Implementation for big state spaces

- Like binary decision diagrams (BDDs) can be used in implementing algorithms that use strong/weak preimages, there are data structures that can be used for implementing probabilistic algorithms for big state spaces.
- Problem: algorithms do not use just sets and relations, but value functions $v: S \rightarrow \mathcal{R}$ and non-binary transition matrices.
- Solution: Use a generalization of BDDs called algebraic decision diagrams (or MTBDDs: multi-terminal BDDs.)

Jussi Rintanen

June 28, Al Planning
1/15

An algebraic decision diagram

ADD represents a mapping $A B A^{\prime} \mathrm{B}^{\prime} \rightarrow \mathcal{R}$

	$A^{\prime} B^{\prime}$	$A^{\prime} B^{\prime}$	$A^{\prime} B^{\prime}$	$A^{\prime} B^{\prime}$
$A B$	00	01	10	11
00	1.0	0	0	0
01	0	1.0	0	0
10	0.8	0	0.2	0
11	0	0	0	0

June 28, AI Planning

Algebraic decision diagrams

- Graph representation of functions from $\{0,1\}^{n} \rightarrow \mathcal{R}$ that generalizes BDDs (BDDs are functions $\{0,1\}^{n} \rightarrow\{0,1\}$)
- Every BDD is an ADD.
- Canonicity: Two ADDs describe the same function if and only if they are the same ADD.
- Applications: Computations on very big matrices including computing steady-state probabilities of Markov chains; probabilistic verification; Al planning

Operations on ADDs: sum, product, maximum, ...
Arithmetic operations as $(f \odot g)(x)=f(x) \odot g(x)$ for every x.

$A B C$	f	g	$f+g$	$\max (f, g)$	$7 \cdot f$
000	0	3	3	3	0
001	1	2	3	2	7
010	1	0	1	1	7
011	2	1	3	2	14
100	1	0	1	1	7
101	2	0	2	2	14
110	2	0	2	2	14
111	3	1	4	3	21

Operations on ADDs: sum

Jussi Rintanen June 28, Al Planning

Operations on ADDs: arithmetic \exists abstraction
$(\exists p . f)(x)=(f[\top / p])(x)+(f[\perp / p])(x)$

$A B C$	f
000	0

001 1
$010 \quad 1$
$011 \quad 2$
100
101 2
110 2
111 3

$$
\begin{array}{ll|l}
& & A B \\
\exists C . f \text { is obtained by summing } & \exists 0 & 1 \\
\text { and } f\left(x^{\prime}\right) \text { when } x \text { and } x^{\prime} & 01 & 3 \\
\text { differ only on } C \text { : } & 10 & 3 \\
& 11 & 5
\end{array}
$$

Operations on ADDs: maximum

Matrix multiplication with ADDs (I)
Consider matrices M_{1} and M_{2}, represented as mappings:
$\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right) \quad\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$

$A A^{\prime}$	M_{1}
00	1
01	2
10	3
11	4

$A^{\prime} A^{\prime \prime}$	M_{2}
00	1
01	2
10	2
11	1

Matrix multiplication with ADDs (II)

$A A^{\prime} A^{\prime \prime}$	M_{1}	M_{2}	$M_{1} \cdot M_{2}$
000	1	1	1
001	1	2	2
010	2	2	4
011	2	1	2
100	3	1	3
101	3	2	6
110	4	2	8
111	4	1	4

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) \quad\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right)=\left(\begin{array}{rr}
5 & 4 \\
11 & 10
\end{array}\right)
$$

Jussi Rintanen

Translation of nondet. operators to ADDs

Operator $o=\langle c, e\rangle$ in NF1 is translated to $T_{o}=c \wedge \mathrm{PL}_{P}(e)$.
Nondeterministic choice and outermost conjunctions are by arithmetic sum and multiplication.
$\mathrm{PL}_{B}(e)=$ when e is deterministic translated like in Lecture 6, but restricted to state variables in the set B
$\mathrm{PL}_{B}\left(p_{1} e_{1}|\cdots| p_{n} e_{n}\right)=p_{1} \mathrm{PL}_{B}\left(e_{1}\right)+\cdots+p_{n} \mathrm{PL}_{B}\left(e_{n}\right)$
$\mathrm{PL}_{B}\left(e_{1} \wedge \cdots \wedge e_{n}\right)=\mathrm{PL}_{B \backslash\left(B_{2} \cup \ldots \cup B_{n}\right)}\left(e_{1}\right) \cdot \mathrm{PL}_{B_{2}}\left(e_{2}\right) \cdot \ldots \cdot \mathrm{PL}_{B_{n}}\left(e_{n}\right)$ where $B_{i}=\operatorname{changes}\left(e_{i}\right)$ for all $i \in\{1, \ldots, n\}$

Implementation of Value Iteration with ADDs

- Start from $\langle P, I, O, R, \emptyset\rangle$.
- Propositions in ADDs P and $P^{\prime}=\left\{p^{\prime} \mid p \in P\right\}$.
- Construct transition matrix ADDs from all $o \in O$ (next slide).
- Construct ADDs for representing reward functions $R(o), o \in O$.
- Functions v^{i} are ADDs that map valuations of P to \mathcal{R}.
- All computation is for all states (one ADD) simultaneously: big speed-ups possible.

Translation of reward functions to ADDs

For $o=\langle c, e\rangle \in O$ reward $R(o)=\left\{\left\langle\phi_{1}, r_{1}\right\rangle, \ldots,\left\langle\phi_{n}, r_{n}\right\rangle\right\}$.
Reward ADD R_{o} maps each state to a real number.
Construct the BDDs for $\phi_{1}, \ldots, \phi_{n}$ and multiply with the respective rewards:

$$
R_{o}=r_{1} \cdot \phi_{1}+\cdots+r_{n} \cdot \phi_{n}-\infty \cdot \neg c
$$

The Value Iteration algorithm: without ADDs

1. Assign $n:=0$ and (arbitrary) initial values to $v^{0}(s)$ for all $s \in S$.
2.

$v^{n+1}(s):=\max _{a \in A(s)}\left(R(s, a)+\sum_{s^{\prime} \in S} \lambda p\left(s^{\prime} \mid s, a\right) v^{n}\left(s^{\prime}\right)\right)$ for every $s \in S$
If $\left|v^{n+1}(s)-v^{n}(s)\right|<\frac{\epsilon(1-\lambda)}{2 \lambda}$ for all $s \in S$ then stop.
Otherwise, set $n:=n+1$ and repeat step 2 .
\qquad

The Value Iteration algorithm: with ADDs

1. Assign $n:=0$ and let v^{n} be an ADD that is constant 0 .
2.

$$
v^{n+1}:=\max _{\langle c, e\rangle=o \in O}\left(R_{o}+\lambda \cdot \exists P^{\prime} \cdot\left(T_{o} \cdot\left(v^{n}\left[P^{\prime} / P\right]\right)\right)\right.
$$

(Unsatisfied preconditions are handled by the immediate rewards $-\infty$.)
If all terminal nodes of ADD $\left|v^{n+1}-v^{n}\right|$ are $<\frac{\epsilon(1-\lambda)}{2 \lambda}$ then stop. Otherwise, set $n:=n+1$ and repeat step 2.

