Implementation for big state spaces

e Like binary decision diagrams (BDDs) can be used in
implementing algorithms that use strong/weak preimages,
there are data structures that can be used for implementing
probabilistic algorithms for big state spaces.

e Problem: algorithms do not use just sets and relations, but
value functions v : S — R and non-binary transition matrices.

e Solution: Use a generalization of BDDs called algebraic
decision diagrams (or MTBDDs: multi-terminal BDDs.)

Jussi Rintanen June 28, Al Planning 1/15

Algebraic decision diagrams

e Graph representation of functions from {0,1}" — R that
generalizes BDDs (BDDs are functions {0,1}" — {0,1})

e Every BDD is an ADD.

e Canonicity: Two ADDs describe the same function if and only
if they are the same ADD.

e Applications: Computations on very big matrices including
computing steady-state probabilities of Markov chains;
probabilistic verification; Al planning

Jussi Rintanen June 28, Al Planning 2/15

An algebraic decision diagram
A
/
"

ADD represents a mapping ABA'B'— R

A'B" AB A'B A'B
AB |00 01 10 11
00 (1.0 O 0 0
01 (0 1.0 0 0
0
0

10 0.8 O 0.2
11 |0 0 0

Jussi Rintanen June 28, Al Planning 3/15

Operations on ADDs: sum, product, maximum, ...
Arithmetic operations as (f © g)(z) = f(z) @ g(z) for every z.

ABC | flg|f+g|max(f,g) |7 f
000 [0]3] 3 3 0
001 [1[2] 3 2 7
010 [1]0] 1 1 7
011 [2[1] 3 2 14
100 [1(0]| 1 1 7
101 [2/0] 2 2 14
110 |2 (0| 2 2 14
111 |31 4 3 21

Jussi Rintanen June 28, Al Planning 4/15

Operations on ADDs: sum

B B B
\\ // \\ S]
\\ ‘ \\ 1 -
c C c /o c c = C
\ \ !
3 2 1 C 0 1 2 3 4 3
Jussi Rintanen June 28, Al Planning

5/15

Operations on ADDs: maximum

/B /B V <
c C C max / C o = c c C
N N N i e N N N
3 2 1 [} 0 1 2 3 3 2 1
Jussi Rintanen June 28, Al Planning 6/15

Operations on ADDs: arithmetic 3 abstraction

Gp-f)(=) = (FIT/p))(x) + (f[L/p])(=)

ABC
000
001
010
011
100
101
110
111

JC.f is obtained by summing
f(z) and f(z’) when z and z’
differ only on C"

ooww»—tmr—xHO‘kh

Jussi Rintanen June 28, Al Planning

7115

Matrix multiplication with ADDs (1)

Consider matrices M; and M-, represented as mappings:

AA’ | My A'A" | My
00 | 1 00 1
(il)) i > < ; ? > 01 | 2 01 2
10 | 3 10 2
11 | 4 11 1
Jussi Rintanen June 28, Al Planning 8/15

Matrix multiplication with ADDs (Il)

AA'A" | My | My | My - M, AA” | JA' (M - M)

000 | 1|1 1 00 5

001 | 1 | 2 2 01 4

010 | 2 | 2 4 10 11

011 | 2 |1 2 11 10

100 | 3|1 3

101 | 3] 2 6

110 | 4| 2 8 12 12 (5 4

111 | 4|1 4 (3 4) (2 1)‘(11 10)
Jussi Rintanen June 28, Al Planning 9/15

Translation of nondet. operators to ADDs

Operator o = (¢, e) in NF1 is translated to T, = ¢ A PLp(e).

Nondeterministic choice and outermost conjunctions are by
arithmetic sum and multiplication.

PLg(e) = when e is deterministic
translated like in Lecture 6, but restricted
to state variables in the set B
PLB(plel‘ T |pnen) = plPLB(el) + e +pnPLB(€n)
PLB(€1 JARERIVAN en) = PLB\(BQU"'UBTL)(el) . PLBQ(eg) e PLB”(ETL)
where B; = changes(e;) foralli € {1,...,n}

Jussi Rintanen June 28, Al Planning 11/15

Implementation of Value Iteration with ADDs
e Start from (P, 1,0, R, ().

e Propositions in ADDs P and P’ = {p'|p € P}.

e Construct transition matrix ADDs from all o € O (next slide).

e Construct ADDs for representing reward functions R(0), 0 € O.
¢ Functions »* are ADDs that map valuations of P to R.

e All computation is for all states (one ADD) simultaneously: big
speed-ups possible.

Jussi Rintanen June 28, Al Planning 10/15

Translation of reward functions to ADDs

For o = (c,e) € O reward R(0) = {{¢1,71), .-, {¢n,T0)}.
Reward ADD R, maps each state to a real number.

Construct the BDDs for ¢q,...,¢, and multiply with the
respective rewards:

Ro=r1- G141y by — 00 e

Jussi Rintanen June 28, Al Planning 12/15

The Value Iteration algorithm: without ADDs

1. Assign n := 0 and (arbitrary) initial values to v%(s) for all s € S.

2.
R(s,a) + Z Ap(s'|s, a)v™(s")
s'eS

If [0+ (s) — v™(s)| < S552) for all s € S then stop.

Otherwise, set n := n + 1 and repeat step 2.

Jussi Rintanen June 28, Al Planning 13/15

for every s € S

The Value Iteration algorithm: with ADDs

1. Assign n := 0 and let v™ be an ADD that is constant O.

"= max

omax (Ro+A-3P(T, - (V"[P'/P]))

(Unsatisfied preconditions are handled by the immediate
rewards —oo.)

If all terminal nodes of ADD [v™*+! —v"| are < <52 then stop.

Otherwise, set n := n + 1 and repeat step 2.

Jussi Rintanen June 28, Al Planning 15/15

The Value Iteration algorithm: with ADDs

Backup step for v”*+! as product of T, and v™:

A'B" A'B" A'B’ A'B’
AB |00 01 10 11 A'B’ v
00 |10 O 0 0 00 | —5.1
0110 10 O 0 01 2.8
10 0.2 O 08 O 10 | 10.2
11 |0 0 0 0 11 3.7

Notice: The fact that the operator is not applicable in 11 is
handled by having the immediate reward —oc in that state.

Jussi Rintanen

June 28, Al Planning 14/15

