Probabilistic planning under partial observability

- Based on stochastic transition systems $\langle S, A, p, R\rangle$ like with full observability
- Computational properties:
- Belief states are probability distributions on the state space.
- Belief space is continuous and infinite.
- Finite optimal plans do not always exist.
- Testing existence of plans with value $\geq c$ undecidable.

Belief states: example

State space $S=\left\{s_{1}, s_{2}\right\}$.
Belief states:

- everything between $\langle 0,1\rangle$ and $\langle 1,0\rangle$, e.g. $\langle 0.9,0.1\rangle$ and $\langle 0.8,0.2\rangle$.
- Contrast to the non-probabilistic case with only 3 (non-empty) belief states $\left\{s_{1}\right\},\left\{s_{2}\right\},\left\{s_{1}, s_{2}\right\}$.

Applications

There are many important applications.

- Diagnosis (medical, fault, ...)
- Many applications in economics
- Robotics
- Game playing, problem solving
- Almost everything :-)

Example: value functions

Actions a_{1}, a_{2} and a_{3} do nothing (i.e. $p\left(s \mid s, a_{i}\right)=1.0$ for all $i \in$ $\{1,2,3\}$ and $s \in S$) and have rewards

$$
\begin{array}{ll}
R\left(a_{1}, s_{1}\right)=1.0 & R\left(a_{1}, s_{2}\right)=5.0 \\
R\left(a_{2}, s_{1}\right)=2.0 & R\left(a_{2}, s_{2}\right)=4.0 \\
R\left(a_{3}, s_{1}\right)=4.0 & R\left(a_{3}, s_{2}\right)=0.0
\end{array}
$$

Expected reward of a_{1} in belief state B s.t. $B\left(s_{1}\right)=0.7$ and $B\left(s_{2}\right)=0.3$ is $0.7 \cdot 1.0+0.3 \cdot 5.0=2.2$.

Form of value functions

- Value functions represented by finite sets of actions/plans are piecewise linear and convex.
(diagram on the next slide)
- Optimal value function is convex but not necessarily piecewise linear because it may consist of an infinite number of plans.
- Belief states with high probability on some states have higher value than ones with more even probabilities: less uncertainty \Rightarrow possible to take useful actions (higher expected rewards).

Representation of value functions

A value function V is represented as a set of vectors $\left\langle v_{1}, \ldots, v_{n}\right\rangle$ that indicate the value of an action/plan in every state $s \in S=$ $\left\{s_{1}, \ldots, s_{n}\right\}$.
Value of a belief state B (a probability distribution on S) is

$$
\max _{\left\langle v_{1}, \ldots, v_{n}\right\rangle \in V}\left(\sum_{i \in\{1, \ldots, n\}} B\left(s_{i}\right) \cdot v_{i}\right)
$$

- Value function as a set of vectors: $\{\langle 1,5\rangle,\langle 2,4\rangle,\langle 4,0\rangle\}$.
- Each vector indicates the value of a plan in every state.

Plans: example

Plans are written as $\left(a, \pi_{1}, \pi_{2}, \ldots, \pi_{m}\right)$ where a is an action and m is the number of observational classes.

$$
\begin{aligned}
& \pi_{1}=(A,(),()) \\
& \pi_{2}=(B,(),()) \\
& \pi_{3}=\left(B, \pi_{2}, \pi_{1}\right) \\
& \pi_{4}=\left(A, \pi_{3}, \pi_{2}\right)
\end{aligned}
$$

Value of a plan in a state

$\left\langle C_{1}, \ldots, C_{m}\right\rangle$ is the partition of S to observational classes.
Values of finite acyclic plans π in states $s \in S$ is defined as
$\begin{aligned} v_{(), s} & =0 \quad \text { (base case: the empty plan) } \\ v_{\left(a, \pi_{1}, \ldots, \pi_{m}\right), s} & =\left\{\begin{array}{l}-\infty \text { if action } a \text { is not applicable in } s \\ R(s, a)+ \\ \lambda\left(\sum_{s^{\prime} \in C_{1}} p\left(s^{\prime} \mid s, a\right) v_{\pi_{1}, s^{\prime}}+\cdots+\sum_{s^{\prime} \in C_{m}} p\left(s^{\prime} \mid s, a\right) v\right.\end{array}\right.\end{aligned}$
Value vector $\left\langle v_{\pi, s_{1}}, v_{\pi, s_{2}}, \ldots, v_{\pi, s_{n}}\right\rangle$ for states $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$

Jussi Rintanen

July 12 , AI Planning
10/27

Value of a plan in a state: example

Let s_{2} belong to the first observational class and s_{3} to the second, let discount factor be 0.96 and let

$$
\begin{array}{rlrl}
R(s, a) & =50 & & \\
p\left(s_{2} \mid s, a\right) & =0.3 & p\left(s_{3} \mid s, a\right) & =0.7 \\
v_{\pi_{A}, s_{2}} & =10 & v_{\pi_{B}, s_{3}} & =20
\end{array}
$$

Now $v_{\left(a, \pi_{A}, \pi_{B}\right), s}=50+0.96(0.3 \cdot 10+0.7 \cdot 20)=66.32$.

Dominated plans: identification by LP

Test whether plan π is for at least one belief state strictly better than any other plan in $\Pi=\left\{\pi_{1}, \ldots, \pi_{n}\right\}$.
Variables are d and p_{s} for every $s \in S$. Value of d is to be maximized. Constants $v_{\pi, s}$ are values of plans π in states $s \in S$.

$$
\begin{aligned}
\sum_{s \in S} p_{s} v_{\pi, s} & \geq \sum_{s \in S} p_{s} v_{\pi^{\prime}, s}+d \text { for all } \pi^{\prime} \in \Pi \backslash\{\pi\} \\
\sum_{s \in S} p_{s} & =1 \\
p_{s} & \geq 0 \text { for all } s \in S
\end{aligned}
$$

If the maximum value of d is >0, then there is a belief state in which the value of π is higher than the value of any other plan.

The value iteration algorithm: outline

1. $i:=0 \quad$ (value function for $i=0$ assigns 0 to all states.)
2. $i:=i+1$
3. Construct all plans of depth i.
4. Compute the value vectors of the plans.
5. Remove all value vectors dominated by the rest.
6. If the last two value function differ by $>\epsilon$, go to 2 .

Dominated plans: Identification, example

For s_{1} and s_{2} and value vectors $v_{\pi_{1}}=\langle 1,5\rangle, v_{\pi_{2}}=\langle 2,4\rangle, v_{\pi_{3}}=$ $\langle 4,0\rangle$, the following LP tests whether π_{1} is somewhere better than π_{2} and π_{3}.
maximize d subject to

$$
\begin{aligned}
1 p_{s_{1}}+5 p_{s_{2}} & \geq 2 p_{s_{1}}+4 p_{s_{2}}+d \\
1 p_{s_{1}}+5 p_{s_{2}} & \geq 4 p_{s_{1}}+0 p_{s_{2}}+d \\
p_{s_{1}}+p_{s_{2}} & =1 \\
p_{s_{1}} & \geq 0 \\
p_{s_{2}} & \geq 0
\end{aligned}
$$

The value iteration algorithm

1. $i:=0$
2. $\Pi_{0}:=\{()\}$
3. $i:=i+1$
4. $\Pi_{i}:=\left\{\left(a, \pi_{1}, \ldots, \pi_{n}\right) \mid a \in A,\left\{\pi_{1}, \ldots, \pi_{n}\right\} \subseteq \Pi_{i-1}\right\}$
5. Evaluate the values of plans in Π_{i} in all states.
6. As long as there is $\pi \in \Pi_{i}$ that is dominated by $\Pi_{i} \backslash\{\pi\}$, set $\Pi_{i}:=\Pi_{i} \backslash\{\pi\}$.
7. If the difference between value functions represented by Π_{i} and Π_{i-1} is $>\epsilon$ for some belief state, go to 3 .

The value iteration algorithm: example

Example: plans of depth 1, value vectors
We use the discount constant $\lambda=0.5$.
Plans of depth 1 with the corresponding value vectors for all states $S=\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\}$ are the following.

$$
\begin{aligned}
& \pi_{1}=(\mathrm{R},(),()) \\
& \pi_{2}=(\mathrm{B},(),())
\end{aligned}
$$

The values of these plans in states $s_{1}, s_{2}, s_{3}, s_{4}$ are as follows.

$$
\begin{aligned}
& v_{\pi_{1}}=\langle\mathbf{1 . 0}, \mathbf{0 . 0}, \mathbf{0 . 0}, \mathbf{0 . 0}\rangle \\
& v_{\pi_{2}}=\langle\mathbf{0 . 0}, \mathbf{1} . \mathbf{0}, \mathbf{0} . \mathbf{0}, \mathbf{0} .0\rangle
\end{aligned}
$$

Example: values of plans of depth 2

π_{3}	$=\left(\mathrm{R}, \pi_{1}, \pi_{1}\right) \quad v_{\pi_{3}}=\langle 1.0,0.0,0.0,0.0\rangle$
π_{4}	$=\left(\mathrm{R}, \pi_{1}, \pi_{2}\right) \quad v_{\pi_{4}}=\langle 1.0,0.0,0.0,0.0\rangle$
π_{5}	$=\left(\mathrm{R}, \pi_{2}, \pi_{1}\right) \quad v_{\pi_{5}}=\langle\mathbf{1 . 3 5}, \mathbf{0 . 0}, \mathbf{0 . 0}, \mathbf{0 . 0}\rangle$
π_{6}	$=\left(\mathrm{R}, \pi_{2}, \pi_{2}\right) \quad v_{\pi_{6}}=\langle 1.35,0.0,0.0,0.0\rangle$
π_{7}	$=\left(\mathrm{B}, \pi_{1}, \pi_{1}\right) \quad v_{\pi_{7}}=\langle\mathbf{0 . 5}, \mathbf{1 . 5}, \mathbf{0 . 5}, \mathbf{0 . 0}\rangle$
π_{8}	$=\left(\mathrm{B}, \pi_{1}, \pi_{2}\right) \quad v_{\pi_{8}}=\langle 0.5,1.5,0.5,0.0\rangle$
π_{9}	$=\left(\mathrm{B}, \pi_{2}, \pi_{1}\right) \quad v_{\pi_{9}}=\langle 0.0,1.0,0.0,0.0\rangle$
π_{10}	$=\left(\mathrm{B}, \pi_{2}, \pi_{2}\right) \quad v_{\pi_{10}}=\langle 0.0,1.0,0.0,0.0\rangle$

Example: value function at iteration 2

Jussi Rintanen

Example: values of plans of depth 3

$\pi_{11}=\left(\mathrm{R}, \pi_{5}, \pi_{5}\right) v_{\pi_{11}}=\langle 1.0,0.0,0.0,0.0\rangle$
$\pi_{12}=\left(\mathrm{R}, \pi_{5}, \pi_{7}\right) v_{\pi_{12}}=\langle 1.05,0.125,0.0,0.25\rangle$
$\pi_{13}=\left(\mathrm{R}, \pi_{7}, \pi_{5}\right) v_{\pi_{13}}=\langle 1.525,0.0,0.0,0.0\rangle$
$\pi_{14}=\left(\mathrm{R}, \pi_{7}, \pi_{7}\right) v_{\pi_{14}}=\langle\mathbf{1} . \mathbf{5 7 5}, \mathbf{0 . 1 2 5}, \mathbf{0 . 0}, \mathbf{0 . 2 5}\rangle$
$\pi_{15}=\left(\mathrm{B}, \pi_{5}, \pi_{5}\right) v_{\pi_{15}}=\langle 0.675,1.675,0.675,0.0\rangle$
$\pi_{16}=\left(\mathrm{B}, \pi_{5}, \pi_{7}\right) v_{\pi_{16}}=\langle\mathbf{0 . 6 7 5}, \mathbf{1} . \mathbf{6 7 5}, \mathbf{0 . 6 7 5}, \mathbf{0 . 2 5}\rangle$
$\pi_{17}=\left(\mathrm{B}, \pi_{7}, \pi_{5}\right) v_{\pi_{17}}=\langle 0.25,1.25,0.25,0.0\rangle$
$\pi_{18}=\left(\mathrm{B}, \pi_{7}, \pi_{7}\right) v_{\pi_{18}}=\langle 0.25,1.25,0.25,0.25\rangle$

Example: values of plans of depth 4

$\pi_{19}=\left(\mathrm{R}, \pi_{14}, \pi_{14}\right) \quad v_{\pi_{19}}=\langle 1.05625,0.0625,0.125,0.0\rangle$
$\pi_{20}=\left(\mathrm{R}, \pi_{14}, \pi_{16}\right) \quad v_{\pi_{20}}=\langle 1.12375,0.23125,0.125,0.3375\rangle$
$\pi_{21}=\left(\mathrm{R}, \pi_{16}, \pi_{14}\right) \quad v_{\pi_{21}}=\langle 1.59875,0.0625,0.125,0.0\rangle$
$\pi_{22}=\left(\mathrm{R}, \pi_{16}, \pi_{16}\right) \quad v_{\pi_{22}}=\langle\mathbf{1} .66625,0.23125,0.125,0.3375\rangle$
$\pi_{23}=\left(\mathrm{B}, \pi_{14}, \pi_{14}\right) \quad v_{\pi_{23}}=\langle 0.7875,1.7875,0.7875,0.0\rangle$
$\pi_{24}=\left(\mathrm{B}, \pi_{14}, \pi_{16}\right) \quad v_{\pi_{24}}=\langle\mathbf{0 . 7 8 7 5}, 1.7875,0.7875,0.3375\rangle$
$\pi_{25}=\left(\mathrm{B}, \pi_{16}, \pi_{14}\right) \quad v_{\pi_{25}}=\langle 0.3375,1.3375,0.3375,0.0\rangle$
$\pi_{26}=\left(\mathrm{B}, \pi_{16}, \pi_{16}\right) \quad v_{\pi_{26}}=\langle 0.3375,1.3375,0.3375,0.3375\rangle$

Example: value function at iteration 4

Jussi Rintanen
July 12 , Al Planning
$25 / 27$

Comments on the algorithm

- The algorithm we described can easily be extended with sensory uncertainty.
- There are many improvements to the generation and pruning of the value vectors.
- Algorithms for planning with partial observability is an active research topic: how to scale up to big state spaces?

Jussi Rintanen

Example: plan for horizon length 4

1. Choose action by executing the plan from the beginning
2. Compute the new belief state by using the observation and the probabilities.
3. Continue from 1. (This is known as receding-horizon contro)

- When horizon really is finite, execute the plan in the normal way.
July 12, Al Planning
$26 / 27$

