Algorithms for unobservable planning: QBF

Translation into quantified Boolean formulae (QBF)
Why not by translation into propositional logic?

- We need to be able to say that there is a plan such that ... This is like the satisfiability problem in CPC: there is a valuation...
- We need to be able to say that for all executions ...

This is like the validity problem in CPC: for all valuations...

Quantified Boolean formulae: definition

The evaluation problem of QBF generalizes both the satisfiability and validity/tautology problems of the propositional logic. The latter are respectively NP-complete and co-NP-complete whereas the former is PSPACE-complete.

EXAMPLE.
The formulae $\forall x \exists y(x \leftrightarrow y)$ and $\exists x \exists y(x \wedge y)$ are true.
The formulae $\exists x \forall y(x \leftrightarrow y)$ and $\forall x \forall y(x \vee y)$ are false.

July 5, Al Planning

Quantified Boolean formulae: definition

If ϕ is a propositional formula and σ is a sequence of $\exists p$ and $\forall p$, one for every $p \in P$, then $\sigma \phi$ is a QBF.

A formula $\exists x \phi$ is true if and only if $\phi[\mathrm{T} / x] \vee \phi[\perp / x]$ is true. (Equivalently, $\phi[\top / x]$ is true or $\phi[\perp / x]$ is true.)

A formula $\forall x \phi$ is true if and only if $\phi[\top / x] \wedge \phi[\perp / x]$ is true. (Equivalently, $\phi[\top / x]$ is true and $\phi[\perp / x]$ is true.)
This definition directly leads to an AND/OR tree traversal algorithm for evaluating QBF.

UO planning with QBF

There is a sequence of operators so that
all executions and initial states
reach a goal state.

$$
\begin{aligned}
& \exists o_{1}^{0} \cdots o_{m}^{0} \cdots o_{1}^{t-1} \cdots o_{n}^{t-1} \\
& \forall p_{1}^{0} \cdots p_{n}^{0} a_{1}^{0} \cdots a_{k}^{0} \cdots a_{1}^{t-1} \cdots a_{k}^{t-1} \\
& \exists p_{1}^{1} \cdots p_{n}^{1} \cdots p_{1}^{t} \cdots p_{n}^{t} \\
& \left(I^{0} \rightarrow\left(\mathcal{R}_{3}^{0}\left(P^{0}, P^{1}\right) \wedge \cdots \wedge \mathcal{R}_{3}^{t-1}\left(P^{t-1}, P^{t}\right) \wedge G^{t}\right)\right)
\end{aligned}
$$

Variables $A^{i}=\left\{a_{1}^{i}, \ldots, a_{k}^{i}\right\}$ encode nondeterministic choices.

UO planning with QBF: nondeterminism

- We replace nondeterministic choice by dependence of the effects on values of "hidden" state variables a_{j}.
- Nondeterministic effect $e_{1}\left|e_{2}\right| \cdots \mid e_{n}$ roughly corresponds to a number of conditional effects:

$$
\left(\phi_{1} \triangleright e_{1}\right) \wedge\left(\phi_{2} \triangleright e_{2}\right) \wedge \cdots \wedge\left(\phi_{n} \triangleright e_{n}\right)
$$

Formulae ϕ_{i} refer to valuations of a some unknown "hidden" state variables a_{1}, \ldots, a_{m} (different at every time point). For n choices we have $m=\left\lceil\log _{2} n\right\rceil$ variables a_{j}.
\qquad

UO planning with QBF: effects, precons

$$
\begin{aligned}
& \left(o_{7} \wedge \neg a_{1} \wedge \neg a_{0}\right) \rightarrow A^{\prime} \\
& \left(o_{7} \wedge \neg a_{1} \wedge \neg a_{0} \wedge B\right) \rightarrow D^{\prime} \\
& \left(o_{7} \wedge \neg a_{1} \wedge a_{0}\right) \rightarrow B^{\prime} \\
& \left(o_{7} \wedge \neg a_{1} \wedge a_{0}\right) \rightarrow C^{\prime} \\
& \left(o_{7} \wedge a_{1} \wedge \neg a_{0}\right) \rightarrow C^{\prime} \\
& \left(o_{7} \wedge a_{1} \wedge a_{0}\right) \rightarrow C^{\prime} \\
& o_{7} \rightarrow A
\end{aligned}
$$

UO planning with QBF: nondeterminism

$$
o_{7}=\langle A,(0.3(A \wedge(B \triangleright D))|0.3(B \wedge C)| 0.4 C)\rangle
$$

$\left\lceil\log _{2} 3\right\rceil=2$ auxiliary variables a_{0}, a_{1} for 3 alternatives

valuation	effect
$\neg a_{1} \wedge \neg a_{0}$	$A \wedge(B \triangleright D)$
$\neg a_{1} \wedge a_{0}$	$B \wedge C$
$a_{1} \wedge \neg a_{0}$	C
$a_{1} \wedge a_{0}$	C

UO planning with QBF: frame axioms

```
\(\left(\neg A \wedge A^{\prime}\right) \rightarrow\left(\left(o_{7} \wedge \neg a_{1} \wedge \neg a_{0}\right) \vee \cdots\right)\)
\(\left(A \wedge \neg A^{\prime}\right) \rightarrow \cdots\)
\(\left(\neg B \wedge B^{\prime}\right) \rightarrow\left(\left(o_{7} \wedge \neg a_{1} \wedge a_{0}\right) \vee \cdots\right)\)
\(\left(B \wedge \neg B^{\prime}\right) \rightarrow \cdots\)
\(\left(\neg C \wedge C^{\prime}\right) \rightarrow\left(\left(o_{7} \wedge \neg a_{1} \wedge a_{0}\right) \vee\left(o_{7} \wedge a_{1}\right) \vee \cdots\right)\)
\(\left(C \wedge \neg C^{\prime}\right) \rightarrow \cdots\)
\(\left(\neg D \wedge D^{\prime}\right) \rightarrow\left(\left(o_{7} \wedge B \wedge \neg a_{1} \wedge \neg a_{0}\right) \vee \cdots\right)\)
\(\left(D \wedge \neg D^{\prime}\right) \rightarrow \cdots\)
```

UO planning with QBF: $\mathcal{R}_{3}^{i}\left(P_{i}, P_{i+1}\right)$
The formula $\mathcal{R}_{3}^{i}\left(P_{i}, P_{i+1}\right)$ is then the conjunction of all the formulae for

- operators' effects,
- operators' preconditions,
- frame axioms for all state variables,
- $\neg o \vee \neg o^{\prime}$ for pairs of interfering operators o and o^{\prime}
similarly to the encoding of deterministic planning.
\square
\square

