Observability

- Robot can see and hear only the immediate surroundings.
- Poker player cannot see the opponents' cards.
- Formalization: split state variables to those that can be, and to those that cannot be observed.
- More general formalization: set of atomic and compound formulas; truth-values of these formulas can be observed, but not necessarily the truth-values of their subformulas.
\qquad

Conditional plans: definition

$B=$ the observable state variables, $O=$ the operators. A plan is $\langle N, b, l\rangle$ where

- N is a finite set of nodes,
- $b \in N$ is the initial node,
- $l: N \rightarrow(O \times N) \cup 2^{\mathcal{L} \times N}$ assigns each node - an operator and a successor node $\langle o, n\rangle \in O \times N$ or
- a set of conditions and successor nodes $\langle\phi, n\rangle$, where $n \in N$ and ϕ is a formula over B.

Problem definition

A 5-tuple $\langle P, I, O, G, B\rangle$ consisting of

- a set P of state variables,
- a propositional formula I over P,
- a set O of operators,
- a propositional formula G over P, and
- a set $B \subseteq P$ of observable state variables.
is a problem instance in nondeterministic planning with partial observability.

Restrictions on observability

Let $\langle P, I, O, G, B\rangle$ be a problem instance in conditional planning.
If $P=B$, the problem instance is fully observable.
If $B=\emptyset$, the problem instance is unobservable.
If $B \neq \emptyset$ and $P \neq B$, the problem instance is partially observable. We also use this term for the general case that includes full observability and unobservability.

Observational classes

- When only variables in $B=\left\{p_{1}, \ldots, p_{m}\right\}$ are observable, then it is not possible to distinguish between states s and s^{\prime} such that $s(p)=s^{\prime}(p)$ for all $p \in B$.
- Observability partitions states to classes $S_{1} \cup S_{2} \cup \cdots \cup S_{n}$ of indistinguishable states. One class for every valuation of the observable state variables.
$S=S_{1} \cup S_{2} \cup \cdots \cup S_{n}$,
$S_{i} \cap S_{j}=\emptyset$ for any $\{i, j\} \subset\{1, \ldots, n\}$ such that $i \neq j$.

Belief states and the belief space

- Current state is not in general known during plan execution. Instead, the a set of possible current states is known.
- A set of possible current states is a belief state.
- The set of all belief states is the belief space.
- If there are n observationally indistinguishable states, then there are 2^{n} belief states.

Observational classes: cardinality

Full observability: state space $S=\left\{s_{1}, \ldots, s_{n}\right\}$ is partitioned to singleton classes $S_{1}=\left\{s_{1}\right\}, S_{2}=\left\{s_{2}\right\}, \ldots, S_{n}=\left\{s_{n}\right\}$.

Unobservability: The partition has only one class $S_{1}=S$ consisting of all the states.

Partial observability: the number and cardinality of S_{i} may be anywhere between 1 and n.

Transition graph for the belief space

1. Let F be a belief state (a set of states).
2. Operator o is executable in F if it is executable in every $s \in F$.
3. When o is executed, possible next states are $E=\operatorname{img}_{o}(F)$
4. Observations select some observational class S_{j}.
5. New belief state is $F^{\prime}=i m g_{o}(F) \cap S_{j}$.
\Longrightarrow There is an arc from F to F^{\prime} in the transition graph for the belief space.

Belief states and the belief space

EXAMPLE (next slide):

Belief space generated by states over two Boolean state variables.
$n=2$ state variables, $2^{n}=4$ states, $2^{2^{n}}=16$ belief states
red action: complement the value of the first state variable
blue action: assign a random value to the second state variable

Belief space: example, cont'd

Belief space: example II, belief state initially

Belief space: belief state after W

Jussi Rintanen
July 5, Al Planning

Belief space: after WW

Belief space: after WWWW

Belief space: after WWWWW

Belief space: after WWWWWW

Belief space: after WWWWWWN

Belief space: after WWWWWWNN

Belief space: after WWWWWWNNN

Belief space: after WWWWWWNNNNN

Belief space: after WWWWWWNNNNNN

Belief space: after WWWWWWNNNNNNN

Belief space: after WWWWWWNNNNNNNE

Planning under unobservability

1. Find a sequence of operators o_{1}, \ldots, o_{n} that reaches a goal state in G starting from any initial state in I.
2. Find a sequence of operators o_{1}, \ldots, o_{n} that reaches a belief state $S \subseteq G$ starting from the initial belief state I.

Edge from belief state Z to Z^{\prime} if o is applicable in every state in Z and $i m g_{o}(Z)=Z^{\prime}$.

Regression for nondeterministic operators

1. Nondeterministic operator $o=\langle c, e\rangle$ with $e=p_{1} e_{1}|\cdots| p_{n} e_{n}$ in normal formal II so that every e_{i} is deterministic.
2. $\operatorname{regr}_{\langle c, e\rangle}(\phi)$ is now defined as $\operatorname{regr}_{\left\langle c, e_{1}\right\rangle}(\phi) \wedge \cdots \wedge \operatorname{regr}_{\left\langle c, e_{n}\right\rangle}(\phi)$.

THEOREM. If $S^{\prime}=\left\{s^{\prime} \mid s^{\prime} \models \phi\right\}$, then spreimg $_{o}\left(S^{\prime}\right)=\{s \mid s \models$ regr $\left._{o}\left(S^{\prime}\right)\right\}$.

PROOF IDEA: To guarantee reaching S^{\prime} from a state s, S^{\prime} must be reached from s with every effect e_{1}, \ldots, e_{n}.

Algorithms for UO planning: heuristic search

Regression + heuristic search (A*, best first, ...)

- new problem: Testing $I=\operatorname{regr}_{o}(\phi)$ is co-NP-hard.
- heuristic 1: strong distances as in FO algorithms If only one initial state, distance estimation as in deterministic planning can be used, but even accurate estimates for deterministic planning may be very misleading.
- heuristic 2: size of belief state

Regression for nondet. ops: example

```
o=\langleA,(0.5B|0.5\negC)\rangle
```

 \(\operatorname{regr}_{o}(B \leftrightarrow C)=\operatorname{regr}_{\langle A, B\rangle}(B \leftrightarrow C) \wedge \operatorname{regr}_{\langle A, \neg C\rangle}(B \leftrightarrow C)\)
 \(=(A \wedge(\top \leftrightarrow C)) \wedge(A \wedge(B \leftrightarrow \perp))\)
 \(=(A \wedge C) \wedge(A \wedge \neg B)\)
 \(=A \wedge C \wedge \neg B\)

Algorithms for UO planning: heuristic search

Use strong distances of states as a heuristic:

$$
\begin{aligned}
D_{0} & =G \\
D_{i+1} & =D_{i} \cup \bigcup_{o \in O} \operatorname{spreimg}_{o}\left(D_{i}\right) \text { for all } i \geq 1
\end{aligned}
$$

A lower bound on plan length for belief state Z is j if $Z \subseteq D_{j}$ and $Z \nsubseteq D_{j-1}$.
This is an admissible heuristic (does not overestimate the cost).

Algorithms for UO planning: heuristic search

- Use the cardinality of belief states as a heuristic.
- Backward search: Prefer operators that increase the size of the belief state, i.e. find a plan suffix that reaches a goal state from more starting states.
- Forward search: Prefer operators that decrease the size of the belief state, i.e. reduce the uncertainty about the current state and make reaching goals easier.
- This heuristic is not admissible.
\square
\square

