reward of a_1 in belief state B s.t. $B(s_1) = 0.7$ and $B(s_2) = 0.3$ is $0.7 \cdot 1.0 + 0.3 \cdot 5.0 = 2.2$.

Jussi Rintanen

July 12, AI Planning 4/27

Form of value functions

- Value functions represented by finite sets of actions/plans are *piecewise linear* and *convex*. (*diagram on the next slide*)
- Optimal value function is convex but not necessarily piecewise linear because it may consist of an infinite number of plans.
- Belief states with high probability on some states have higher value than ones with more even probabilities: *less uncertainty possible to take useful actions* (higher expected rewards).

Representation of value functions

A value function V is represented as a set of vectors $\langle v_1, \ldots, v_n \rangle$ that indicate the value of an action/plan in every state $s \in S = \{s_1, \ldots, s_n\}$.

Value of a belief state B (a probability distribution on S) is

$$\max_{\langle v_1, \dots, v_n \rangle \in V} \left(\sum_{i \in \{1, \dots, n\}} B(s_i) \cdot v_i \right)$$

Jussi Rintanen

Jussi Rintanen

July 12, AI Planning 7/27

July 12, AI Planning

5/27

Jussi Rintanen

July 12, AI Planning 11/27

Dominated plans: identification by LP

Test whether plan π is for at least one belief state strictly better than any other plan in $\Pi = {\pi_1, \ldots, \pi_n}$.

Variables are d and p_s for every $s \in S$. Value of d is to be maximized. Constants $v_{\pi,s}$ are values of plans π in states $s \in S$.

$$\begin{array}{rcl} \sum_{s\in S} p_s v_{\pi,s} &\geq& \sum_{s\in S} p_s v_{\pi',s} + d \text{ for all } \pi' \in \Pi \setminus \{\pi\} \\ &\sum_{s\in S} p_s &=& 1 \\ &p_s &\geq& 0 \text{ for all } s\in S \end{array}$$

If the maximum value of d is > 0, then there is a belief state in which the value of π is higher than the value of any other plan.

Jussi Rintanen

July 12, AI Planning 13/27

Dominated plans: Identification, example

For s_1 and s_2 and value vectors $v_{\pi_1} = \langle 1, 5 \rangle, v_{\pi_2} = \langle 2, 4 \rangle, v_{\pi_3} = \langle 4, 0 \rangle$, the following LP tests whether π_1 is somewhere better than π_2 and π_3 .

Jussi Rintanen

July 12, AI Planning 14/27

The value iteration algorithm: outline

1. i := 0 (value function for i = 0 assigns 0 to all states.)

- **2**. *i* := *i* + 1
- 3. Construct all plans of depth *i*.
- 4. Compute the value vectors of the plans.
- 5. Remove all value vectors dominated by the rest.
- 6. If the last two value function differ by $> \epsilon$, go to 2.

Jussi Rintanen

July 12, AI Planning 15/27

Example: plans of depth 1, value vectors

We use the discount constant $\lambda = 0.5$.

Plans of depth 1 with the corresponding value vectors for all states $S = \{s_1, s_2, s_3, s_4\}$ are the following.

 $\begin{array}{rcl} \pi_1 &=& (\mathsf{R}, (), ()) \\ \pi_2 &=& (\mathsf{B}, (), ()) \end{array}$

The values of these plans in states s_1, s_2, s_3, s_4 are as follows.

$$\begin{array}{rcl} v_{\pi_1} &=& \langle \mathbf{1.0}, \mathbf{0.0}, \mathbf{0.0}, \mathbf{0.0} \rangle \\ v_{\pi_2} &=& \langle \mathbf{0.0}, \mathbf{1.0}, \mathbf{0.0}, \mathbf{0.0} \rangle \end{array}$$

Jussi Rintanen

July 12, AI Planning 18/27

Example: values of plans of depth 2

π_3	=	(R, π_1, π_1)	v_{π_3}	=	$\langle 1.0,0.0,0.0,0.0\rangle$
π_4	=	(R, π_1, π_2)	v_{π_4}	=	$\langle 1.0,0.0,0.0,0.0\rangle$
π_5	=	(R, π_2, π_1)	v_{π_5}	=	$\langle 1.35, 0.0, 0.0, 0.0 \rangle$
π_6	=	(R, π_2, π_2)	v_{π_6}	=	$\langle 1.35, 0.0, 0.0, 0.0 \rangle$
π_7	=	(B,π_1,π_1)	v_{π_7}	=	$\langle 0.5, 1.5, 0.5, 0.0 angle$
π_8	=	(B,π_1,π_2)	v_{π_8}	=	$\langle0.5,1.5,0.5,0.0\rangle$
π_9	=	(B,π_2,π_1)	v_{π_9}	=	$\langle0.0,1.0,0.0,0.0\rangle$
π_{10}	=	(B,π_2,π_2)	$v_{\pi_{10}}$	=	$\langle0.0,1.0,0.0,0.0\rangle$

Jussi Rintanen

July 12, AI Planning 20/27

Comments on the algorithm

- The algorithm we described can easily be extended with sensory uncertainty.
- There are many improvements to the generation and pruning of the value vectors.
- Algorithms for planning with partial observability is an active research topic: how to scale up to big state spaces?

```
Jussi Rintanen
```

July 12, AI Planning 27/27