
Implementation for big state spaces

• Like binary decision diagrams (BDDs) can be used in
implementing algorithms that use strong/weak preimages,
there are data structures that can be used for implementing
probabilistic algorithms for big state spaces.

• Problem: algorithms do not use just sets and relations, but
value functions v : S → R and non-binary transition matrices.

• Solution: Use a generalization of BDDs called algebraic
decision diagrams (or MTBDDs: multi-terminal BDDs.)
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Algebraic decision diagrams

• Graph representation of functions from {0, 1}n → R that
generalizes BDDs (BDDs are functions {0, 1}n → {0, 1})

• Every BDD is an ADD.

• Canonicity: Two ADDs describe the same function if and only
if they are the same ADD.

• Applications: Computations on very big matrices including
computing steady-state probabilities of Markov chains;
probabilistic verification; AI planning
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An algebraic decision diagram
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ADD represents a mapping ABA’B’→ R

A′B′ A′B′ A′B′ A′B′

AB 00 01 10 11

00 1.0 0 0 0

01 0 1.0 0 0

10 0.8 0 0.2 0

11 0 0 0 0
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Operations on ADDs: sum, product, maximum, ...
Arithmetic operations as (f } g)(x) = f(x) } g(x) for every x.

ABC f g f + g max(f, g) 7 · f

000 0 3 3 3 0

001 1 2 3 2 7

010 1 0 1 1 7

011 2 1 3 2 14

100 1 0 1 1 7

101 2 0 2 2 14

110 2 0 2 2 14

111 3 1 4 3 21
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Operations on ADDs: sum
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Operations on ADDs: maximum
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Operations on ADDs: arithmetic ∃ abstraction
(∃p.f)(x) = (f [>/p])(x) + (f [⊥/p])(x)

ABC f

000 0

001 1

010 1

011 2

100 1

101 2

110 2

111 3

∃C.f is obtained by summing
f(x) and f(x′) when x and x′

differ only on C:

AB ∃C.f

00 1

01 3

10 3

11 5
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Matrix multiplication with ADDs (I)

Consider matrices M1 and M2, represented as mappings:

(

1 2

3 4

) (

1 2

2 1

)

AA′ M1

00 1

01 2

10 3

11 4

A′A′′ M2

00 1

01 2

10 2

11 1
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Matrix multiplication with ADDs (II)

AA′A′′ M1 M2 M1 · M2

000 1 1 1

001 1 2 2

010 2 2 4

011 2 1 2

100 3 1 3

101 3 2 6

110 4 2 8

111 4 1 4

AA′′ ∃A′.(M1 · M2)

00 5

01 4

10 11

11 10

(

1 2

3 4

) (

1 2

2 1

)

=

(

5 4

11 10

)
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Implementation of Value Iteration with ADDs
• Start from 〈P, I, O, R, ∅〉.

• Propositions in ADDs P and P ′ = {p′|p ∈ P}.

• Construct transition matrix ADDs from all o ∈ O (next slide).

• Construct ADDs for representing reward functions R(o), o ∈ O.

• Functions vi are ADDs that map valuations of P to R.

• All computation is for all states (one ADD) simultaneously: big
speed-ups possible.
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Translation of nondet. operators to ADDs

Operator o = 〈c, e〉 in NF1 is translated to To = c ∧ PLP (e).

Nondeterministic choice and outermost conjunctions are by
arithmetic sum and multiplication.

PLB(e) = when e is deterministic
translated like in Lecture 6, but restricted
to state variables in the set B

PLB(p1e1| · · · |pnen) = p1PLB(e1) + · · · + pnPLB(en)

PLB(e1 ∧ · · · ∧ en) = PLB\(B2∪···∪Bn)(e1) · PLB2(e2) · . . . · PLBn(en)

where Bi = changes(ei) for all i ∈ {1, . . . , n}
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Translation of reward functions to ADDs

For o = 〈c, e〉 ∈ O reward R(o) = {〈φ1, r1〉, . . . , 〈φn, rn〉}.

Reward ADD Ro maps each state to a real number.

Construct the BDDs for φ1, . . . , φn and multiply with the
respective rewards:

Ro = r1 · φ1 + · · · + rn · φn −∞ · ¬c
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The Value Iteration algorithm: without ADDs

1. Assign n := 0 and (arbitrary) initial values to v0(s) for all s ∈ S.

2.

vn+1(s) := max
a∈A(s)



R(s, a) +
∑

s′∈S

λp(s′|s, a)vn(s′)



 for every s ∈ S

If |vn+1(s) − vn(s)| < ε(1−λ)
2λ

for all s ∈ S then stop.

Otherwise, set n := n + 1 and repeat step 2.
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The Value Iteration algorithm: with ADDs
Backup step for vn+1 as product of To and vn:



















A′B′ A′B′ A′B′ A′B′

AB 00 01 10 11

00 1.0 0 0 0

01 0 1.0 0 0

10 0.2 0 0.8 0

11 0 0 0 0





































A′B′ vn

00 −5.1

01 2.8

10 10.2

11 3.7



















Notice: The fact that the operator is not applicable in 11 is
handled by having the immediate reward −∞ in that state.
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The Value Iteration algorithm: with ADDs

1. Assign n := 0 and let vn be an ADD that is constant 0.

2.

vn+1 := max
〈c,e〉=o∈O

(Ro + λ · ∃P ′.(To · (v
n[P ′/P ]))

(Unsatisfied preconditions are handled by the immediate
rewards −∞.)

If all terminal nodes of ADD |vn+1−vn| are < ε(1−λ)
2λ

then stop.

Otherwise, set n := n + 1 and repeat step 2.
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