
Nondeterministic effects: restriction

Let p ∈ P be a state variable.

Let e1∧· · ·∧en be an effect. If e1, . . . , en are not all deterministic,
then p or ¬p may occur as an atomic effect in at most one of
e1, . . . , en.

EXAMPLE: (0.5(a B b)|0.5c)∧(0.5(¬a B ¬b)|0.5d) is not allowed.

Jussi Rintanen June 14, AI Planning 1/24

Translation of ND effects into PL

The set of state variables that are possibly changed:

changes(a) = {a}

changes(¬a) = {a}

changes(c B e) = changes(e)

changes(e1 ∧ · · · ∧ en) = changes(e1) ∪ · · · ∪ changes(en)

changes(p1e1| · · · |pnen) = changes(e1) ∪ · · · ∪ changes(en)

Jussi Rintanen June 14, AI Planning 2/24

Translation of ND effects into PL

For effects e in normal form I and sets B of state variables define

PLB(e) = when e is deterministic
translated like in Lecture 6, but restricted
to state variables in the set B

PLB(p1e1| · · · |pnen) = PLB(e1) ∨ · · · ∨ PLB(en)

PLB(e1 ∧ · · · ∧ en) = PLB\(B2∪···∪Bn)(e1) ∧ PLB2(e2) ∧ · · · ∧ PLBn(e

where Bi = changes(ei) for all i ∈ {2, . . . , n}

Jussi Rintanen June 14, AI Planning 3/24

Translation of ND effects into PL: example

PL{A,B,C,D}((0.5A|0.5(C B A)) ∧ (0.5B|0.5C))

= PL{A,D}(0.5A|0.5(C B A)) ∧ PL{B,C}(0.5B|0.5C)

= (PL{A,D}(A) ∨ PL{A,D}(C B A))∧

(PL{B,C}(B) ∨ PL{B,C}(C))

= ((A′ ∧ (D ↔ D′)) ∨ (((A ∨ C) ↔ A′) ∧ (D ↔ D′)))∧

((B′ ∧ (C ↔ C ′)) ∨ ((B ↔ B′) ∧ C ′))

Jussi Rintanen June 14, AI Planning 4/24

Translation of ND operators into PL

The translation of an operator o = 〈c, e〉 in normal form I is

τo = c ∧ PLP (e)

where P is the set of all state variables.

Jussi Rintanen June 14, AI Planning 5/24

Nondeterministic operators: translation into
propositional logic

R1(P, P ′) = τo1 ∨ · · · ∨ τon ∨ ((p1 ↔ p′1) ∧ · · · ∧ (pk ↔ p′k))

where P = {p1, . . . , pk} is the set of state variables.

Jussi Rintanen June 14, AI Planning 6/24

Preimages: weak preimage, strong preimage

image imgR(S) = {s′|s ∈ S, 〈s, s′〉 ∈ R}

preimage wpreimgR(S) = {s|s′ ∈ S, 〈s, s′〉 ∈ R}

strong preimage spreimgR(S) = {s|s′ ∈ S, 〈s, s′〉 ∈ R, imgR(s) ⊆ S}

Strong preimage = the set of states from which a state in S is
always reached (whatever nondeterministic choice is made.)

spreimgR(S) = wpreimgR(S) whenever R is deterministic.

EXAMPLE: Consider R = {〈s1, s2〉, 〈s1, s3〉}.
wpreimgR({s2}) = {s1}

spreimgR({s2}) = ∅.

Jussi Rintanen June 14, AI Planning 7/24

Computing strong preimages with formulas

As a propositional formula:

(∀P ′.(Ro(P, P ′)→(φ[p′1/p1, . . . , p
′
n/pn]))) ∧ (∃P ′.Ro(P, P ′))

Here ∀p.φ is universal abstraction that is defined analogously to
existential abstraction as

∀p.φ = φ[>/p] ∧ φ[⊥/p].

Jussi Rintanen June 14, AI Planning 8/24

Computing strong preimages with formulas

The formula

(∀P ′.(Ro(P, P ′)→(φ[p′1/p1, . . . , p
′
n/pn]))) ∧ (∃P ′.Ro(P, P ′))

determines the strong preimage as the set of states s such that
(first and second conjunct, respectively):

1. for all states s′, if sRos
′ then s′ |= φ, and

2. there is some state s′ such that sRos
′ (to exclude states s

without successors: they trivially satisfy the first conjunct.)

Jussi Rintanen June 14, AI Planning 9/24

Conditional plans vs. planning interleaved with
execution

O(2
n

) O(2
n

)

observations

action

observations

action

observations

action

plan exec planplannerexec exec
O(1)

Trade-off between plan size and how easy it is to execute!

Jussi Rintanen June 14, AI Planning 10/24

Contingent plans vs. planning interleaved with
execution

1. Choose only the action to be executed next: planning and
execution are interleaved.

+ No need to construct a (possibly very big) plan.
- May be very very slow (≥ the plan existence problem).

2. Construct a plan that handles all possible contingencies.

+ Executing a plan can be very efficient.
- A plan may be very big (if it is efficient to execute).

Jussi Rintanen June 14, AI Planning 11/24

Conditional plans

• Next action is dependent on how nondeterminism worked.

• Many possibilities in representing these dependencies:

1. Mappings from current states to an operator
2. Mappings from sets of possible current states to an operator
3. Programs

The first two can be represented in terms of the third.

Jussi Rintanen June 14, AI Planning 12/24

Conditional plans: definition

Program statements:

1. Apply an operator (and go to the next statement)

2. Choose the next statement based on values of state variables
(case/switch/if-then-else)

Jussi Rintanen June 14, AI Planning 13/24

Conditional plans: definition

P = the state variables, O = the operators. A plan is 〈N, b, l〉

where

• N is a finite set of nodes,
• b ∈ N is the initial node,
• l : N → (O × N) ∪ 2L×N assigns each node

– an operator and a successor node 〈o, n〉 ∈ O × N or
– a set of conditions and successor nodes 〈φ, n〉

where n ∈ N and φ is a formula over P .

Jussi Rintanen June 14, AI Planning 14/24

Conditional plans: example

N = {1, 2, 3, 4, 5}

b = 1

l(1) = 〈o3, 2〉

l(2) = {〈φ1, 1〉, 〈φ2, 3〉, 〈φ3, 4〉}

l(3) = 〈o2, 4〉

l(4) = {〈φ4, 1〉, 〈φ5, 5〉}

l(5) = ∅

Jussi Rintanen June 14, AI Planning 15/24

Conditional plans: example, cont’d

1

2

5

3 o2

o3

4
−C C

−A&−B −A&B
A

Jussi Rintanen June 14, AI Planning 16/24

Conditional plans: example, cont’d
1: o3

2: CASE
φ1: GOTO 1
φ2: GOTO 3
φ3: GOTO 4

3: o2

4: CASE
φ4: GOTO 1
φ5: GOTO 5

5:

Jussi Rintanen June 14, AI Planning 17/24

Problem definition
A 4-tuple 〈P, I, O, G〉 consisting of

• a set P of state variables,
• a propositional formula I over P ,
• a set O of operators, and
• a propositional formula G over P .

is a problem instance in nondeterministic planning with full
observability.

A solution is a plan that always reaches goals when execution
starts in an initial state. We give 2 alternative formal definitions...

Jussi Rintanen June 14, AI Planning 18/24

Execution graph of a plan

Let 〈P, I, O, G〉 be a problem instance and π = 〈N, b, l〉 be a plan.
Then the execution graph of π is 〈M, E〉 where

1. M = S × N , where S is the set of Boolean valuations of P ,

2. E ⊆ M × M has an edge from 〈s, n〉 to 〈s′, n′〉 if and only if

(a) l(n) = 〈o, n′〉 and s′ ∈ imgo(s), or (operator node)
(b) 〈φ, n′〉 ∈ l(n) and s′ = s and s |= φ. (branch node)

Jussi Rintanen June 14, AI Planning 19/24

Execution graph of a plan: example

transition graph plan

s1

s2

s3

2 3

s1 s2,s3
1

Jussi Rintanen June 14, AI Planning 20/24

Execution graph of a plan: example

s1,1
s1,2

s2,1

s1,3

s3,1
s3,2

s3,3
s2,2

s2,3

Jussi Rintanen June 14, AI Planning 21/24

Valid plans I

DEFINITION 1 (Plans without loops)

For all states s such that s |= I, every path that starts from (s, b)

1. has finite length and

2. ends in a terminal node (s′, n) such that s′ |= G.

Jussi Rintanen June 14, AI Planning 22/24

Necessity of loops

Goal: Toss a coin until it lands on heads.

1. Planning problem is solvable!

2. No finite upper bound on execution length.

3. Infinite execution possible, but its probability is 0.

Jussi Rintanen June 14, AI Planning 23/24

Valid plans II

DEFINITION 2 (Plans with loops)

For all states s such that s |= I, for every (s′, n) to which there is
a path from (s, b) that does not visit (s′′′, n′′) for any s′′′ such that
s′′′ |= G and terminal node n′′ there is also a path from (s′, n) to
some (s′′, n′) such that s′′ |= G and n′ is a terminal node.

Jussi Rintanen June 14, AI Planning 24/24

