Planning with partial observability

- Combines the difficulties needed in the unobservable and fully observable cases.
- Sequential plans (like with unobservability) or state \rightarrow action plans (like with full observability) do not suffice.
- In principle solvable by reduction to nondeterministic fully observable planning in the belief space. But this is impractical because of 2^{n} belief states for n states.
\qquad

5. Create node n^{\prime}. Assign $l(n):=\left\langle o, n^{\prime}\right\rangle$ and $B S\left(n^{\prime}\right):=\operatorname{img}_{o}(B)$.
6. Make n^{\prime} a branch node with $l\left(n^{\prime}\right)=\left\{\left\langle C_{1}, n_{1}\right\rangle, \ldots,\left\langle C_{m}, n_{m}\right\rangle\right\}$ where n_{1}, \ldots, n_{m} are new nodes. Assign $B S\left(n_{i}\right):=i m g_{o}(B) \cap$ C_{i} for every $i \in\{1, \ldots, m\}$.
7. Go to step 3

Nondeterministic choice in step 4 is implemented as search
Prevention of infinite plans: no node n^{\prime} following n may fulfill $B S(n) \subseteq B S\left(n^{\prime}\right)$.

A simple forward search algorithm

1. Initialize the plan with node b and assign $B S(b):=I$.
2. Make b a branch node with $l(b)=\left\{\left\langle C_{1}, n_{1}\right\rangle, \ldots,\left\langle C_{m}, n_{m}\right\rangle\right\}$ where n_{1}, \ldots, n_{m} are new nodes. Assign $B S\left(n_{i}\right):=I \cap C_{i}$ for all $i \in\{1, \ldots, m\}$.
3. Choose a node n with $B S(n) \nsubseteq G$ and with $l(n)=\emptyset$.

If there is no such node, plan is complete.
4. Nondeterministically choose $o \in O$ that is applicable in B.

Backward search algorithms

- Flavor similar to the backward algorithms for fully observable problems.
- Backward steps with operator applications: strong preimages.
- Backward steps with branching: we present a new construction for doing this.

Branching in backward search

- Let the observational classes be C_{1}, \ldots, C_{n}.
- Let $S_{1}, S_{2}, \ldots, S_{n}$ be sets of states with plans so that for all i, j such that $i \neq j$ there is no $C \in\left\{C_{1}, \ldots, C_{n}\right\}$, such that $S_{i} \cap C \neq \emptyset$ and $S_{j} \cap C \neq \emptyset$.

Now they can be combined to $S=S_{1} \cup \cdots \cup S_{n}$ that has a plan starting with a branch.

- Where do such sets S_{i} come from?

Regression/preimages

Branching

Combination 11

Combination 12

Combination 22
$\begin{array}{lllllll}\text { o1 } & \text { o2 } & \text { o3 } & \text { o4 } & \text { o5 } & \text { o6 } & \text { o7 }\end{array}$

No observability \Rightarrow No branching

Combination with full observability

Algorithm outline

- Pick from each observational class one belief state.
- Compute the strong preimage of their union w.r.t. operator o.
- Split the resulting set of states to belief states for different observational classes.
- Objective: obtain new belief states, preferably closer to I.

Example: backward search in the belief space

- 3 blocks A, B and C
- Goal: all blocks are on the table
- Only the variables clear (X) are observable.
- A block can be moved onto the table if the block is clear.
- 8 observational classes corresponding to the 8 valuations of $\{$ clear (A), clear (B), clear $(C)\}$ (one of the valuations does not correspond to a blocks world state.)

Algorithm idea: construction of plans

If plans for belief states Z_{1}, \ldots, Z_{n}, respectively corresponding to observational classes C_{1}, \ldots, C_{n}, were π_{1}, \ldots, π_{n}, the plan for a new belief state is

1. Apply o
2. If new current state is in C_{i} for $i \in\{1, \ldots, n\}$, continue with π_{i}.
\qquad

Example: goal belief state

Example: backup step with A-onto-table

Example: backup step with C-onto-table

Example: backup step with B-onto-table

Example: backup step with A-onto-table

Example: backup step with B-onto-table

Example: backup step with A-onto-table

Example: backup step with B-onto-table

Example: backup step with C-onto-table

\square

