Nondeterministic effects: definition

Effects are recursively defined as follows.

1. a and $\neg a$ for state variables $a \in P$ are effects.
2. $e_{1} \wedge \cdots \wedge e_{n}$ is an effect if e_{1}, \ldots, e_{n} are effects (the special case with $n=0$ is the empty conjunction $\boldsymbol{\top}$.)
3. $c \triangleright e$ is an effect if c is a formula over P and e is an effect.
4. $p_{1} e_{1}|\cdots| p_{n} e_{n}$ is an effect if e_{1}, \ldots, e_{n} for $n \geq 0$ are effects, $p_{i}>0$ for all $i \in\{1, \ldots, n\}$ and $\sum_{i=1}^{n} p_{i}=1$.
\qquad

Nondeterministic effects: probabilistic semantics

1. $[a]_{s}=\{\langle 1,\{a\}\rangle\}$ and $[\neg a]_{s}=\{\langle 1,\{\neg a\}\rangle\}$ for $a \in P$.
2. $\left[e_{1} \wedge \cdots \wedge e_{n}\right]_{s}=\left\{\left\langle\prod_{i=1}^{n} p_{i}, \bigcup_{i=1}^{n} f_{i}\right\rangle \mid\right.$

$$
\left.\left\langle p_{1}, f_{1}\right\rangle \in\left[e_{1}\right]_{s}, \ldots,\left\langle p_{n}, f_{n}\right\rangle \in\left[e_{n}\right]_{s}\right\} .
$$

3. $\left[c^{\prime} \triangleright e^{\prime}\right]_{s}=\left[e^{\prime}\right]_{s}$ if $s=c^{\prime}$ and $\left[c^{\prime} \triangleright e^{\prime}\right]_{s}=\{\langle 1, \emptyset\rangle\}$ otherwise.
4. $\left[p_{1} e_{1}|\cdots| p_{n} e_{n}\right]_{s}=\left\{\left\langle p_{1} \cdot p, e\right\rangle \mid\langle p, e\rangle \in\left[e_{1}\right]_{s}\right\}$

$$
\cup \cdots \cup\left\{\left\langle p_{n} \cdot p, e\right\rangle \mid\langle p, e\rangle \in\left[e_{n}\right]_{s}\right\}
$$

Nondeterministic effects: semantics

Let $\langle c, e\rangle$ be an operator over P and s a state. The operator is applicable in s if $s \models c$. Define $[e]_{s}$ recursively as follows.

1. $[a]_{s}=\{\{a\}\}$ and $[\neg a]_{s}=\{\{\neg a\}\}$ for $a \in P$.
2. $\left[e_{1} \wedge \cdots \wedge e_{n}\right]_{s}=\left\{\bigcup_{i=1}^{n} f_{i} \mid f_{1} \in\left[e_{1}\right]_{s}, \ldots, f_{n} \in\left[e_{n}\right]_{s}\right\}$.
3. $\left[c^{\prime} \triangleright e^{\prime}\right]_{s}=\left[e^{\prime}\right]_{s}$ if $s=c^{\prime}$ and $\left[c^{\prime} \triangleright e^{\prime}\right]_{s}=\{\emptyset\}$ otherwise.
4. $\left[p_{1} e_{1}|\cdots| p_{n} e_{n}\right]_{s}=\left[e_{1}\right]_{s} \cup \cdots \cup\left[e_{n}\right]_{s}$

The successor states are determined by members of $[e]_{s}$.

Nondeterministic effects: probabilistic semantics

Consider a state s with $s \models A \wedge B \wedge C$. Successor states under e and their probabilities are determined by members of $[e]_{s}$.

Let $[e]_{s}=\{\langle 0.3,\{A, \neg B\}\rangle,\langle 0.5,\{\neg B\}\rangle,\langle 0.2,\{\neg B, \neg C\}\rangle\}$.
With e state s has two successor states s_{1} and s_{2} such that

$$
\begin{aligned}
& s_{1} \equiv A \wedge \neg B \wedge C \\
& s_{2} \vDash A \wedge \neg B \wedge \neg C
\end{aligned}
$$

Probability of reaching s_{1} is 0.8 and that of s_{2} is 0.2 .

Nondeterministic effects: examples

```
a\triangleright(0.5(\nega\wedgeb\wedgec)|0.5(a\wedge\negb\wedge\negc))
0.5(a\triangleright (a\wedgeb\wedgec))|0.5(a\triangleright (b\wedge\negc))
0.5(a\triangleright (a\wedgeb\wedgec))|0.5\top
(0.2a|0.8b)^(0.3c|0.7d)^(0.4e|0.6f)
(0.2a|0.8b)^(0.3\nega|0.7d)
not well-defined
```

Jussi Rintanen

Nondeterministic effects: normal form I

DEFINITION: Let e_{1}, \ldots, e_{n} be any deterministic effects in normal form as defined earlier. Then e obtained from e_{1}, \ldots, e_{n} with \wedge and \mid is in normal form I.

EXAMPLES:
$(0.5((a \triangleright b) \wedge(b \triangleright \neg c) \wedge(d \triangleright c)) \mid 0.5(a \triangleright b)) \wedge(d \triangleright \neg c)$
$(0.5(a \triangleright b)|0.4(b \triangleright q)| 0.1(j \triangleright e)) \wedge(0.3(\neg a \triangleright \neg b) \mid 0.7(c \triangleright \neg c))$

THEOREM: Any effect can be transformed into normal form I in polynomial time.

Nondeterministic effects: more equivalences

```
    c\triangleright (\mp@subsup{p}{1}{}\mp@subsup{e}{1}{}|\cdots|\mp@subsup{p}{n}{}\mp@subsup{e}{n}{})\equiv\mp@subsup{p}{1}{}(c\triangleright\mp@subsup{e}{1}{})|\cdots|\mp@subsup{p}{n}{}(c\triangleright\mp@subsup{e}{n}{})
    e\wedge(\mp@subsup{p}{1}{}\mp@subsup{e}{1}{}|\cdots|\mp@subsup{p}{n}{}\mp@subsup{e}{n}{})\equiv\mp@subsup{p}{1}{}(e\wedge\mp@subsup{e}{1}{})|\cdots|\mp@subsup{p}{n}{}(e\wedge\mp@subsup{e}{n}{})
p}(\mp@subsup{p}{1}{\prime}\mp@subsup{e}{1}{\prime}|\cdots|\mp@subsup{p}{n}{\prime}\mp@subsup{e}{n}{\prime})|\mp@subsup{p}{2}{}\mp@subsup{e}{2}{}|\cdots|\mp@subsup{p}{n}{}\mp@subsup{e}{n}{}\equiv(\mp@subsup{p}{1}{}\mp@subsup{p}{1}{\prime})\mp@subsup{e}{1}{\prime}|\cdots|(\mp@subsup{p}{1}{}\mp@subsup{p}{n}{\prime})\mp@subsup{e}{n}{\prime}|\mp@subsup{p}{2}{}\mp@subsup{e}{2}{}|\cdots|\mp@subsup{p}{n}{}\mp@subsup{e}{n}{
```


Nondeterministic effects: normal form II

DEFINITION: Let e_{1}, \ldots, e_{n} for $n \geq 0$ be any deterministic effects in normal form as defined earlier. Then $e=p_{1} e_{1}|\cdots| p_{n} e_{n}$ is in normal form II.

EXAMPLES:

$(a \triangleright b) \wedge(c \triangleright \neg d)$
$0.3((a \triangleright b) \wedge(c \triangleright \neg d))|0.2(g \triangleright \neg h)| 0.5((b \triangleright a) \wedge((f \vee q) \triangleright h))$

THEOREM: Any effect can be transformed into normal form II.

Nondeterministic effects: size of normal form II

Size increase in transforming into normal form II may be exponential.

Let $Q=\left\{q_{1}, \ldots, q_{n}\right\}$ be a set of state variables. Effect that can produce every valuation of Q in one step is
$\left(0.5 q_{1} \mid 0.5 \neg q_{1}\right) \wedge\left(0.5 q_{2} \mid 0.5 \neg q_{2}\right) \wedge \cdots \wedge\left(0.5 q_{n} \mid 0.5 \neg q_{n}\right)$.
The effect in normal form II is
$2^{-n}\left(q_{1} \wedge q_{2} \wedge \cdots \wedge q_{n}\right)\left|2^{-n}\left(\neg q_{1} \wedge q_{2} \wedge \cdots \wedge q_{n}\right)\right| \cdots \mid 2^{-n}\left(\neg q_{1} \wedge \neg q_{2} \wedge \cdots \wedge \neg q_{n}\right)$.

Jussi Rintanen
\square
\square

