
Data structure

DEFINITION Let Π = 〈C1, . . . , Cn〉 be a partition of the set of all
states. Then a factored belief space is 〈G1, . . . , Gn〉 where s ⊂ s′

for no {s, s′} ⊆ Gi and Gi ⊆ 2Ci for all i ∈ {1, . . . , n}.

Intuitively, a factored belief space is a set of belief states,
partitioned to subsets corresponding to the observational
classes.

The factored representation of one set S of states is F(S) =

〈{C1 ∩ S}, . . . , {Cn ∩ S}〉.

Jussi Rintanen July 12, AI Planning 1/23

Data structure: combination

When we have two sets of belief states in the factored form, we
may combine them and keep the result in the factored form.

DEFINITION Let G = 〈G1, . . . , Gn〉 and H = 〈H1, . . . , H2〉 be
factored belief spaces. Define G ⊕ H as 〈G1 d H1, . . . , Gn d

Hn〉, where the operation d takes union of two sets of sets and
eliminates sets that are not set-inclusion maximal. It is formally
defined as G d H = {R ∈ G ∪H|R ⊂ K for no K ∈ G ∪H}.

Jussi Rintanen July 12, AI Planning 2/23

Data structure: sets of states represented by

A factored belief space G = 〈G1, . . . , Gn〉 can be viewed as
representing the set of sets of states

flat(G) = {s1 ∪ · · · ∪ sn|si ∈ Gi for all i ∈ {1, . . . , n}}.

The cardinality of flat(G) is |G1| · |G2| · . . . · |Gn|.

Jussi Rintanen July 12, AI Planning 3/23

Data structure: inclusion

DEFINITION A fbs G is included in fbs H (G v H) if for all S ∈

fl at(G) there is S′ ∈ fl at(H) such that S ⊆ S′.

Now S ∈ fl at(G) if and only if F(S) v G.

THEOREM Testing G v H for factored belief spaces G and H is
polynomial time.

PROOF Testing 〈G1, . . . , Gn〉 v 〈H1, . . . , Hn〉 is simply by testing
whether for all i ∈ {1, . . . , n} and all s ∈ Gi there is t ∈ Hi such
that s ⊆ t.

Jussi Rintanen July 12, AI Planning 4/23

Finding new belief states

PROCEDURE findnew(o,A,F ,H);
IF F = 〈〉 AND spreimgo(A) 6∈ fl at(H) THEN RETURN A;
IF F = 〈〉 THEN RETURN ∅;
F is 〈{f1, . . . , fm}, F2, . . . , Fk〉 for k ≥ 1;
FOR i := 1 TO m DO

Z := findnew(o,A ∪ fi,〈F2, . . . , Fk〉,H);
IF Z 6= ∅ THEN RETURN Z;

END;
RETURN ∅

Jussi Rintanen July 12, AI Planning 5/23

Complexity of finding new belief states

THEOREM Testing whether G = 〈G1, . . . , Gn〉 contains a set S

such that spreimgo(S) is not in G is NP-complete. This holds
even for deterministic operators o.

PROOF: Membership in NP is trivial: nondeterministically
choose si ∈ Gi for every i ∈ {1, . . . , n}, compute the preimage r

of s1 ∪ · · · ∪ sn, verify that r ∩ Ci for some Ci is not in Gi.

Jussi Rintanen July 12, AI Planning 6/23

Complexity of finding new belief states

NP-hardness by reduction from SAT. We illustrate the proof by
an example. Let T = {A ∨B ∨ C,¬A ∨B,¬C}.

Construct FBS so that T is satisfiable iff strong preimage of
o(x) = x0 is not in the FBS: clause is mapped to the set of
literals not in it; satisfying valuation = a new belief state.

〈 {{Â, B̂, Ĉ}, {A, B̂, C, Ĉ}, {A, Â, B, B̂, C}},

{{A0}, {Â0}},

{{B0}, {B̂0}},

{{C0}, {Ĉ0}}〉

Jussi Rintanen July 12, AI Planning 7/23

A planning algorithm: plan(I,O,G);
H := F(G); progress := true;
WHILE progress and I 6⊆ S for all S ∈ fl at(H) DO

progress := false;
FOR EACH o ∈ O DO

S := findnew(o,∅,H,H);
IF S 6= ∅ THEN

BEGIN
H := H ⊕F(spreimgo(S));
progress := true;

END; END; END;
IF I ⊆ S for some S ∈ fl at(H) THEN plan found;

Jussi Rintanen July 12, AI Planning 8/23

EXPSPACE-completeness of UO planning

THEOREM 1. The problem of testing the existence of a plan for
problem instances without observability is EXPSPACE-hard.

Proof idea: Simulate deterministic Turing machines with an
exponential space bound.

THEOREM 2. The problem of testing the existence of a plan for
problem instances without observability is in EXPSPACE.

Proof idea: Adapt the proof PSPACE-membership proof of
deterministic planning to work at the level of belief states (easy!)

Jussi Rintanen July 12, AI Planning 9/23

EXPSPACE-hardness of UO planning
Problem: exponentially many tape cells!! Representing them
all requires exponentially many state variables. Reduction not
polynomial time!!

Solution: Randomized test whether the plan describes an
execution of the TM.

1. For every execution randomly choose a watched tape cell.

2. Check that the plan correctly represents the watched tape cell.
(Because of unobservability the plan cannot “see” what the
watched tape cell is and it always has to simulate correctly.)

Jussi Rintanen July 12, AI Planning 10/23

EXPSPACE-hardness of UO planning

Let 〈Σ, Q, δ, q0, g〉 be any deterministic Turing machine with an
exponential space bound e(x).

Let σ be an input string of length n. We denote the ith symbol of
σ by σi.

The Turing machine may use space e(n), and for encoding
numbers from 0 to e(n) + 1 corresponding to the tape cells we
need m = dlog

2
(e(n) + 2)e bits.

Jussi Rintanen July 12, AI Planning 11/23

EXPSPACE-hardness of UO planning

The set P of state variables in the problem instance consists of

1. q ∈ Q for denoting the internal states of the TM,

2. wi for i ∈ {0, . . . , m−1} for representing the watched tape cell
j ∈ {0, . . . , e(n) + 1},

3. s ∈ Σ ∪ {|, 2} for the contents of the watched tape cell,

4. hi for i ∈ {0, . . . , m − 1} for representing the position of the
R/W head j ∈ {0, . . . , e(n) + 1}.

Jussi Rintanen July 12, AI Planning 12/23

EXPSPACE-hardness of UO planning

In the initial state any tape cell could be the watched one. I is
the conjunction of the following formulae.

1. q0

2. ¬q for all q ∈ Q\{q0}.
3. Formulae for having the contents of the watched tape cell in

state variables Σ ∪ {|, 2}.

| ↔ (w = 0)

2 ↔ (w > n)

s ↔
∨

i∈{1,...,n},σi=s(w = i) for all s ∈ Σ

Jussi Rintanen July 12, AI Planning 13/23

4. h = 1 for the initial position of the R/W head.

w = i, w > i denote the formulae for testing integer equality and
inequality of the numbers encoded by w0, w1,

Later we will use effects h := h+1 and h := h−1 that increment
and decrement the number encoded by h0, h1,

Jussi Rintanen July 12, AI Planning 14/23

EXPSPACE-hardness of UO planning

The goal is the following formula.

G =
∨
{q ∈ Q|g(q) = accept}

Jussi Rintanen July 12, AI Planning 15/23

EXPSPACE-hardness of UO planning

For all 〈s, q〉 ∈ (Σ ∪ {|, 2}) ×Q and 〈s′, q′, m〉 ∈ (Σ ∪ {|}) ×Q ×

{L, N, R} define the effect τs,q(s
′, q′, m) as α ∧ κ ∧ θ.

α = effect for change in current tape cell

κ = effect for change in state of TM

θ = effect for tape movement

Jussi Rintanen July 12, AI Planning 16/23

EXPSPACE-hardness of UO planning, α

α describes what happens to the tape symbol under the R/W
head.

α = > if the tape cell does not change, i.e. s = s′.

Otherwise,
α = (h = w) B (¬s ∧ s′)

to change the watched tape cell.

Jussi Rintanen July 12, AI Planning 17/23

EXPSPACE-hardness of UO planning, κ

κ describes the change to the internal state of the TM.

κ = > if q = q′

κ = ¬q ∧ q′ if q 6= q′ and movement 6= R

κ = ¬q ∧ ((h < e(n)) B q′) movement is R and q 6= q′

The condition h < e(n) prevents reaching an accepting state if
the space bound is violated.

Jussi Rintanen July 12, AI Planning 18/23

EXPSPACE-hardness of UO planning, θ

θ describes the movement of the R/W head. Either there is
movement to the left, no movement, or movement to the right.
Hence

θ =





h := h− 1 if m = L

> if m = N

h := h + 1 if m = R

Jussi Rintanen July 12, AI Planning 19/23

EXPSPACE-hardness of UO planning

Consider 〈s, q〉 ∈ Σ×Q. If g(q) = ∃ and δ(s, q) = 〈s′, q′, m〉, then
define

os,q = 〈((h 6= w) ∨ s) ∧ q ∧ (h ≤ e(n)), τs,q(s
′, q′, m)〉

The condition (h 6= w)∨ s is the key to the EXPSPACE-hardness
proof: If the plan tries to cheat here, then the operator is not
applicable on some execution, and the plan is not a valid plan.

Jussi Rintanen July 12, AI Planning 20/23

EXPSPACE-hardness of UO planning

Now the problem instance has a plan if and only if the Turing
machine accepts without violating the space bound.

If the simulation of the Turing machine violates the space bound,
then h > e(n) and a goal state cannot be reached because no
operator will be applicable.

Jussi Rintanen July 12, AI Planning 21/23

EXPSPACE-hardness of UO planning

q1 |1̂21222 o1,q1

q2 |22̂1222 o2,q2

q7 |231̂222 o1,q7

q3 |2322̂22 o2,q3

q2 |232̂322 o2,q2

q4 |23̂1322 o2,q4 ← first cheating here!
q4 |2̂11322 o2,q4

Jussi Rintanen July 12, AI Planning 22/23

2-EXPTIME-hardness of PO planning

• Branches in plans make it possible to simulate alternating TMs
that have a computation tree with AND and OR nodes.

• With partial observability we can extend the EXPSPACE
TM simulation to AEXPSPACE = 2-EXPTIME (O(22

n

) time)
simulation.

AND node = nondeterministic operator corresponds to a set
of transitions OR node = a set of deterministic operators
corresponds to a set of transitions (one operator is chosen)

Jussi Rintanen July 12, AI Planning 23/23

