Implementation for big state spaces

- Like binary decision diagrams (BDDs) can be used in implementing algorithms that use strong/weak preimages, there are data structures that can be used for implementing probabilistic algorithms for big state spaces.
- Problem: algorithms do not use just sets and relations, but value functions $v: S \rightarrow \mathcal{R}$ and non-binary transition matrices.
- Solution: Use a generalization of BDDs called algebraic decision diagrams (or MTBDDs: multi-terminal BDDs.)

Jussi Rintanen

June 28, AI Planning 1/15

Algebraic decision diagrams

- Graph representation of functions from {0,1}ⁿ → R that generalizes BDDs (BDDs are functions {0,1}ⁿ → {0,1})
- Every BDD is an ADD.
- Canonicity: Two ADDs describe the same function if and only if they are the same ADD.
- Applications: Computations on very big matrices including computing steady-state probabilities of Markov chains; probabilistic verification; AI planning

```
Jussi Rintanen
```

June 28, Al Planning 2/15

Operations on ADDs: sum, product, maximum, ...

Arithmetic operations as $(f \odot g)(x) = f(x) \odot g(x)$ for every *x*.

	ABC	f	g	f + g	$\max(f,g)$	$7 \cdot f$
_	000	0	3	3	3	0
	001	1	2	3	2	7
	010	1	0	1	1	7
	011	2	1	3	2	14
	100	1	0	1	1	7
	101	2	0	2	2	14
	110	2	0	2	2	14
	111	3	1	4	3	21

Jussi Rintanen

June 28, AI Planning 4/15

June 28, AI Planning 8/15

Implementation of Value Iteration with ADDs

- Start from $\langle P, I, O, R, \emptyset \rangle$.
- Propositions in ADDs P and $P' = \{p' | p \in P\}.$
- Construct transition matrix ADDs from all $o \in O$ (next slide).
- Construct ADDs for representing reward functions $R(o), o \in O$.
- Functions v^i are ADDs that map valuations of P to \mathcal{R} .
- All computation is for all states (one ADD) simultaneously: big speed-ups possible.

```
Jussi Rintanen
```

June 28, Al Planning 10/15

Translation of nondet. operators to ADDs

Operator $o = \langle c, e \rangle$ in NF1 is translated to $T_o = c \wedge \mathsf{PL}_P(e)$.

Nondeterministic choice and outermost conjunctions are by arithmetic sum and multiplication.

Jussi Rintanen

June 28, AI Planning 11/15

Translation of reward functions to ADDs

For $o = \langle c, e \rangle \in O$ reward $R(o) = \{ \langle \phi_1, r_1 \rangle, \dots, \langle \phi_n, r_n \rangle \}.$

Reward ADD R_o maps each state to a real number.

Construct the BDDs for ϕ_1, \ldots, ϕ_n and multiply with the respective rewards:

$$R_o = r_1 \cdot \phi_1 + \dots + r_n \cdot \phi_n - \infty \cdot \neg c$$

Jussi Rintanen

June 28, AI Planning 12/15

The Value Iteration algorithm: without ADDs
1. Assign
$$n := 0$$
 and (arbitrary) initial values to $v^0(s)$ for all $s \in S$.
2.
 $v^{n+1}(s) := \max_{a \in A(s)} \left(R(s, a) + \sum_{s' \in S} \lambda p(s'|s, a) v^n(s') \right)$ for every $s \in S$
If $|v^{n+1}(s) - v^n(s)| < \frac{\epsilon(1-\lambda)}{2\lambda}$ for all $s \in S$ then stop.
Otherwise, set $n := n + 1$ and repeat step 2.
Just M The Value Backup step for u
 $\left(\frac{AB}{00} \frac{00}{10} \frac{1}{10} \frac{0}{10} \frac{1}{10} \frac{1}{1$

The Value Iteration algorithm: with ADDs

Backup step for v^{n+1} as product of T_o and v^n :

(A'B'	A'B'	A'B'	A'B'	(
	AB	00	01	10	11	A'B'	v^n
	00	1.0	0	0	0	00	-5.1
	01	0	1.0	0	0	01	2.8
	10	0.2	0	0.8	0	10	10.2
	11	0	0	0	0 /	11	3.7

Notice: The fact that the operator is not applicable in 11 is handled by having the immediate reward $-\infty$ in that state.

June 28, AI Planning 14/15

