
Nondeterministic effects: restriction

Let p ∈ P be a state variable.

Let e1∧· · ·∧en be an effect. If e1, . . . , en are not all deterministic,
then p or ¬p may occur as an atomic effect in at most one of
e1, . . . , en.

EXAMPLE: (0.5(a B b)|0.5c)∧(0.5(¬a B ¬b)|0.5d) is not allowed.
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Translation of ND effects into PL

The set of state variables that are possibly changed:

changes(a) = {a}

changes(¬a) = {a}

changes(c B e) = changes(e)

changes(e1 ∧ · · · ∧ en) = changes(e1) ∪ · · · ∪ changes(en)

changes(p1e1| · · · |pnen) = changes(e1) ∪ · · · ∪ changes(en)
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Translation of ND effects into PL

For effects e in normal form I and sets B of state variables define

PLB(e) = when e is deterministic
translated like in Lecture 6, but restricted
to state variables in the set B

PLB(p1e1| · · · |pnen) = PLB(e1) ∨ · · · ∨ PLB(en)

PLB(e1 ∧ · · · ∧ en) = PLB\(B2∪···∪Bn)(e1) ∧ PLB2(e2) ∧ · · · ∧ PLBn(e

where Bi = changes(ei) for all i ∈ {2, . . . , n}
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Translation of ND effects into PL: example

PL{A,B,C,D}((0.5A|0.5(C B A)) ∧ (0.5B|0.5C))

= PL{A,D}(0.5A|0.5(C B A)) ∧ PL{B,C}(0.5B|0.5C)

= (PL{A,D}(A) ∨ PL{A,D}(C B A))∧

(PL{B,C}(B) ∨ PL{B,C}(C))

= ((A′ ∧ (D ↔ D′)) ∨ (((A ∨ C) ↔ A′) ∧ (D ↔ D′)))∧

((B′ ∧ (C ↔ C ′)) ∨ ((B ↔ B′) ∧ C ′))
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Translation of ND operators into PL

The translation of an operator o = 〈c, e〉 in normal form I is

τo = c ∧ PLP (e)

where P is the set of all state variables.
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Nondeterministic operators: translation into
propositional logic

R1(P, P ′) = τo1 ∨ · · · ∨ τon ∨ ((p1 ↔ p′1) ∧ · · · ∧ (pk ↔ p′k))

where P = {p1, . . . , pk} is the set of state variables.
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Preimages: weak preimage, strong preimage

image imgR(S) = {s′|s ∈ S, 〈s, s′〉 ∈ R}

preimage wpreimgR(S) = {s|s′ ∈ S, 〈s, s′〉 ∈ R}

strong preimage spreimgR(S) = {s|s′ ∈ S, 〈s, s′〉 ∈ R, imgR(s) ⊆ S}

Strong preimage = the set of states from which a state in S is
always reached (whatever nondeterministic choice is made.)

spreimgR(S) = wpreimgR(S) whenever R is deterministic.

EXAMPLE: Consider R = {〈s1, s2〉, 〈s1, s3〉}.
wpreimgR({s2}) = {s1}

spreimgR({s2}) = ∅.
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Computing strong preimages with formulas

As a propositional formula:

(∀P ′.(Ro(P, P ′)→(φ[p′1/p1, . . . , p
′
n/pn]))) ∧ (∃P ′.Ro(P, P ′))

Here ∀p.φ is universal abstraction that is defined analogously to
existential abstraction as

∀p.φ = φ[>/p] ∧ φ[⊥/p].
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Computing strong preimages with formulas

The formula

(∀P ′.(Ro(P, P ′)→(φ[p′1/p1, . . . , p
′
n/pn]))) ∧ (∃P ′.Ro(P, P ′))

determines the strong preimage as the set of states s such that
(first and second conjunct, respectively):

1. for all states s′, if sRos
′ then s′ |= φ, and

2. there is some state s′ such that sRos
′ (to exclude states s

without successors: they trivially satisfy the first conjunct.)
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Conditional plans vs. planning interleaved with
execution
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Trade-off between plan size and how easy it is to execute!
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Contingent plans vs. planning interleaved with
execution

1. Choose only the action to be executed next: planning and
execution are interleaved.

+ No need to construct a (possibly very big) plan.
- May be very very slow (≥ the plan existence problem).

2. Construct a plan that handles all possible contingencies.

+ Executing a plan can be very efficient.
- A plan may be very big (if it is efficient to execute).
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Conditional plans

• Next action is dependent on how nondeterminism worked.

• Many possibilities in representing these dependencies:

1. Mappings from current states to an operator
2. Mappings from sets of possible current states to an operator
3. Programs

The first two can be represented in terms of the third.
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Conditional plans: definition

Program statements:

1. Apply an operator (and go to the next statement)

2. Choose the next statement based on values of state variables
(case/switch/if-then-else)
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Conditional plans: definition

P = the state variables, O = the operators. A plan is 〈N, b, l〉

where

• N is a finite set of nodes,
• b ∈ N is the initial node,
• l : N → (O × N) ∪ 2L×N assigns each node

– an operator and a successor node 〈o, n〉 ∈ O × N or
– a set of conditions and successor nodes 〈φ, n〉

where n ∈ N and φ is a formula over P .
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Conditional plans: example

N = {1, 2, 3, 4, 5}

b = 1

l(1) = 〈o3, 2〉

l(2) = {〈φ1, 1〉, 〈φ2, 3〉, 〈φ3, 4〉}

l(3) = 〈o2, 4〉

l(4) = {〈φ4, 1〉, 〈φ5, 5〉}

l(5) = ∅
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Conditional plans: example, cont’d
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Conditional plans: example, cont’d
1: o3

2: CASE
φ1: GOTO 1
φ2: GOTO 3
φ3: GOTO 4

3: o2

4: CASE
φ4: GOTO 1
φ5: GOTO 5

5:
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Problem definition
A 4-tuple 〈P, I, O, G〉 consisting of

• a set P of state variables,
• a propositional formula I over P ,
• a set O of operators, and
• a propositional formula G over P .

is a problem instance in nondeterministic planning with full
observability.

A solution is a plan that always reaches goals when execution
starts in an initial state. We give 2 alternative formal definitions...
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Execution graph of a plan

Let 〈P, I, O, G〉 be a problem instance and π = 〈N, b, l〉 be a plan.
Then the execution graph of π is 〈M, E〉 where

1. M = S × N , where S is the set of Boolean valuations of P ,

2. E ⊆ M × M has an edge from 〈s, n〉 to 〈s′, n′〉 if and only if

(a) l(n) = 〈o, n′〉 and s′ ∈ imgo(s), or (operator node)
(b) 〈φ, n′〉 ∈ l(n) and s′ = s and s |= φ. (branch node)
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Execution graph of a plan: example
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Execution graph of a plan: example
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Valid plans I

DEFINITION 1 (Plans without loops)

For all states s such that s |= I, every path that starts from (s, b)

1. has finite length and

2. ends in a terminal node (s′, n) such that s′ |= G.
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Necessity of loops

Goal: Toss a coin until it lands on heads.

1. Planning problem is solvable!

2. No finite upper bound on execution length.

3. Infinite execution possible, but its probability is 0.
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Valid plans II

DEFINITION 2 (Plans with loops)

For all states s such that s |= I, for every (s′, n) to which there is
a path from (s, b) that does not visit (s′′′, n′′) for any s′′′ such that
s′′′ |= G and terminal node n′′ there is also a path from (s′, n) to
some (s′′, n′) such that s′′ |= G and n′ is a terminal node.
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